Erythrocyte Membrane Changes during Aging in Vivo

  • Grzegorz Bartosz
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


The mammalian red blood cell is a specific but interesting object for research on aging. Devoid of a nucleus and other intracellular organelles, it lacks transcriptional and translational machinery. Although studies of this cell obviously cannot yield direct information on the DNA control of cellular aging, they do allow us to follow cell-age-related modifications of intracellular proteins and of the plasma membrane without the interference of the repair processes to the exchange of damaged macromolecules. Thus, the red blood cell is an ideal model for studies of membrane and protein aging in their natural cellular environment.


Erythrocyte Membrane Human Erythrocyte Osmotic Fragility Sialic Acid Content Senescent Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, E. C., Taylor, J. F., and Lang, C. A., 1978, Influence of mouse age and erythrocyte age on glutathione metabolism, Biochem. J. 174: 819–825.PubMedGoogle Scholar
  2. Alderman, E. M., Fudenberg, H. H., and Lovins, R. E., 1980, Binding of immunoglobulin classes to subpopulations of human red blood cells separated by density-gradient centrifugation, Blood 55: 817–822.PubMedGoogle Scholar
  3. Allison, A. C., 1960, Turnover of erythrocytes and plasma proteins in mammals, Nature 180: 37–40.Google Scholar
  4. Aminoff, D., 1988, The role of sialoglycoconjugates in the aging and sequestration of red cells from circulation, Blood Cells 14: 229–247.PubMedGoogle Scholar
  5. Aminoff, D., Ghalambor, M. A., and Heinrich, C. J., 1981, GOST, galactose oxidase and sialyl transferase, substrate and receptor sites in erythrocyte senescence, in: Erythrocyte Membranes. 2. Recent Clinical and Experimental Advances (W. C. Kruckenberg, J. W. Eaton, and G. J. Brewers, eds.), pp. 267–278, Liss, New York.Google Scholar
  6. Ashby, W., 1919, The determination of the length of life of transfused blood corpuscles in man, J. Exp. Med. 29: 267–281.PubMedGoogle Scholar
  7. Au, K. S., and Chan, K. C., 1983, Variations in (Ca2+Mg2+)_ATPase, its inhibitor protein and calmodulin of density (age) separated rabbit erythrocytes, Biochim. Biophys. Acta 761: 291–295.PubMedGoogle Scholar
  8. Barber, J. R., and Clarke, S., 1983, Membrane protein carboxyl methylation increases with human erythrocyte age, J. Biol. Chem. 258: 1189–1196.PubMedGoogle Scholar
  9. Bartos, H. R., and Desforges, J. F., 1967, Enzymes as erythrocyte age reference standards, Am. J. Med. Sci. 254: 862–865.PubMedGoogle Scholar
  10. Bartosz, G., 1981a, Non-specific reactions: Molecular basis for ageing, J. Theor. Biol. 91:233–235. Bartosz, G., 1981b, Aging of the erythrocyte. IV. Spin-label studies of membrane lipid, proteins and permeability, Biochim. Biophys. Acta 644: 69–73.PubMedGoogle Scholar
  11. Bartosz, G., 1981c, Aging of the erythrocyte. VIII. Sensitivity to oxidant factors, Acta Biol. Med. Ger. 40: 985989.Google Scholar
  12. Bartosz, G., 1981d, Bovine erythrocyte membrane: Does not act as a molecular sieve or allow for hemolytic fractionation of red cells according to age, Comp. Biochem. Physiol. 68A: 273–275.Google Scholar
  13. Bartosz, G., 1982a, Aging of the erythrocyte. XI. Membrane glycosylation, Biochem. Med. 27: 398–400.PubMedGoogle Scholar
  14. Bartosz, G., 1982b, Aging of the erythrocyte. XV. Isoosmotic lysis times, Experientia 38: 1484–1485.PubMedGoogle Scholar
