Erythrocyte Clearance

  • Hans U. Lutz
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


Maintenance of tissue function includes disposal of nonfunctional, senescent, and aberrant cells. Removal of these cells is a tissue homeostatic process that occurs in one way or another in any multicellular organism with somatic and germline tissues. Vertebrates with a constant body weight and tissues of mesenchymal and mesodermal origin had to acquire tools to eliminate cells by means other than mummification or release to the surroundings. Our knowledge of specific clearance mechanisms is very limited. Our ignorance is in part due to the reliability with which the clearance systems work. There is to my knowledge no known disease or metabolic error that can be traced to an improper clearance system. In contrast to this, a large number of diseases are initiated by an overreaction of a particular clearance mechanism. Consider, for example, the various autoimmune diseases where excessive clearance is mediated either by cellular autoimmunity or by autoantibodies, phagocytes, and in part by complement. Thus, the humoral and cellular defense systems are the primary and definitely the most versatile tools for a selective clearance also of senescent and altered self. The recent insights into the generation of diversity among antibodies (Tonegawa, 1985; Alt et al., 1987), the immunological network (Jerne, 1984; Bottomly, 1984; Hooper, 1987), the persistence of autoreactive B cells in ontogeny (Bona, 1988; Benner et al., 1982), the existence of naturally occurring autoantibodies in healthy subjects (Lutz and Wipf, 1982; Guilbert et al., 1982; Lutz et al., 1984), and the understanding of complement regulation (Müller-Eberhard and Schreiber, 1980; Fearon and Wong, 1983; Schifferli et al., 1986) have paved a road into the complexity of tissue homeostasis and clearance.


Sialic Acid Paroxysmal Nocturnal Hemoglobinuria Alternative Complement Pathway Antiidiotypic Antibody Positive Coombs Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, J. W., Matusewicz, N. M., and Albright, J. F., 1988, Aging of the murine immune system is reflected by declining ability to generate antibodies that promote elimination of Trypanosoma musculi, J. Immunol. 141: 1318–1325.PubMedGoogle Scholar
  2. Alderman, E. M., Fudenberg, H. H., and Lovins, R. E., 1981, Isolation and characterization of an age-related antigen present on senescent human red blood cells, Blood 58: 341–349.PubMedGoogle Scholar
  3. Allen, D. W., Johnson, G. J., Cadman, S., and Kaplan, M. E., 1978, Membrane polypeptide aggregates in glucose 6-phosphate dehydrogenase-deficient and in vitro aged red blood cells, J. Lab. Clin. Med. 91: 32 1327.Google Scholar
  4. Alt, F. W., Blackwell, T. K., and Yancopoulos, G. D., 1987, Development of the primary antibody repertoire, Science 238: 1079–1087.PubMedCrossRefGoogle Scholar
  5. Arese, P., 1982, Favism—A natural model for the study of hemolytic mechanisms, Rev. Appl. Pure Pharm. Sci. 3: 123–183.Google Scholar
  6. Amaout, M. A., Dana, N., Melamed, J., Medicus, R., and Cohen, H. R., 1983, Low ionic strength or chemical cross-linking of monomeric C3b increases its binding affinity to the human complement C3b receptor, Immunology 48: 229–237.Google Scholar
  7. Ashwell, G., and Harford, J., 1982, Carbohydrate-specific receptors of the liver, Annu. Rev. Biochem. 51: 53 1554.Google Scholar
  8. Astrup, J., 1974, Sodium and potassium in human red cell. Variations among centrifuged cells, Scand. J. Clin. Lab. Invest. 33: 231–237.PubMedCrossRefGoogle Scholar
  9. Au, K. S., 1987, Activation of erythrocyte membrane (Ca2+)-ATPase by calpain, Biochim. Biophys. Acta 905: 273–278.PubMedCrossRefGoogle Scholar
  10. Baccala, R., Quang, T. V., Gilbert, M., Ternynck, T., and Avrameas, S., 1989, Two murine natural polyreactive autoantibodies are encoded by nonmutated germ-line genes, Proc. Natl. Acad. Sci. USA. 86: 46244628.Google Scholar
  11. Benner, R., van Oudenaren, A., Björklund, M., Ivars, F., and Holmberg, D., 1982, “Background” immunoglobulin production: Measurement, biological significance and regulation, Immunol. today 3:243–249.Google Scholar
  12. Berti, G., and Govoni, M., 1986, Rat antibodies to spectrin, the principal inner component of erythrocyte membrane. Immunochemical studies after SDS-gel electrophoresis, Boll. Ist. Sieroter. Milan. 65: 309–318.PubMedGoogle Scholar
  13. Beutler, E., 1985a, How do red cell enzymes age? A new perspective, Br. J. Haematol. 61: 377–384.PubMedCrossRefGoogle Scholar
  14. Beutler, E., 1985b, Biphasic loss of red cell enzyme activity during in vivo aging, Prog. Clin. Biol. Res. 95: 317–329.Google Scholar
  15. Beutler, E., West, C., and Blume, K-G., 1976, The removal of leukocytes and platelets from whole blood, J. Lab Clin. Med. 88: 328–333.PubMedGoogle Scholar
  16. Bocci, V., 1981, Determinants of erythrocyte ageing: A reappraisal, Br. J. Haematol.48:515–522.Google Scholar
  17. Bona, C. A., 1988, V Genes encoding autoantibodies: Molecular and phenotypic characteristics, Annu. Rev. Immunol. 6: 327–358.PubMedCrossRefGoogle Scholar
  18. Bottomly, K., 1984, 1984: All idiotypes are equal, but some are more equal than others, Immunol. Rev. 79: 4561.CrossRefGoogle Scholar
  19. Bretscher, P., and Cohn, M., 1970, A theory of self-nonself discrimination, Science 168: 1042–1049.CrossRefGoogle Scholar
  20. Brovelli, A., Seppi, C., Bardoni, A., Balduini, C., and Lutz, H. U., 1987, Re-evaluation of the structural integrity of red cell glycoproteins during aging in vivo and nutrient deprivation, Biochem. J. 242: 115–121.PubMedGoogle Scholar
  21. Burnet, F. M., 1959, The Clonal Selection Theory of Acquired Immunity, Cambridge University Press, London.Google Scholar
  22. Bussolino, F., Turrini, F., and Arese, P., 1987, Measurement of phagocytosis utilizing 14C-cyanate-labelled human red cells and monocytes, Br. J. Haematol. 66: 271–274.PubMedCrossRefGoogle Scholar
  23. Capel, P. J. A., Groeneboer, O., Grosveld, G., and Pondman, K. W., 1978, The binding of activated C3 to polysaccharides and immunoglobulins, J. Immunol. 121: 2566–2572.PubMedGoogle Scholar
  24. Chaplin, H., Jr., Freedman, J., Massey, A., and Monroe, M. C., 1980, Characterization of red blood cells strongly coated in vitro by C3 via alternative pathway, Transfusion 20: 256–262.PubMedCrossRefGoogle Scholar