  15. Bartosz, G., and Bartkowiak, A., 1981, Aging of the erythrocyte. II. Activities of peroxide-detoxifying enzymes, Experientia 37: 722.PubMedGoogle Scholar
  16. Bartosz, G., Tannert, C., Fried, R., and Leyko, W., 1978, Superoxide dismutase activity decreases during erythrocyte aging, Experientia 34: 1464.PubMedGoogle Scholar
  17. Bartosz, G., Swiercznski, B., and Gondko, R., 1981a, Aging of the erythrocyte. III. Cation content, Experientia 37: 723.PubMedGoogle Scholar
  18. Bartosz, G., Szabo, G., Szöllösi, J., Szöllösi, J., and Damjanovich, S., 1981b, Aging of the erythrocyte. IX. Fluorescence studies on changes in membrane properties, Mech. Ageing Dev. 16: 265–274.PubMedGoogle Scholar
  19. Bartosz, G., Soszynski, M., and Wasilewski, A., 1982a, Aging of the erythrocyte, XIX. Composition of membrane proteins, Mech. Ageing Dev. 19: 45–52.PubMedGoogle Scholar
  20. Bartosz, G., Soszynski, M., and Wasilewski, A., 1982b, Aging of the erythrocyte. XVII. Binding of autologous immunoglobulin G, Mech. Ageing Dev. 20: 223–232.PubMedGoogle Scholar
  21. Bartosz, G., Grzelinska, E., and Bartkowiak, A., 1984, Aging of the erythrocyte. XIX. Decrease in surface charge density of bovine erythrocytes, Mech. Ageing Dev. 24: 1–7.PubMedGoogle Scholar
  22. Bartosz, G., Christ, G., Bosse, H., Stephan, R., and Gärtner, H., 1987a, Thermal lability of membrane proteins of age separated erythrocytes as studied by electron spin resonance spin label technique, Z. Naturforsch. 42C: 1343–1344.Google Scholar
  23. Bartosz, G., Gaczynka, M., Grzelinska, E., Soszynski, M., Michalak, W., and Gondko, R., 1987b, Aged erythrocytes exhibit decreased anion exchange, Mech. Ageing. Dev. 39: 245–250.PubMedGoogle Scholar
  24. Baumann, G., and MacCart, J. G., 1984, Kinetics of cell age-dependent decline of insulin receptors in human red cells, Am. J. Physiol. 247: E667 — E674.PubMedGoogle Scholar
  25. Baustad, B., and Nafstad, I., 1972, Haematological response to vitamin E in piglets, Br. J. Nutr. 28: 183–191.Google Scholar
  26. Baxter, A., and Beeley, J. G., 1978, Surface carbohydrates of aged erythrocytes, Biochem. Biophys. Res. Commun. 83: 466–471.PubMedGoogle Scholar
  27. Bennett, G. D., and Kay, M. M. B., 1981. Homeostatic removal of senescent murine erythrocytes by splenic macrophages, Exp. Hematol. 9: 297–307.PubMedGoogle Scholar
  28. Berkowitz, L. R., Walstad, D., and Orringer, E. P., 1987, Effect of N-ethylmaleimide on K transport in density-separated human red blood cells, Am. J. Physiol. 253: C7 - C12.PubMedGoogle Scholar
  29. Bernstein, R. E., 1959, Alterations in metabolic energetics and cation transport during aging of red cells, J. Clin. Invest. 38: 1572–1586.PubMedGoogle Scholar
  30. Beutler, E., 1985a, How do red cell enzymes age? A new perspective, Br. J. Haematol. 61: 377–384.PubMedGoogle Scholar
  31. Beutler, E., 1985b, Biphasic loss of red cell enzyme activity during in vivo ageing, in: Cellular and Molecular Aspects of Ageing: The Red Cell as a Model ( Beutler, E., eds.), pp. 317–329, New York.Google Scholar
  32. Bialas, W. A., 1984, Alteration of Cl-transport in erythrocytes from patients with Huntington’s disease, Gen. Physiol. Biophys. 3: 403–411.PubMedGoogle Scholar
  33. Bishop, C., and Prentice, T. C., 1966, Separation of rabbit red cells by density in a bovine serum albumin gradient and correlation of red cell density with cell age after in vivo labeling with 59Fe, J. Cell. Physiol. 67: 197–207.PubMedGoogle Scholar
  34. Bladier, D., Gattegno, L., Fabia, F., Perret, G., and Comillot, P., 1980, Individual variations of the seven car- bohydrate components of human erythrocyte membrane during aging in vivo, Carbohydr. Res. 83: 371–376.PubMedGoogle Scholar
  35. Bladier, D., Vassy, R., Perret, G., Gattegno, L., and Cornillot, P., 1984, Evidence for the participation of glycoconjugates in the recognition of human old red blood cells by autologous macrophages, IRCS Med. Sci. 12: 889–890.Google Scholar
  36. Bookchin, R. M., Roth, E. F., Jr., and Lew, V. L., 1985, Near-normal circulatory survival of rabbit red cells exposed to high levels of Ca and iconophore in vitro, Blood 66: 220–223.PubMedGoogle Scholar
  37. Boorman, K. E., Dodd, B. E., and Mollison, P. L., 1942, The clinical significance of the Rh factor Br. Med. J. 2 :535–538, 569–572.Google Scholar
  38. Borochov, H., and Shinitzky, M., 1976, Vertical displacement of membrane proteins mediated by changes in microviscosity, Proc. Natl. Acad. Sci. USA 73: 4526–4530.PubMedGoogle Scholar
  39. Borun, R. E., 1964, Some differences in erythrocyte composition and uptake of radioactive potassium, sodium, chromate and triiodothyronine associated with in vivo aging, J. Lab. Clin. Med. 62: 263–278.Google Scholar
  40. Bosman, G.J.C.G.M., and Kay, M.M.B., 1988, Erythrocyte aging: A comparison of model systems for simulating cellular aging in vitro, Blood Cells 14: 19–35.PubMedGoogle Scholar
  41. Botscharova, L., 1973, Eine Methode zur Berechnung des Sedimentationsverhaltens von Partiken in linearen Dextran-Dichtegradienten and ihre Anwendung aut die Trennung roter Blutzellen nach der Sedimentationsgeschwindigkeit, Acta Biol. Med. Ger. 30: 1–12.Google Scholar
  42. Braasch, D., 1971, Red cell deformability and capillary blood flow, Physiol. Rev. 51: 679–701.Google Scholar
  43. Bracey, A. M., and McFarland, F., 1984, Harvest of young red cells on an automated cell separator Transfusion 24 :330–332.Google Scholar
  44. Branch, D. R., Sy Siok Hian, A. L., Carlson, F., Maslow, W. C., and Petz, L. D., 1983, Erythrocyte age-fractionation using a PercollT“—Renographin’ density gradient: Application to autologous red cell antigen determinations in recently transfused patients, Am. J. Clin. Pathol. 80: 453–458.PubMedGoogle Scholar
  45. Brewer, G. J., Mueller, G. A., Brewer, L. F., and Dick, R. D., 1985, A search for the primary biochemical effect of the Dpg gene; does this gene influence cellular aging? in: Cellular and Molecular Aspects of Ageing: The Red Cell as a Model (J. W. Eaton, D. K. Konzen, and J. G. White, eds.), pp. 403–426. Liss, New York.Google Scholar
  46. Brok, F., Ramot, B., Zwang, E., and Danon, D., 1966, Enzyme activities in human blood cells of different age groups, Isr. J. Med. Sci. 2: 291–296.PubMedGoogle Scholar
  47. Brovelli, A., Seppi, C., Pallavicini, G., and Balduini, C., 1983, Membrane processes during “in vivo” aging of human erythrocytes, Biomed. Biochim. Acta 42: S122 — S126.PubMedGoogle Scholar
  48. Brunauer, L. S., and Clarke, S., 1986, Age-dependent accumulation of protein residues which can be hydrolyzed to D-aspartic acid in human erythrocytes J. Biol. Chem. 261 :12538–12543.Google Scholar
  49. Carrell, R. W., Winterbourn, C. C., and Rachmilewitz, E. A., 1975, Activated oxygen and haemolysis Br. J. Haematol. 30 :259–264.Google Scholar
  50. Chalfin, D., 1956, Differences between young and mature rabbit erythrocytes, J. Cell. Comp. Physiol. 47: 215239.Google Scholar
  51. Chapman, R. G., and Schaumburg, L., 1967, Glycolysis and glycolytic enzyme activity of aging red cells in man, Br. J. Haematol. 13: 665–678.PubMedGoogle Scholar