  25. Chaplin, H., Nasongkla, M., and Monroe, M. C., 1981, Quantitation of red blood cell-bound C3d in normal subjects and random hospitalized patients, Br. J. Haematol 48: 69–78.PubMedCrossRefGoogle Scholar
  26. Chaplin, H., Coleman, M. E., and Monroe, M. C., 1983, In vivo instability of red blood cell-bound C3d and C4d, Blood 62: 965–971.Google Scholar
  27. Childs, R. A., Feizi, T., and Tonegawa, Y., 1979, Multiplicity of molecules carrying blood-group I antigen on erythrocyte membranes, Biochem. J. 181: 533–538.PubMedGoogle Scholar
  28. Clark, M. R., 1988, Senescence of red blood cells: Progress and problems, Physiol. Rev. 68: 503–554.PubMedGoogle Scholar
  29. Clark, M. R., and Shohet, S. B., 1985, Red cell senescence, Clin. Haematol. 14: 223–257.PubMedGoogle Scholar
  30. Coetzer, T. L., and Zail, S., 1980, Membrane protein complexes in GSH-depleted red cells, Blood 56: 159–167.PubMedGoogle Scholar
  31. Cohen, N. S., Ekholm, J. E., Luthra, M. G., and Hanahan, D. J., 1976, Biochemical characterization of density-separated human erythrocytes, Biochim. Biophys. Acta 419: 229–242.PubMedCrossRefGoogle Scholar
  32. Corash, L. M., Piomelli, S., Chen, H. C., Seaman, C., and Gross, E., 1974, Separation of erythrocytes according to age on a simplified density gradient, J. Lab. Clin. Med. 84: 147–151.PubMedGoogle Scholar
  33. Coutinho, A., 1980, The self—nonself discrimination and the nature and acquisition of the antibody repertoire, Ann. Immunol. Inst. Pasteur 131D: 236–253.Google Scholar
  34. Cunningham, A. J., 1974, Large numbers of cells in normal mice produce antibody components of isologous erythrocytes, Nature 252: 749–751.PubMedCrossRefGoogle Scholar
  35. Czerwinski, M., Wasniowska, K., Stueden, I., Duk, M., Wiedlocka, A., and Lisowska, E., 1988, Degradation of the human erythrocyte membrane band 3 studied with the monoclonal antibody directed against an epitope on the cytoplasmic fragment of band 3, Eur. J. Biochem. 174: 647–654.PubMedCrossRefGoogle Scholar
  36. Daha, M. R., and VanEs, L. A., 1981, Stabilization of homologous and heterologous cell-bound amplification convertases, C3bBb, by C3 nephritic factor, Immunology 43: 33–38.PubMedGoogle Scholar
  37. Danon, D., and Marikovsky, Y., 1962, Différence de charge de surface entre erythrocytes jeunes et âgés, C. R. Acad. Sci Ser. D 253: 1271–1272.Google Scholar
  38. Davis, A. E., III, Harrison, R. A., and Lachmann, P. J., 1984, Physiologic inactivation of fluid phase Cab: Isolation and structural analyses of C3c, C3d,g (a2D), and C3g, J. Immunol. 132: 1960–1966.PubMedGoogle Scholar
  39. Davitz, M. A., Low, M. G., and Nussenzweig, V., 1986, Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC), J. Exp. Med. 163: 1150–1159.PubMedCrossRefGoogle Scholar
  40. DeFlora, A., Benatti, U., Forteleoni, G. G., and Meloni, T., 1985, Favism: Disordered erythrocyte calcium homeostasis, Blood, 66: 294–297.Google Scholar
  41. DeHeer, D. H., and Edington, T. S., 1974, Identification of derepressed autoimmunocompetent B lymphoid cells in NZB mice, Clin. Exp. Immunol. 16: 431–443.PubMedGoogle Scholar
  42. Devaux, P. F., 1988, Phospholipid flippases, FEBS Lett. 234: 8–12.PubMedCrossRefGoogle Scholar
  43. Dighiero, G., Poncet, P., Matthes, T., and Kaushik, A., 1987, Is autoantibody production related to particular B-cell subsets and variable region genes? Pathol. Immunopathol. Res. 6: 371–389.PubMedCrossRefGoogle Scholar
  44. Dumaswala, U. J., and Greenwalt, T. J., 1984, Human erythrocytes shed exocytic vesicles in vivo, Transfusion 24: 490–492.PubMedCrossRefGoogle Scholar
  45. Durand, C. G., and Burge, J. J., 1984, A new enzyme-linked immunosorbent assay ELISA for measuring immunoconglutinins directed against human complement C3: Findings in systemic lupus erythematosus, J. Immunol. Methods 73: 57–66.PubMedCrossRefGoogle Scholar
  46. Durocher, J. R., Payne, R. C., and Conrad, M. E., 1975, Role of sialic acid in erythrocyte survival, Blood 45: 11–19.PubMedGoogle Scholar
  47. Durocher, J. R., Viner, C. L., Sims, G. A., and Werner, L. M., 1976, Effect of periodate on erythrocyte survival, Blood 48: 992–992.Google Scholar
  48. Duswald, K.-H, Jochum, M., Schramm, W., and Fritz, H., 1985, Released granulocytic elastase: An indicator of pathobiochemical alterations in septicemia after abdominal surgery, Surgery 98: 892–899.PubMedGoogle Scholar
  49. Edberg, J. C., Kujala, G. A., and Taylor, R. P., 1987, Rapid immune adherence reactivity of nascent, soluble antibody/DNA immune complexes in the circulation, J. Immunol. 139: 1240–1244.PubMedGoogle Scholar
  50. Ehlenberger, A. G., and Nussenzweig, V., 1977, The role of membrane receptors for C3b and C3d in phagocytosis, J. Exp. Med. 145: 357–371.PubMedCrossRefGoogle Scholar
  51. Fairies, T. C., Finch, J. T., Lachmann, P. J., and Harrison, R. A., 1987, Resolution and analysis of “native” and “activated” properdin, Biochem. J. 243: 507–517.Google Scholar
  52. Fasler, S., 1989, Charakterisierung erythrozyten-assozierter IgG-und Komplementfaktoren, Dissertation ETH No. 8777, Zurich.Google Scholar
  53. Fearon, D. T., 1979, Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 76: 5867–5871.PubMedCrossRefGoogle Scholar
  54. Fearon, D. T., 1984, Cellular receptors for fragments of the third component of complement, Immunol. Today 5: 105–110.CrossRefGoogle Scholar
  55. Fearon, D. T., and Wong, W. W., 1983, Complement ligand—receptor interactions that mediate biological responses, Annu. Rev. Immunol. 1: 243–271.PubMedCrossRefGoogle Scholar
  56. Fidalgo, B. V., Katayama, Y., and Najjar, V. A., 1967, The physiological role of the lymphoid system. V. The binding of autologous (erythrophilic) globulin to human red blood cells, Biochemistry 6: 3378–3385.PubMedCrossRefGoogle Scholar
  57. Franck, P. F. H., Op den Kamp, J. A. F., Roelofsen, B., and van Deenen, L. L. M., 1986, Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry? Biochem. Biophys. Acta 857: 127–130.PubMedCrossRefGoogle Scholar
  58. Frank, M. M., 1985, Assessment of shortened in vivo RBC survival and sites of RBC destruction: in: Immune Hemolytic Anemias (H. Chaplin, Jr., ed.), pp. 95–118, Churchill/Livingstone, Edinburgh.Google Scholar
  59. Freedman, J., 1984, Membrane-bound immunoglobulins and complement components on young and old red cells, Transfusion 24: 477–481.PubMedCrossRefGoogle Scholar
  60. Freedman, J., and Massey, A., 1979, Complement components detected on normal red blood cells taken into EDTA and CPD, Vox Sang. 37:1–8.Google Scholar