  52. Clark, M. R., 1985, Selected ionic and metabolic characteristics of human red cell populations separated on Stractan density gradients, in: Cellular and Molecular Aspects of Ageing: The Red Cell as a Model (J. W.Google Scholar
  53. Eaton, D. K. Konzen, and J. G. White, eds.), pp. 381–386, Liss, New York.Google Scholar
  54. Clark, M. R., 1986, Why does the normal red cell die? Blood Cells 12: 99–102.PubMedGoogle Scholar
  55. Clark, M. R., 1988, Senescence of red blood cells: Progress and problems Physiol. Rev. 68:503–554.Google Scholar
  56. Clark, M. R., Mohandas, N., and Shohet, S. B., 1983, Osmotic gradient ektacytometry: Comprehensive characterization of red cell volume and surface maintenance Blood 61 :899–910.Google Scholar
  57. Cohen, N. S., Eckholm, J. E., Luthra, M. G., and Hanahan, D. J., 1976, Biochemical characterization of density-separated human erythrocytes, Biochim. Biophys. Acta 419: 229–242.PubMedGoogle Scholar
  58. Corash, L. M., Piomelli, S., Chen, H. C., Seaman, G. V. F., and Gross, E., 1974, Separation of erythrocytes according to age on a simplified density gradient J. Lab. Clin. Med. 84 :147–151.Google Scholar
  59. Corry, W. D., and Meiselman, H. J., 1978, Centrifugal method of determining red cell deformability Blood 51:693–701.Google Scholar
  60. Cruz, W. O., Hahn, P. F., Bale, W. F., and Balfour, W. M., 1941, The effect of age on the susceptibility of the erythrocyte to hypotonie salt solutions, Am. J. Med. Sci. 202: 157–163.Google Scholar
  61. Czerwinski, M., Wasniowska, K., Steuden, I., Duk, M., Wiedlocha, A., and Lisowska, E., 1988, Degradation of the human erythrocyte membrane band 3 studied with the monoclonal antibody directed against an epitope on the cytoplasmic fragment of band 3, Eur. J. Biochem. 174: 647–654.Google Scholar
  62. Danon, D., 1968, Reversible deformability and mechanical fragility as a function of red cell age, in: Hemorheology ( A. L. Copley, ed.), pp. 497–504, Pergamon Press, Elmsford, N.Y.Google Scholar
  63. Danon, D., and Marikovsky, Y., 1961, Difference de charge electrique de surface entre erythrocytes jeunes et ages, C. R. Acad. Sci. 253: 1271–1272.Google Scholar
  64. Danon, D., and Marikovsky, Y., 1964, Determination of density distribution of red cell population, J. Lab. Clin. Med. 64: 668–674.PubMedGoogle Scholar
  65. Danon, D., and Marikovsky, Y., 1988, The aging of the red blood cell. A multifactor process, Blood Cells 14: 715.Google Scholar
  66. Danon, D., Marikovsky, Y., and Skutelsky, E., 1971, The sequestration of old red cells and expulsed nuclei, in: Red Cell Structure and Metabolism ( B. Ramot, ed.), pp. 23–38, Academic Press, New York.Google Scholar
  67. Danon, D., Goldstein, L., Marikovsky, Y., and Skutelsky, E., 1972, Use of cationized ferritin as label of negative charges on cell surfaces, J. Ultrastruct. Res. 38: 500–510.PubMedGoogle Scholar
  68. Dhermy, D., Simeon, J., Wautier, M.-P., Boivin, P., and Wautier, J.-L., 1987, Role of membrane sialic acid content in the adhesiveness of aged erythrocytes to human cultured endothelial cells, Biochim. Biophys. Acta 904: 201–206.PubMedGoogle Scholar
  69. Dons, R. F., Corash, L. M., and Gorden, P., 1981, The insulin receptor is an age-dependent integral component of the human erythrocyte membrane, J. Biol. Chem. 256: 2982–2987.PubMedGoogle Scholar
  70. Drenckhahn, D., 1988, Removal of old and abnormal red blood cells from circulation: Mechanical and immunologic mechanism, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 62–76, Springer, Berlin.Google Scholar