  61. Fries, L. F., Gaither, T. A., Hammer, C. H., and Frank, M. M., 1984, C3b covalently bound to IgG demonstrates a reduced rate of inactivation by factors H and I, J. Exp. Med. 160: 1640–1655.PubMedCrossRefGoogle Scholar
  62. Fries, L. F., Prince, G. M., Gaither, T. A., and Frank, M. M., 1985, Factor I cofactor activity of CR1 overcomes the protective effect of IgG on covalently bound C3b residues, J. Immunol. 135: 2673–2679.PubMedGoogle Scholar
  63. Fries, L. F., Siwik, S. A., Malbran, A., and Frank, M. M., 1987, Phagocytosis of target particles bearing C3b—IgG covalent complexes by human monocytes and polymorphonuclear leucocytes, Immunology 62: 45–51.PubMedGoogle Scholar
  64. Frommel, D., Grob, P. J., Masouredis, S. P., and Isliker, H. C., 1967, Studies on the mechanism of immunoglobulin binding to red cells, Immunology 13: 501–508.PubMedGoogle Scholar
  65. Fujita, T., Takata, Y., and Tamura, N., 1981, Solubilization of immune precipitates by six isolated alternative pathway proteins, J. Exp. Med. 154: 1743–1751.PubMedCrossRefGoogle Scholar
  66. Fujita, T., Inoue, T., Ogawa, K., Iida, K., and Tamura, N., 1987, The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3-convertase by dissociating C2a and Bb, J. Exp. Med. 166: 1221–1228.PubMedCrossRefGoogle Scholar
  67. Furthmayr, H., 1978, Glycophorins A, B, and C: A family of sialoglycoproteins. Isolation and preliminary characterization of trypsin derived peptides, J. Supramol. Struct. 9: 79–95.PubMedCrossRefGoogle Scholar
  68. Gadd, K. J., and Reid, K. B. M., 1981, The binding of complement component C3 to antibody—antigen aggregates after activation of the alternative pathway in human serum, Biochem. J. 195: 471–480.PubMedGoogle Scholar
  69. Galili, U., Korkesh, A., Kahane, I., and Rachmilewitz, E. A., 1983, Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells, Blood 61: 1258–1264.PubMedGoogle Scholar
  70. Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I., 1984, A unique natural human IgG antibody with anti-agalactosyl specificity, J. Exp. Med. 160: 1519–1531.PubMedCrossRefGoogle Scholar
  71. Galili, U., Clark, M. R., and Shohet, S. B., 1986, Excessive binding of natural anti-agalactosyl immunoglobulin G to sickle erythrocytes may contribute to extravascular cell destruction, J. Clin. Invest. 77: 2733.CrossRefGoogle Scholar
  72. Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A., 1987a, Evolutionary relationship between the natural anti-Gal antibody and the Gal-al-3Gal epitope in primates, Proc. Natl. Acad. Sci. USA 84: 1369–1373.PubMedCrossRefGoogle Scholar
  73. Galili, U., Basbaum, C. B., Shohet, S. B., Buehler, J., and Macher, B. A., 1987b, Identification of erythrocyte Gal al-3Gal glycosphingolipids with a mouse monoclonal antibody, Gal-13, J. Biol. Chem. 262: 46834688.Google Scholar
  74. Gershon, H., and Gershon, D., 1988, Altered enzyme function and premature sequestration of erythrocytes in aged individuals, Blood Cells 14: 93–98.PubMedGoogle Scholar
  75. Gibson, J., and Wells, J., 1988, Positive direct antiglobulin test in acute leukemia at presentation, Transfusion 28: 398–398.PubMedCrossRefGoogle Scholar
  76. Grabar, P., 1983, Autoantibodies and the physiological role of immunoglobulins, Immunol. Today 4:337–340. Green, G. A., and Kalra, V. K., 1988, Sickling-induced binding of immunoglobulin to sickle erythrocytes, Blood 71: 636–639.Google Scholar
  77. Green, G. A., Rehn, M. M., and Kalra, V. K., 1985, Cell-bound autologous immunoglobulin in erythrocyte subpopulations from patients with sickle cell disease, Blood 65: 1127–1133.PubMedGoogle Scholar
  78. Grob, P. J., Frommel, D., Isliker, H. C., and Masouredis, S. P., 1967, Interaction of IgG and its fragments with red cells, Immunology 13: 489–499.PubMedGoogle Scholar
  79. Guilbert, B., Digherio, G., and Avrameas, S., 1982, Naturally occurring antibodies against nine common antigens in human sera, J. Immunol. 128: 2779–2787.PubMedGoogle Scholar
  80. Haest, C. W. M., Kamp, D., Plasa, G., and Deuticke, B., 1977, Intra-and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents, Biochim. Biophys. Acta 469: 226–230.PubMedCrossRefGoogle Scholar
  81. Hargreaves, W. R., Giedd, K. N., Verkleij, A., and Branton, D., 1980, Reassociation of ankyrin with band 3 in erythrocyte membranes and lipid vesicles, J. Biol. Chem. 255: 11965–11972.PubMedGoogle Scholar
  82. Hatanaka, M., Yoshimura, N., Murakami, T., Kannagi, R., and Murachi, T., 1984, Evidence for membrane-associated calpain I in human erythrocytes. Detection by an immunoelectrophoretic blotting method using monospecific antibody, Biochemistry 23: 3272–3276.PubMedCrossRefGoogle Scholar
  83. Hebbel, R. P., and Miller, W. J., 1984, Phagocytosis of sickle erythrocytes: Immunologic and oxidative determinants of hemolytic anemia, Blood 64: 733–741.PubMedGoogle Scholar
  84. Heddle, N. M., Kelton, J. G., Kurchyn, K. L., and Ali, M. A. M., 1988, Hypergammaglobulinemia can be associated with a positive direct antiglobulin test, a nonreactive eluate, and no evidence of hemolysis, Transfusion 28: 29–33.PubMedCrossRefGoogle Scholar
  85. Herron, R., Clark, M., and Smith, D. S., 1987, An autoantibody with activity dependent on red cell age in the serum of a patient with autoimmune hemolytic anemia and a negative direct antiglobulin test, Vox Sang. 52: 71–74.PubMedCrossRefGoogle Scholar
  86. Hill, W., Shears, A. L., and Hibbit, K. G., 1978, The requirements of specific antibody for the killing of E. coli by the alternative complement pathway in bovine serum, Immunology 34: 131–140.PubMedGoogle Scholar
  87. Hoffman, J. F., 1958, On the relationship of certain erythrocyte characteristics to their physiological age, J. Cell Camp. Physiol. 51: 415–423.CrossRefGoogle Scholar
  88. Högman, C. F., Akerblom, O., Hedlund, K., Rosén, I., and Wiklund, L., 1983, Red cell suspensions in SAGM medium, Vox Sang. 45: 217–223.PubMedCrossRefGoogle Scholar
  89. Holers, V. M., Cole, J. L., Lublin, D. M., Seya, T., and Atkinson, J. P., 1985, Human C3b-and C4bregulatory proteins: A new multi-gene family, Immunol. Today 6: 188–192.Google Scholar
  90. Hooper, D. C., 1987, Self-tolerance for erythrocytes is not maintained by clonal deletion of T helper cells, lmmunol. Today 8: 327–330.CrossRefGoogle Scholar
  91. Horgan, C., Burge, J., Crawford, L., and Taylor, R. P., 1984, The kinetics of 3H-dsDNA/anti-DNA immune complex formation. Binding by red blood cells, and release into serum: Effect of DNA molecular weight and conditions of antibody excess, J. Immunol. 133: 2079–2084.PubMedGoogle Scholar
  92. Hsu, T. C. S., Steinberg, J., LeDoux, R., and Sawitsky, A., 1979, The low ionic strength reaction of human blood: Relationship between the binding of serum immunoglobulin and complement to red blood cells and surface charge of the cells, Br. J. Haematol. 42: 403–415.PubMedCrossRefGoogle Scholar
  93. Iida, Momaghi, R., and Nussenzweig, V., 1982, Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus, J. Exp. Med. 155: 1427–1438.Google Scholar
  94. Inada, S., Brown, E. J., Gaither, T. A., Hammer, C. H., Takahashi, T., and Frank, M. M., 1983, C3d receptors are expressed on human monocytes after in vitro cultivation, Proc. Natl. Acad. Sci. USA 80: 2351–2355.PubMedCrossRefGoogle Scholar
  95. Jacobs, R. J., and Reichlin, M., 1983, Generation of low M. W., C3-bearing immunoglobulin in human serum, J. Immunol. 130: 2775–2781.PubMedGoogle Scholar
  96. Jain, S. K., 1985, In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats, J. Clin. Invest. 76: 28 1286.Google Scholar
  97. Jain, S. K., 1988, Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes, Biochim. Biophys. Acta 937: 205–210.PubMedCrossRefGoogle Scholar
  98. Jain, S. K., and Hochstein, P., 1980, Polymerization of membrane components in aging red blood cells, Biochem. Biophys. Res. Commun. 92: 247–254.PubMedCrossRefGoogle Scholar
  99. Jepsen, H. H., Svehag, S.-E., Jarlbaek, L., and Baatrup, G., 1986, Interaction of complement-solubilized immune complexes with CR1 receptors on human erythrocytes. The binding reaction, Scand. J. Immunol. 23: 65–73.PubMedCrossRefGoogle Scholar
  100. Jerne, N. K., 1984, Idiotypic networks and other preconceived ideas, Immunol. Rev. 79: 6–24.CrossRefGoogle Scholar
  101. Jochum, M., Mempel, W., Fritz, H., Dwenger, A., Lindena, J., Schweitzer, G., Barthels, M., and Trautschold, I., 1984, Release of granulocytic lysosomal enzymes and concentrations of plasma factors in stored blood, 18th Cong. Int. Soc. Blood Transf. pp. 169–169.Google Scholar
  102. Johnson, G. J., Allen, D. W., Flynn, T. P., Finkel, B., and White, J. G., 1980, Decreased survival in vivo of diamide-incubated dog erythrocytes. A model of oxidant-induced hemolysis, J. Clin. Invest. 66: 955–961.PubMedCrossRefGoogle Scholar
  103. Joiner, K. A., Fries, L. F., Schmetz, M. A., and Frank, M. M., 1985, IgG bearing covalently bound C3b has enhanced bactericidal activity for Escherichia coli 0111, J. Exp. Med. 162: 877–889.PubMedCrossRefGoogle Scholar
  104. Jungi, T. W., and Barandun, S., 1985, Estimation of the degree of opsonization of homologous erythrocytes by IgG for intravenous and intramuscular use, Vox Sang. 49: 9–19.PubMedCrossRefGoogle Scholar
  105. Kadlubowski, M., and Agutter, P. S., 1977, Changes in the activities of some membrane-associated enzymes during in vivo ageing of the normal human erythrocyte, Br. J. Haematol. 37: 111–125.PubMedGoogle Scholar
  106. Kay, M. M. B., 1975, Mechanism of removal of senescent cells by human macrophages in situ, Proc. Natl. Acad. Sci. USA 72: 3521–3525.PubMedCrossRefGoogle Scholar
  107. Kay, M. M. B., 1978, Role of physiologic autoantibody in the removal of senescent human red cells, J. Supramol. Struct. 9: 555–567.PubMedCrossRefGoogle Scholar
  108. Kay, M. M. B, 1981, Isolation of the phagocytosis-inducing IgG-binding antigen on senescent somatic cells, Nature 289: 491–494.PubMedCrossRefGoogle Scholar
  109. Kay, M. M. B., 1984, Localization of senescent cell antigen on band 3, Proc. Natl. Acad. Sci. USA 81: 57535757.Google Scholar
  110. Kay, M. M. B., and Bennett, G. D., 1982, To the editor, Blood 59: 1111–1112.PubMedGoogle Scholar
  111. Kay, M. M. B., and Bosman, G. J. C. G. M., 1985, Naturally occurring human “antigalactosyl” IgG antibodies are heterophile antibodies recognizing blood-group-related substances, Exp. Hematol. 13: 1103–1112.PubMedGoogle Scholar
  112. Kay, M. M. B., and Goodman, J. R., 1984, IgG antibodies do not bind to band 3 in intact erythrocytes: Enzymatic treatment of cells is required for IgG binding, Biomed. Biochim. Acta 43: 841–846.PubMedGoogle Scholar
  113. Kay, M. M. B., Bosman, G. J. C. G. M., Shapiro, S. S., Bendich, A., and Bassel, P. S., 1986, Oxidation as a possible mechanism of cellular aging: Vitamin E deficiency causes premature aging and IgG binding to erythrocytes, Proc. Natl. Acad. Sci. USA 83: 2463–2467.CrossRefGoogle Scholar
  114. Kazatchkine, M. D., Jouvin, M. H., Wilson, J. G., Fischer, E., and Fisher, A., 1987, Human diseases associated with C3 receptor deficiencies, Immunol. Lett. 14: 191–195.PubMedCrossRefGoogle Scholar
  115. Kinoshita, T., Medof, M. E., Silber, R., and Nussenzweig, V., 1985, Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria, J. Exp. Med. 162: 75–92.PubMedCrossRefGoogle Scholar
  116. Kinoshita, T., Medof, M. E., and Nussenzweig, V., 1986a, Endogenous association of decay-accelerating factor (DAF) with C4b and C3b on cell membranes, J. Biol. Chem. 136: 3390–3395.Google Scholar
  117. Kinoshita, T., Medof, M. E., Hong, K., and Nussenzweig, V., 1986b, Membrane-bound C4b interacts endoge- nously with complement receptor CR1 of human red cells, J. Exp. Med. 164: 1377–1388.PubMedCrossRefGoogle Scholar
  118. Klinman, D. M., Banks, S., Hartman, A., and Steinberg, A. D., 1988, Natural murine autoantibodies and conventional antibodies exhibit similar degrees of antigenic cross-reactivity, J. Clin. Invest. 82: 652–657.PubMedCrossRefGoogle Scholar
  119. Kosower, N. S., Kosower, E. M., Wertheim, B., and Correa, W. S., 1969, Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide, Biochem. Biophys. Res. Commun. 37: 593–596.PubMedCrossRefGoogle Scholar
  120. Kulics, J., Rajnavölgyi, E., Füst, G., and Gergely, J., 1983, Interaction of C3 and C3b with immunoglobulin G, Mol. Immunol. 20: 805–810.Google Scholar
  121. Kurlander, R. J., and Rosse, W. F., 1979, Monocyte-mediated destruction in the presence of serum of red cells coated with antibody, Blood 54: 1131–1139.PubMedGoogle Scholar
  122. Law, S. K., Lichtenberg, N. A., and Levine, R. P., 1979, Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces, J. Immunol. 123: 1388–1394.PubMedGoogle Scholar
  123. Lawley, T. J., Hall, R. P., Fauci, A. S., Katz, S., Hamburger, M. J., and Frank, M. M., 1981, Defective Fc receptor functions associated with the HLA B8/DRW3 haplotype, N. Engl. J. Med. 304: 185–192.PubMedCrossRefGoogle Scholar