  71. Dumaswala, U. J., and Greenwalt, T. J., 1984, Human erythrocytes shed exocytic vesicles in vivo, Transfusion 24: 490–492.PubMedGoogle Scholar
  72. Ekholm, J. E., Shukla, S. D., and Hanahan, D. J., 1981, Change in cytosolic calmodulin activity of density (age) separated human erythrocytes towards membrane Ca2+Mg2+ATPase, Biochem. Biophys. Res. Commun. 103: 407–413.PubMedGoogle Scholar
  73. Fairbanks, G., Palek, J., Dino, J. E., and Liu, P. A., 1983, Protein kinase and membrane protein phosphorylation in normal and abnormal human erythrocytes: Variation related to mean cell age, Blood 61: 850–857.PubMedGoogle Scholar
  74. Farrell, P. M., Bieri, J. G., Fratantoni, J. F., Wood, R. E., and di Sant’Agnese, P. A., 1977, The occurrence and effects of human vitamin E deficiency. A study in patients with cystic fibrosis, J. Clin. Invest. 60: 233241.Google Scholar
  75. Fischbeck, K. H., Bonilla, E., and Schotland, D. L., 1982, Freeze-fracture characterization of “young” and “old” human erythrocytes, Biochim. Biophys. Acta 685: 207–210.PubMedGoogle Scholar
  76. Fornaini, G., 1967, Biochemical modifications during the life span of the erythrocyte, Ital. J. Biochem. 16: 258301.Google Scholar
  77. Fornaini, G., Dacha, M., Fazi, A., Gargano, M., and Schiavo, E., 1970, Relationship between age and properties of human erythrocyte glutathione reductase, Ital. J. Biochem. 19: 345–360.PubMedGoogle Scholar
  78. Freedman, J., 1984, Membrane-bound immunoglobulins and complement components on young and old red cells, Transfusion 24: 477–481.PubMedGoogle Scholar
  79. Gaczynska, M., and Bartosz, G., 1986, Crosslinking of membrane proteins during erythrocyte ageing, Int. J. Biochem. 18: 377–382.PubMedGoogle Scholar
  80. Gaczynska, M., Rosin, J., Soszynski, M., and Bartosz, G., 1986, Proteolytic susceptibility of membrane proteins during erythrocyte aging, Mech. Ageing Dev. 35: 109–121.PubMedGoogle Scholar
  81. Galbraith, D. A., and Watts, D. C., 1980, Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll—Triosil gradients. Comparison of normal humans with Duchenne muscular dystrophy, Biochem. J. 191: 63–70.PubMedGoogle Scholar
  82. Galbraith, D. A., and Watts, D. C., 1981, Human erythrocyte acetyl cholinesterase in relation to cell age, Biochem. J. 195: 221–228.PubMedGoogle Scholar
  83. Galili, U., Korkesh, A., Kahane, I., and Rachmilewitz, E. A., 1983, Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells. Blood 61:1258–1264:Google Scholar
  84. Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I., 1984, A unique natural human IgG antibody with anti-alpha-galactosyl specificity, J. Exp. Med. 160: 1519–1531.PubMedGoogle Scholar
  85. Ganzoni, A. M., Oakes, R., and Hillman, R. S., 1971, Red cell aging in vivo, J. Clin. Inv. Med. 50: 1373 1378.Google Scholar
  86. Ganzoni, A. M., Barras, P., and Mart, H. R., 1976, Red cell ageing and death, Vox Sang, 30: 161–174.PubMedGoogle Scholar
  87. Gardos, G., 1959, The role of calcium in the potassium permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 15: 121–125.Google Scholar
  88. Gattegno, L., Bladier, D., and Cornillot, P., 1975, Ageing in vivo and neuraminidase treatment of rabbit erythrocytes: influence on half-life as assessed by 51Cr labelling, Hoppe-Seyler’s Z. Physiol. Chem. 356: 391–397.PubMedGoogle Scholar
  89. Gattegno, L., Bladier, D., Gamier, M., and Comillot, P., 1976, Changes in carbohydrate content of surface membranes of human erythrocytes during ageing, Carbohydr. Res. 52: 197–208.PubMedGoogle Scholar