  124. Lee, P., Kirk, R. G., and Hoffman, J. G., 1984, Interrelations among Na and K content, cell volume, and buoyant density in human red blood cell populations, J. Membr. Biol. 79: 119–126.PubMedCrossRefGoogle Scholar
  125. Lorand, L., Michalska, M., Murthy, S. N. P., Shohet, S. B., and Wilson, J., 1987, Cross-linked polymers in the red cell membranes of a patient with Hb-Köln disease, Biochem. Biophys. Res. Commun. 147: 60 2697.Google Scholar
  126. Low, P. S., Waugh, S. M., Zinke, K., and Drenckhahn, D., 1985, The role of hemoglobin denaturation and band 3 clustering, Science 227: 531–533.PubMedCrossRefGoogle Scholar
  127. Luner, S. J. Szklarek, D., Knox, R. J., Seaman, G. V. F., Josefowicz, J. Y., and Ware, B. R., 1977, Red cell charge is not a function of cell age, Nature 269: 719–721.PubMedGoogle Scholar
  128. Luthra, M. G., Friedman, J. M., and Sears, D. A., 1979, Studies on density fractions of normal human erythrocytes labeled with iron-59 in vivo, J. Lab. Clin. Med. 94: 879–896.PubMedGoogle Scholar
  129. Lutz, H. U., 1978, Vesicles isolated from ATP-depleted erythrocytes and out of thrombocyte-rich plasma, J. Supramol. Struct. 8: 375–389.PubMedCrossRefGoogle Scholar
  130. Lutz, H. U., 1981, Elimination alter Erythrozyten aus der Zirkulation: Freilegung eines zellalterspezifischen Antigens auf alternden Erythrozyten, Schweiz. Med. Wochenschr. 111: 1507–1517.PubMedGoogle Scholar
  131. Lutz, H. U., 1984, A cyclic AMP-dependent phosphorylation of spectrin dimer, FEBS Lett. 169: 323–329.PubMedCrossRefGoogle Scholar
  132. Lutz, H. U., 1987, Red cell clearance (A review), Biomed. Biochim. Acta 46: 65–71.Google Scholar
  133. Lutz, H. U., 1988, Commentary to “The relationship of red cell enzymes to cell life-span” by E. Beutler, Blood Cells 14: 76–80.Google Scholar
  134. Lutz, H. U., and Fehr, J., 1979, Total sialic acid content of glycophorins during senescence of human red blood cells, J. Biol. Chem. 254: 11177–11180.PubMedGoogle Scholar
  135. Lutz, H. U., and Stringaro-Wipf, G., 1983, Senescent red cell-bound IgG is attached to band 3 protein, Biomed. Biochim. Acta 42: 117–121.Google Scholar
  136. Lutz, H. U., and Wipf, G., 1982, Naturally occurring autoantibodies to skeletal proteins from human red blood cells, J. Immunol. 128: 1695–1699.PubMedGoogle Scholar
  137. Lutz, H. U., Liu, S.-C., and Palek, J., 1977, Release of spectrin-free vesicles from human erythrocytes during ATP depletion, J. Cell Biol. 73: 548–560.PubMedCrossRefGoogle Scholar
  138. Lutz, H. U., Flepp, R., and Stringaro-Wipf, G., 1984, Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein of human red blood cells, J. Immunol. 133: 2610–2618.PubMedGoogle Scholar
  139. Lutz, H. U., Bussolino, F., Flepp, R., Fasler, S., Stammler, P., Kazatchkine, M. D., and Arese, P., 1987a, Naturally occurring anti-band 3 antibodies and complement together mediate phagocytosis of oxidatively stressed human red blood cells, Proc. Natl. Acad. Sci. USA 84: 7368–7372.PubMedCrossRefGoogle Scholar
  140. Lutz, H. U., Flepp, R., Stammler, P., and Baccala, R., 1987b, Red cell associated, naturally occurring antispectrin Clin. exp. Immunol. 67: 674–676.PubMedGoogle Scholar
  141. Lutz, H. U., Stammler, P., Furter, C., and Fasler, S., 1987c, “Anti-Bande 3”-Antikörper aktivieren Komplement über den alternativen Weg, Schweiz. Med. Wochenschr. 117: 1821–1824.Google Scholar
  142. Lutz, H. U., Fasler, S., Stammler, P., Bussolino, F., and Arese, P., 1988, Naturally occurring anti-band 3 antibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells, Blood Cells 14: 175–195.PubMedGoogle Scholar
  143. Lutz, H. U., Fasler, S., and Stammler, P., 1989, An affinity for complement C3 as a possible reason for the potency of naturally occurring antibodies in mediating tissue homeostasis, Beitr. Infusionsther. 24: 193199.Google Scholar
  144. MacDonald, H. R., Schneider, R., Lees, R. K., Howe, R. C., Acha-Orbea, H., Festenstein, H., Zinkernagel, R. M., and Hengartner, H., 1988, T-cell receptor V13 use predicts reactively and tolerance to Mis-encoded antigens, Nature 332: 40–45.PubMedCrossRefGoogle Scholar
  145. McEvoy, L., Williamson, P., and Schlegel, R. A., 1986, Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages, Proc. Natl. Acad. Sci. USA 83: 3311–3315.PubMedCrossRefGoogle Scholar
  146. Magnani, M., Stocchi, V., Cucchiarini, L., Chiarantini, L., and Fornaini, G., 1986, Red blood cell phagocytosis and lysis following oxidative damage by phenylhydrazine, Cell Biochem. Funct. 4: 263–269.PubMedCrossRefGoogle Scholar
  147. Magnani, M., Rossi, L., Stacchi, V., Cucchiarini, L., Piacentini, G., and Fomaini, G., 1988, Effect of age on some properties of mice erythrocytes, Mech. Ageing Dev. 42: 37–47.PubMedCrossRefGoogle Scholar
  148. Mahana, W., Guilbert, B., and Avrameas, S., 1988, Regulation of the humoral immune response by poly-specific natural autoantibodies, Ann. Inst. Pasteur Paris 139: 349–360.CrossRefGoogle Scholar
  149. Malbran, A., Frank, M. M., and Fries, L. F., 1987, Interactions of monomeric IgG bearing covalently bound C3b with polymorphonuclear leucocytes, Immunology 61: 15–20.PubMedGoogle Scholar
  150. Manser, T., Wysocki, L. J., Gridley, T., Near, R. I., and Gefter, M. L., 1985, The molecular evolution of the immune response, Immunol. Today 6: 94–101.CrossRefGoogle Scholar
  151. Marchesi, V. T., and Furthmayr, H., 1976, The red cell membrane, Annu. Rev. Biochem. 45: 667–698.PubMedCrossRefGoogle Scholar
  152. Masouredis, S. P., Branks, M. J., and Victoria, E. J., 1987, Antiidiotypic IgG crossreactive with Rh alloantibodies in red cell autoimmunity, Blood 70: 710–715.PubMedGoogle Scholar
  153. Medof, M. E., Lublin, D. M., Holers, V. M., Ayers, D. J., Getty, R. R., Leykam, J. F., Atkinson, J. P., and Tykocinski, M. L., 1987, Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement, Proc. Natl. Acad. Sci. USA 84: 2007–2011.PubMedCrossRefGoogle Scholar
  154. Melez, K. A., Fries, L. F., Bener, B. S., Quinn, T., and Frank, M. M., 1988, Decline in rates of clearance of IgG-sensitized erythrocytes with increasing age, Blood 71: 1726–1730.PubMedGoogle Scholar
  155. Meredith, P. J., Kristie, J. A., and Walford, R. L., 1979, Aging increases expression of LPS-induced autoantibody-secreting B cells, J. Immunol. 123: 87–91.PubMedGoogle Scholar
  156. Michalek, M. T., Bremer, E. G., and Mold, C., 1988, Effect of gangliosides on activation of the alternative pathway of human complement, J. Immunol. 140: 1581–1587.PubMedGoogle Scholar
  157. Miller, R. D., and Calkins, C. E., 1988, Development of self-tolerance in normal mice. Appearance of suppressor cells that maintain adult self-tolerance follows the neonatal autoantibody response, J. Immunol. 141: 2206–2210.PubMedGoogle Scholar
  158. Miyahara, K., and Spiro, M. J., 1984, Nonuniform loss of membrane glycoconjugates during in vivo aging of human erythrocytes: Studies of normal and diabetic red cell saccharides, Arch. Biochem. Biophys. 232: 310–322.Google Scholar
  159. Moldenhauer, F., Botto, M., and Walport, M. J., 1988, The rate of loss of CR1 from ageing erythrocytes in vivo in normal subjects and SLE patients: No correlation with structural or numerical polymorphisms, Clin. Exp. Immunol. 72: 74–78.PubMedGoogle Scholar
  160. Mollnes, T. E., and Lachmann, P. J., 1988, Regulation of complement, Scand. J. Immunol. 27: 127–142.Google Scholar
  161. Moore, F. D., Fearon, D. T., and Austen, K. F., 1981, IgG on mouse erythrocytes augments activation of the human alternative complement pathway by enhancing deposition of C3b, J. Immunol. 126: 1805–1809.PubMedGoogle Scholar
  162. Moore, J. G., Frank, M. M. Müller-Eberhard, H. J., and Young, N. S., 1985, Decay-accelerating factor is present on paroxysmal nocturnal hemoglobinuria erythroid progenitors and lost during erythropoiesis inGoogle Scholar
  163. vitro, J. Exp. Med. 162:1182–1192.Google Scholar
  164. Morrison, M., Grant, W., Smith, H. T., Mueller, T. J., and Hsu, L., 1985, Catabolism of the anion transport protein in human erythrocytes, Biochemistry 24: 6311–6315.PubMedCrossRefGoogle Scholar
  165. Moticka, E. J., 1983, Regulation of naturally occurring autoantibody secretion by a radiosensitive lymphocyte: Initial characterization and ontogeny, Cell. Immunol. 81: 36–44.PubMedCrossRefGoogle Scholar
  166. Mueller, H., and Lutz, H. U., 1983, Binding of autologous IgG to human red blood cells before and after ATP-depletion. Selective exposure of binding sites (autoantigens) on spectrin-free vesicles, Biochim. Biophys. Acta 729: 249–257.CrossRefGoogle Scholar
  167. Miller-Eberhard, H. J., and Schreiber, R. D., 1980, Molecular biology and chemistry of the alternative pathway of complement, Adv. Immunol. 29: 1–53.CrossRefGoogle Scholar
  168. Murakami, T., Suzuki, Y., and Murachi, T., 1979, An acid protease in human erythrocytes and its localization in the inner membrane, Eur. J. Biochem. 96: 221–227.PubMedCrossRefGoogle Scholar
  169. Murphy, J. R., 1973, Influence of temperature and method of centrifugation on the separation of erythrocytes, J. Lab. Clin. Med. 82: 334–341.PubMedGoogle Scholar
  170. Nash, G. B., and Meiselman, H. J., 1981, Red cell ageing: Changes in deformability and other possible determinants of in vivo survival, Microcirculation 1: 255–284.Google Scholar
  171. Nicholson-Weller, A., Burge, J., Fearon, D. T., Weller, P. F., and Austen, K. F., 1982, Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system, J. Immunol. 129: 184–189.PubMedGoogle Scholar
  172. Nicholson-Weller, A., March, J. P., Rosenfeld, S. I., and Austen, K. F., 1983, Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor, Proc. Natl. Acad. Sci. USA 80: 5066–5070.PubMedCrossRefGoogle Scholar
  173. Okada, N., Yasuda, T., Tsumita, T., and Okada, H., 1983, Activation of the alternative complement pathway by natural antibody to glycolipids in guinea-pig serum, Immunology 50: 75–84.PubMedGoogle Scholar
  174. Oliver, C. N., Ahn, B-W., Moerman, E. J., Goldstein, S., and Stadtman, E. R., 1987, Age-related changes in oxidized proteins, J. Biol. Chem. 262: 5488–5491.PubMedGoogle Scholar
  175. Paccaud, J.-P., Carpentier, J.-L., and Schifferli, J. A., 1988, Direct evidence for the clustered nature of complement receptors type 1 in the erythrocyte membrane, J. Immunol. 141: 3889–3894.PubMedGoogle Scholar
  176. Parker, C. J., Soldato, C. M., and Rosse, W. F., 1984, Abnormality of glycophorin-a on paroxysmal nocturnal hemoglobinuria erythrocytes, J. Clin. Invest. 73: 1130–1143.PubMedCrossRefGoogle Scholar
  177. Petz, L. D., and Branch, D. R., 1985, Drug-induced immune hemolytic anemia, in: Immune Hemolytic Anemias. ( H. Chaplin, Jr., ed.), pp. 47–94, Churchill/Livingstone, Edinburgh.Google Scholar
  178. Pfeffer, S. R., and Swislocki, N. I., 1976, Age-related decline in the activities of erythrocyte membrane adenylate cyclase and protein kinase, Arch. Biochem. Biophys. 177: 117–122.PubMedCrossRefGoogle Scholar
  179. Piomelli, S., 1988, The relationship of red cell enzymes to red cell life-span by E. Beutler. Commentary, Blood Cells 14: 81–86.Google Scholar
  180. Piomelli, S., Lurinsky, G., and Wasserman, L. R., 1967, The mechanism of red cell aging. I. Relationship between cell age and specific gravity evaluated by ultracentrifugation in a discontinuous density gradient, J. Lab. Clin. Med. 69: 659–674.PubMedGoogle Scholar
  181. Piomelli, S., Seaman, C., Reigman, J., Tytun, A., Graziano, J., Tabachnik, N., and Corash, L., 1978, Separation of younger red cells with improved survival in vivo: An approach to chronic transfusion therapy, Proc. Natl. Acad. Sci. USA 75: 3474–3478.PubMedCrossRefGoogle Scholar
  182. Polhill, R. B., Jr., Newman, S. L., Pruitt, K. M., and Johnston, R. B., Jr., 1978, Kinetic assessment of alternative complement pathway activity in a hemolytic system. II. Influence of antibody on alternative pathway activation, J. Immunol. 121: 371–376.PubMedGoogle Scholar
  183. Pontremoli, S., Salamino, F., Sparatore, B., Melloni, E., Morelli, A., Benatti, U., and DeFlora, A., 1979, Isolation and partial characterization of three acidic proteinases in erythrocyte membranes, Biochem. J. 181: 559–568.PubMedGoogle Scholar
  184. Pontremoli, S., Melloni, E., Sparatore, B., Salamino, F., Michetti, M., Sacco, O., and Horecker, B. L., 1985, Role of phospholipids in the activation of the (Ca2±)-dependent neutral proteinase of human erythrocytes, Biochem. Biophys. Res. Commun. 129: 389–395.PubMedCrossRefGoogle Scholar
  185. Portnoi, D., Lundkvist, I., and Coutinho, A., 1988, Inverse correlation between the utilization of an idiotype in specific immune responses and its representation in pre-immune “natural” antibodies, Eur. J. Immunol. 18: 571–576.PubMedCrossRefGoogle Scholar