  90. Gattegno, L., Perret, G., Fabia, F., Bladier, D., and Comillot, P., 1981a, In vivo ageing of human erythrocytes and cell-surface labeling by D-galactose oxidase and sodium borotritide, Carbohydr. Res. 95: 283–290.PubMedGoogle Scholar
  91. Gattegno, L., Perret, G., Fabia, F., and Comillot, P., 1981b, Decrease of carbohydrate in membrane glycoproteins during human erythrocyte ageing in vivo, Mech. Ageing Dev. 16: 205–219.PubMedGoogle Scholar
  92. Gear, A. R. L., 1977, Age-dependent separation of erythrocyte by preparative electrophoresis, J. Lab. Clin. Med. 90: 744–753.PubMedGoogle Scholar
  93. Gershon, D., Glass, G. A., and Gershon, H., 1988, The effect of host and cell age on the rat erythrocyte: Biochemical aspects, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 42–50, Springer, Berlin. GlassGoogle Scholar
  94. G. A., and Gershon, D., 1981, Enzymatic changes in rat erythrocytes with increasing cell and donor age: Loss of superoxide dismutase activity associated with increases in catalytically defective forms, Biochem. Biophys. Res. Commun. 103: 1245–1253.Google Scholar
  95. Glass, G. A., Gershon, H., and Gershon, D., 1983, The effect of donor and cell age on several characteristics of rat erythrocytes, Exp. Hematol. 11: 987–995.PubMedGoogle Scholar
  96. Goebel, K. M., and Lanser, K. G., 1983, Biorheological and metabolic dysfunctions of density-fractionated erythrocytes in diabetics with peripheral vascular disease, Biomed. Biochim. Acta 42: 102–106.Google Scholar
  97. Green, G. A., Rehn, M. M., and Kalra, W. K., 1985, Cell-bound autologous immunoglobulin in erythrocyte subpopulations from patients with sickle cell disease, Blood 65: 1127–1133.PubMedGoogle Scholar
  98. Greenwalt, T. J., and Dumaswala, U. J., 1988, Effect of red cell age on vesiculation in vitro, Br. J. Haematol. 68: 465–467.PubMedGoogle Scholar
  99. Greenwalt, T. J., Steane, E. A., and Pine, N. E., 1971, Changes in erythrocyte surface antigens with aging in vivo, in: Glycoproteins of Blood Cells and Plasma ( G. A. Jamieson and T. J. Greenwalt, eds.), pp. 235–244, Lippincott, Philadelphia.Google Scholar
  100. Greenwalt, T. J., Steane, E. A., Lau, F. O., and Sweeney-Hammond, K., 1980, Aging of the human erythrocyte, in: Immunobiology of the Erythrocyte ( S. G. Sandler, J. Nusbacher, and M. S. Schanfield, eds.), pp. 195–212, Liss, New York.Google Scholar
  101. Gross, J., Staak, R., and Syllm-Rapoport, I., 1978, Veränderungen der anorganischen Pyrophosphatase während Reifung and Altem von roten Blutzellen des Neugeborenen, Acta Biol. Med. Ger. 37: 403–408.PubMedGoogle Scholar
  102. Grzelinska, E., and Bartosz, G., 1988, Membrane potential decreases during erythrocyte aging, Cell Biol. Int. Rep. 12: 497.PubMedGoogle Scholar
  103. Grzelinska, E., and Bartosz, G., 1989, Effect of cell age on the quenching of erythrocyte membrane protein fluorescence, Cytobios 57: 149–154.PubMedGoogle Scholar
  104. Grzelinska, E., Bartosz, G., and Bartkowiak, A., 1983, Aging of the erythrocyte. XVIII. Changes in kinetic properties of acetylcholinesterase, Enzyme 30: 95–98.PubMedGoogle Scholar
  105. Halbhuber, K.-J., Linss, W., Zimmermann, N., Oehring, H., and Pätzold, L., 1986, Cytochemical and cell-biological investigations of the signal function of the erythrocyte plasmalemma—The membrane structure as code for cell life span, Acta Histochem. 33: S23 — S44.Google Scholar