  186. Rask, R., Rasmussen, J. M., Hansen, H. V., Bysted, P., and Svehag, S.-E., 1988, Complement C3d,g/Epstein—Barr virus receptor density on human B-lymphocytes eliminated by immunoenzymatic assay and immunocytochemistry, J. Clin. Lab. Immunol. 25: 153–156.PubMedGoogle Scholar
  187. Rieder, R. F., Ibrahim, A., and Etlinger, J. D., 1986, A soluble adenosine triphosphate-dependent proteolytic system in human peripheral red blood cells, Blood 67: 1293–1297.PubMedGoogle Scholar
  188. Ripoche, J., and Sim, R. B., 1986, Loss of complement receptor type 1(CR1) on ageing of erythrocytes. Studies of proteolytic release of the receptor, Biochem. J. 235: 815–821.PubMedGoogle Scholar
  189. Rondeau, E., Solal-Celigny, P., Dhermy, D., Vroclans, M., Brousse, N., Bernard, J. F., and Boivin, P., 1983, Immune disorders in agnogenic myeloid metaplasia: Relations to myelofibrosis, Br. J. Haematol. 53: 467475.Google Scholar
  190. Ross, G. D., 1986, Immunobiology of the Complement System, Academic Press, New York.Google Scholar
  191. Ross, G. D., Yount, W. J., Walport, M. J., Winfield, J. B., Parker, C. J., Fuller, C. R., Taylor, R. P., Myones, B. L., and Lachmann, P. J., 1985, Disease-associated loss of erythrocyte complement receptors (CR1, C3b receptors) in patients with systemic lupus erythematosus and other disease involving autoantibodies and/or complement activation, J. Immunol. 135: 2005–2014.PubMedGoogle Scholar
  192. Schenkein, H. A., and Ruddy, S., 1981a, The role of immunoglobulins in alternative complement pathway activation by zymosan. I. Human IgG with specificity for zymosan enhances alternative pathway activation by zymosan, J. Immunol. 1260: 7–10.Google Scholar
  193. Schenkein, H. A., and Ruddy, S., 1981b, The role of immunoglobulins in alternative pathway activation uy zymosan. II. The effect of IgG on the kinetics of the alternative pathway, J. Immunol. 126: 11–15.PubMedGoogle Scholar
  194. Schifferli, J. A., Ng, Y. C., and Peters, D. K., 1986, The role of complement and its receptor in the elimination of immune complexes, N. Engl. J. Med. 315: 488–495.PubMedCrossRefGoogle Scholar
  195. Schifferli, J. A., Hauptmann, G., and Paccaud, J.-P., 1987, Complement-mediated adherence of immune complexes to human erythrocytes, FEBS Lett. 213: 415–418.PubMedCrossRefGoogle Scholar
  196. Schlüter, K., and Drenckhahn, D., 1986, Co-clustering of denatured hemoglobin with band 3: Its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes, Proc. Natl. Acad. Sci. USA 83: 61376141.Google Scholar
  197. Schmidt, G., Gross, J., Moller, R., and Staak, R., 1975, Trennung von roten Blutzellen im isopyknischen Dextran and Albumindichtegradienten, Acta Biol. Med. Ger. 34: 1621–1630.PubMedGoogle Scholar
  198. Schönemark, S., Rauterberg, E. W., Shin, M. L., Löke, S., Roelcke, D., and Hänsch, G. M., 1986, Homologous species restriction in lysis of human erythrocytes: A membrane-derived protein with C8-binding capacity functions as an inhibitor, J. Immunol. 136: 1772–1776.Google Scholar
  199. Schreiber, A. D., 1985, Quantitation of RBC-bound immunoglobulin and complement components, in: Immune Hemolytic Anemias ( H. Chaplin, Jr., ed.), pp. 155–175, Churchill/Livingstone, Edinburgh.Google Scholar
  200. Schroit, A. J., Madsen, J. W., and Tanaka, Y., 1985, In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes, J. Biol. Chem. 260: 5131–5138.Google Scholar
  201. Schultz, H., Mischer, O., and Schenk, H., 1984, Gehalt and Muster der Ganglioside von Membranen menschlicher Erythrozyten, Biomed. Biochim. Acta 43: 1127–1133.PubMedGoogle Scholar
  202. Schweizer, E., Angst, W., and Lutz, H. U., 1982, Glycoprotein topology on intact human red blood cells reevaluated by cross-linking following amino-group supplementation, Biochemistry 21: 6807–6818.PubMedCrossRefGoogle Scholar
  203. Seigneurin, J. M., Guilbert, B., Bourgeat, M. J., and Avrameas, S., 1988, Polyspecific natural antibodies and autoantibodies secreted by human lymphocytes immortalized with Epstein—Barr virus, Blood 71: 581–585.PubMedGoogle Scholar
  204. Serrou, B., and Rosenfeld, C., 1981, Immune complexes and plasma exchanges in cancer patients, in: Human Cancer Immunology (B. Serrou and C. Rosenfeld, eds.), pp. 1–342Google Scholar
  205. Elsevier/North-Holland, Amsterdam. Shaw, D. R., and Griffin, F. M., Jr., 1981, Phagocytosis requires repeated triggering of macrophage phagocytic receptors during particle ingestion, Nature 289: 409–411.CrossRefGoogle Scholar
  206. Sherwood, T. A., and Virella, G., 1986, The binding of immune complexes to human red cells: Complement requirements and fate of the RBC-bound IC after interaction with phagocytic cells, Clin. Exp. Immunol. 64: 195–204.PubMedGoogle Scholar
  207. Shinozuka, T., Takei, S., Yanagida, J., Watanabe, H., and Ohkuma, S., 1988, Binding of lectins to “young” and “old” human erythrocytes, Blut 57: 117–123.PubMedCrossRefGoogle Scholar
  208. Singer, J. A., Jennings, L. K., Jackson, C. W., Dockter, M. E., Morrison, M., and Walker, W. S., 1986, Erythrocyte homeostasis: Antibody-mediated recognition of the senescent state by macrophages, Proc. Natl. Acad. Sci. USA 83: 5498–5501.PubMedCrossRefGoogle Scholar
  209. Smith, C. A., Pangburn, M. K., Vogel, C.-H., and Müller-Eberhard, H. J., 1984, Molecular architecture of human properdin, a positive regulator of the alternative pathway of complement, J. Biol. Chem. 259: 45824588.Google Scholar
  210. Snyder, L. M., Fairbanks, G., Trainor, J., Fortier, N. L., Jacobs, J. B., and Leb, L., 1985, Properties and characterization of vesicles released by young and old human red cells, Br. J. Haematol. 54: 513–522.CrossRefGoogle Scholar
  211. Snyder, L. M., Fortier, N. L., Leb, L., McKenney, J., Trainor, J., Sheerin, H., and Mohandas, N., 1988, The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes, Biochim. Biophys. Acta 937: 229–240.PubMedCrossRefGoogle Scholar
  212. Solal-Celigny, P., Vazeux, R., Vroclans, M., Amar, M., Herrera, A., Bernard, J. F., and Boivin, P., 1984, Positive Coombs test in acute leukaemia, Br. J. Haematol. 57: 563–569.PubMedGoogle Scholar
  213. Strejan, G. H., Essani, K., and Surlan, D., 1981, Naturally occurring antibodies to liposomes. II. Specificity and electrophoretic pattern of rabbit antibodies reacting with sphingomyelin-containing liposomes, J. Immunol. 127: 160–165.PubMedGoogle Scholar
  214. Suzuki, T., and Dale, G. L., 1987, Biotinylated erythrocytes: In vivo survival and in vitro recovery, Blood 70: 791–795.PubMedGoogle Scholar