  106. Hall, A. C., and Ellory, J. C., 1986, Evidence for the presence of volume-sensitive KCl transport in “young” human red cells, Biochim. Biophys. Acta 858: 317–320.PubMedGoogle Scholar
  107. Halliwell, B., and Gutteridge, J. M. C., 1986, Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts, Arch. Biochem. Biophys. 246: 501–514.PubMedGoogle Scholar
  108. Hanahan, D. J., and Ekholm, J. E., 1978, The expression of optimum ATPase activities in human erythrocytes. A comparison of different lytic procedures, Arch. Biochem. Biophys. 187: 170–179.PubMedGoogle Scholar
  109. Harm, W., and Deamer, D. W., 1977, Altered potassium permeability in vitamin E-deficient rat erythrocytes, Physiol. Chem. Phys. 9: 501–512.PubMedGoogle Scholar
  110. Hebbel, R. P., 1986, Autoxidation and the sickle erythrocyte membrane: A possible model of iron decompartmentalization, in: Free Radicals, Aging, and Degenerative Diseases, pp. 395–424, Liss, New York.Google Scholar
  111. Hebbel, R. P., Eaton, J. W., Balasingam, M., and Steinberg, M. H., 1982, Spontaneous oxygen radical generation by sickle erythrocytes, J. Clin. Invest. 70: 1253–1259.PubMedGoogle Scholar
  112. Hentschel, W. M., Wu, L. L., Tobin, G. O., Anstall, H. B., Smith, J. B., Williams, R. R., and Ash, K. O., 1986, Erythrocyte cation transport activities as a function of cell age, Clin. Chim. Acta 157: 33–44.PubMedGoogle Scholar
  113. Hoffman, J. F., 1958, On the relationship of certain erythrocyte characteristics to their physiological age, J. Cell. Comp. Physiol. 51: 415–423.Google Scholar
  114. Inaba, M., and Maede, Y., 1988, Correlation between protein ratio and erythrocyte life span, Biochim. Biophys. Acta 944: 256–264.Google Scholar
  115. Jain, S. K., 1988, Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes, Biochim. Biophys. Acta 937: 205–210.PubMedGoogle Scholar
  116. Jain, S. K., and Hochstein, P., 1980, Polymerization of membrane components in aging red blood cells, Biochem. Biophys. Res. Commun. 92: 247–254.PubMedGoogle Scholar
  117. Jain, S. K., Mohandas, N., Clark, M. R., and Shohet, S. B., 1983, The effect of malonyldialdehyde, a product of lipid peroxidation on the deformability, dehydration and 51Cr-survival of erythrocytes, Br. J. Haematol. 53: 247–255.PubMedGoogle Scholar
  118. Jancik, J., and Schauer, R., 1974, Sialic acid—a determinant of the life-time of erythrocytes, Hoppe-Seyler’s Z. Physiol. Chem. 355: 395–400.PubMedGoogle Scholar
  119. Joiner, C. H., and Lauf, P. K., 1978, Ouabain binding and potassium transport in young and old populations of human red cells, Membr. Biochem. 1: 187–202.PubMedGoogle Scholar
  120. Juckett, D. A., and Rosenberg, B., 1982, The kinetics and thermodynamics of lysis of young and old sheep red blood cells, Mech. Ageing Dev. 18: 33–45.PubMedGoogle Scholar
  121. Kadlubowski, M., 1979, The effect of in vivo aging of the human erythrocyte on the protein of the plasma membrane: A characterization, Int. J. Biochem. 9: 67–88.Google Scholar
  122. Kadlubowski, M., and Agutter, P. S., 1977, Changes in the activities of some membrane-associated enzymes during in vivo ageing of the normal human erythrocyte, Br. J. Haematol. 37: 111–125.PubMedGoogle Scholar
  123. Kamber, E., Poyiagi, A., and Deliconstantinos, G., 1984, Modifications in the activity of membrane-bound enzymes during in vivo ageing of human and rabbit erythrocytes, Comp. Biochem. Physiol. 77B: 9599.Google Scholar
  124. Katsumoto, Y., Tanaka, F., Hagihara, M., and Yagi, K., 1977, Changes in membrane fluidity of erythrocytes during cell maturation, Biochem. Biophys. Res. Commun. 78: 609–614.Google Scholar