  215. Szymanski, I. O., Odgren, P. R., Fortier, N., and Snyder, L. M., 1980, Red blood cell associated IgG in normal and pathologic states, Blood 55: 48–54.PubMedGoogle Scholar
  216. Szymanski, I. 0., Keegan, M. G., and Odgren, P. R., 1981, Complement and Ig uptake by erythrocytes in low ionic strength solutions, Vox Sang. 41: 151–159.PubMedCrossRefGoogle Scholar
  217. Szymanski, L O., Odgren, P. R., and Valeri, C. R., 1985, Relationship between the third component of human complement (C3) bound to stored preserved erythrocytes and their viability in vivo, Vox Sang. 49: 34–41.PubMedCrossRefGoogle Scholar
  218. Takata, Y., Tamura, N., and Fujita, T., 1984, Interaction of C3 with antigen—antibody complexes in the process of solubilization of immune precipitates, J. Immunol. 132: 2531–2537.PubMedGoogle Scholar
  219. Taylor, R. P., Burge, J., Horgan, C., and Shasby, D. M., 1983, The complement-mediated binding of soluble antibody/dsDNA immune-complexes to human neutrophils, J. Immunol. 130: 2656–2662.PubMedGoogle Scholar
  220. Taylor, R. P., Horgan, C., Hooper, M., and Burge, J., 1985, Dynamics of interaction between complement-fixing antibody/dsDNA immune complexes and erythrocytes. In vitro studies and potential general applications to clinical immune complex testing, J. Clin. Invest. 75: 102–111.PubMedCrossRefGoogle Scholar
  221. Tökés, Z. A., and Chambers, S. M., 1975, Proteolytic activity associated with human erythrocyte membranes. Self-digestion of isolated human erythrocyte membranes, Biochim. Biophys. Acta 389: 325–338.PubMedCrossRefGoogle Scholar
  222. Tonegawa, S., 1985, The molecules of the immune system, Sci. Am. 253: 104–113.CrossRefGoogle Scholar
  223. Tuech, J. K., and Morrison, M., 1974, Human erythrocyte membrane sialoglycoproteins: A study of interconversion, Biochem. Biophys. Res. Commun. 59: 352–360.PubMedCrossRefGoogle Scholar
  224. Turrini, F., Naitana, A., Mannuzzu, L., Pescarmona, G., and Arese, P., 1985, Increased red cell calcium adenosine triphosphate, and altered membrane proteins during Fava bean hemolysis in glucose 6-phosphate dehydrogenase-deficient (Mediterranean variant) individuals, Blood 66: 302–305.PubMedGoogle Scholar
  225. Valderrama, R., Eggers, A. E., Revan, S., Moomjy, M., Frost, M., Pipia, P., and DiPaola, M., 1988, Idiotypic control of the immune response, J. Neuroimmunol. 20: 269–276.PubMedCrossRefGoogle Scholar
  226. van Loghem, E., 1978, Genetic studies on human immunoglobulins, in: Handbook of Experimental Immunology, Volume I ( D. M. Weir, ed.), p. 16, Blackwell, Oxford.Google Scholar
  227. Vaysse, J., Gattegno, L., Bladier, D., and Aminoff, D., 1986, Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by 3-galactosyl derivatives, Proc. Natl. Acad. Sci. USA 83: 1339–1343.PubMedCrossRefGoogle Scholar
  228. Vettore, L., DeMatteis, M. C., and Zampini, P., 1980, A new density gradient system for the separation of human red blood cells, Am. J. Hematol. 8: 291–297.PubMedCrossRefGoogle Scholar
  229. Victoria, E. J., Mahan, L. C., and Masouredis, S. P., 1982, The IgG binding function of the normal red cell plasma membrane: Identification of integral polypeptides that bind IgG, Br. J. Haematol. 50: 101–110.PubMedCrossRefGoogle Scholar
  230. Vlassara, H., Valinsky, J., Brownlee, M., Cerami, C., Nishimoto, S., and Cerami, A., 1987, Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages, J. Exp. Med. 166: 539–549.PubMedCrossRefGoogle Scholar
  231. Walker, W. S., Singer, J. A., Morrison, M., and Jackson, C. W., 1984, Preferential phagocytosis of in vivo aged murine red blood cells by a machrophage-like cell line, Br. J. Haematol. 58: 259–266.PubMedCrossRefGoogle Scholar
  232. Walport, M. J., Ross, G. D., Mackworth-Young, C., Watson, J. V., Hogg, N., and Lachmann, P. J., 1985, Family studies of erythrocyte complement receptor type 1 levels: Reduced in patients with SLE are acquired, not inherited, Clin. Exp. Immunol. 59: 547–554.PubMedGoogle Scholar
  233. Walter, H., Krob, E. J., and Ascher, G. S., 1981, Aging of erythrocytes results in altered red cell surface properties in the rat, but not in the human. Studies by partitioning in two-polymer aqueous phase systems, Biochim. Biophys. Acta 641: 202–215.PubMedCrossRefGoogle Scholar
  234. Watanabe, K., Powell, M. E., and Hakomori, S.-I., 1979, Isolation and characterization of gangliosides with a new sialosyl linkage and core structure, J. Biol. Chem. 254: 8223–8229.PubMedGoogle Scholar
  235. Waugh, S. M., and Low, P. S., 1985, Hemichrome binding to band 3: Nucleation of Heinz bodies on the erythrocyte membrane, Biochemistry 24: 34–39.PubMedCrossRefGoogle Scholar
  236. Weed, R. I., and Reed, C. F., 1966, Membrane alterations leading to red cell destruction, Am. J. Med. 41: 6881–698.CrossRefGoogle Scholar
  237. Wegner, G., Tanner, C., Maretzki, D., and Schössler, W., 1984, Immunoglobulin G binding to human erythrocytes, Biomed. Biochim. Acta 43: 179–186.PubMedGoogle Scholar
  238. Wiener, E., Hughes-Jones, N. C., Irish, W. T., and Wickramasinghe, S. N., 1986, Elution of antispectrin antibodies from red cells in homozygous 3-thalassemia, Clin. Exp. Immunol. 63: 680–686.PubMedGoogle Scholar
  239. Winterbourn, C. C., and Batt, R. D., 1970, Lipid composition of human red cells of different ages, Biochim. Biophys. Acta 202: 1–8.PubMedCrossRefGoogle Scholar
  240. Worlledge, S. M., 1978, Annotation: The interpretation of a positive direct antiglobulin test, Br. J. Haematol. 39: 157–162.PubMedCrossRefGoogle Scholar
  241. Yam, P., Petz, L. D., and Spath, P., 1982, Detection of IgG sensitization of red cells with 1251-staphylococcal protein A, Am. J. Hematol. 12: 337–346.PubMedCrossRefGoogle Scholar
  242. Yoon, S. H., and Fearon, D. T., 1985, Characterization of a soluble form of the C3b/C4b receptor (CR1) in human plasma, J. Immunol. 134: 3332–3338.PubMedGoogle Scholar
  243. Zalman, L. S., Wood, L. M., and Miller-Eberhard, H. J., 1986, Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels, Proc. Natl. Acad. Sci. USA 83: 6975–6979.PubMedCrossRefGoogle Scholar
  244. Zharhary, D., 1988, Age-related changes in the capability of the bone marrow to generate B cells, J. Immunol. 141: 1863–1869.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Hans U. Lutz
    • 1
  1. 1.Laboratory for BiochemistrySwiss Federal Institute of Technology, ETH-ZentrumZurichSwitzerland

Personalised recommendations