  125. Kay, M.M.B., 1978, Role of physiologic autoantibody in the removal of senescent human red cells, J. Supramol. Struct. 9: 555–567.PubMedGoogle Scholar
  126. Kay, M.M.B., 1984a, Localization of senescent cell antigen on band 3, Proc. Natl. Acad. Sci. USA 81: 57535757.Google Scholar
  127. Kay, M.M.B., 1984b, Band 3, the predominant transmembrane polypeptide, undergoes proteolytic degradation as cells age, Monogr. Dev. Biol. 17: 245–253.PubMedGoogle Scholar
  128. Kay, M.M.B., Goodman, S., Whitfield, C., Wong, P., Zaki, L., and Rudloff, V., 1984, The senescent cell antigen is immunologically related to band 3, Proc. Natl. Acad. Sci. USA 80: 1631–1635.Google Scholar
  129. Kay, M.M.B., Bosman, G.J.C.G.M., Shapiro, S. S., Bendich, A., and Bassel, P., 1986, Oxidation as a possible mechanism of cellular aging: Vitamin E deficiency causes premature aging and IgG binding to erythrocytes, Proc. Natl. Acad. Sci. USA 83:2463–2467.Google Scholar
  130. Kay, M.M.B., Bosman, G.J.C.G.M., Johnson, G. J., and Beth, A. H., 1988, Band-3 polymers and aggregates, and hemoglobin precipitates in red cell aging, Blood Cells 14: 275–289.PubMedGoogle Scholar
  131. Khansari, N., 1988, Mechanism for elimination of senescent red blood cells from circulation, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 77–89, Springer, Berlin.Google Scholar
  132. Kimura, R. E., Suzuki, T., and Kinoshita, Y., 1960, Separation of reticulocytes by means of multi-layer centrifugation, Nature 188: 1201–1202.PubMedGoogle Scholar
  133. Kondo, T., Dale, G. L., and Beutler, E., 1981, Studies on glutathione transport utilizing inside-out vesicles prepared from human erythrocytes, Biochim. Biophys. Acta 645: 132–136.PubMedGoogle Scholar
  134. Kosmakos, F. C., Nagulesparan, M., and Bennett, P. H., 1980, Insulin binding to erythrocytes: A negative correlation with red cell age, J. Clin. Endocrinol. Metab. 51: 46–50.PubMedGoogle Scholar
  135. Küster, J. M., and Schauer, R., 1981, Phagocytosis of sialidase-treated rat erythrocytes: Evidence for a two-step mechanism, Hoppe-Seyler’s Z. Physiol. Chem. 362: 1507–1514.PubMedGoogle Scholar
  136. LaCelle, P. L., Kirkpatrick, F. H., and Udkow, M., 1973a, Relation of altered deformability, ATP, DPG and Ca+ + concentration in senescent erythrocytes, in: Erythrocytes, Thrombocytes, Leukocytes. Recent Advances in Membrane and Metabolic Research ( E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), pp. 49–52, Thieme, Stuttgart.Google Scholar
  137. LaCelle, P. L., Kirkpatrick, F. H., Udkow, M. D., and Arkin, B., 1973b. Membrane fragmentation and Ca-membrane interaction: Potential mechanisms of shape change in the senescent red cell, in: Red Cell Shape ( M. Bessis, R. I. Weed, and P. F. Leblond, eds.), pp. 69–78, Springer, Berlin.Google Scholar
  138. Leif, R. C., and Vinograd, J., 1964, The distribution of buoyant density of human erythrocytes in bovine serum albumin solutions, Proc. Natl. Acad. Sci. USA 51: 520–528.PubMedGoogle Scholar
  139. Levy, L. M., Walter, H., and Sass, M. D., 1959, Enzymes and radioactivity in erythrocytes of different age, Nature 184: 643–644.PubMedGoogle Scholar
  140. Li, C. K. N., and Li, E. K. H., 1983, Mechanical fatigue as a possible determinant of in vivo longevity of red blood cells, IEEE Trans. Biomed. Eng. 30: 226–227.PubMedGoogle Scholar
  141. Lichtman, M. A., 1975, Does ATP decrease exponentially during red cell aging? Nouv. Rev. Fr. Hematol. 15:625–632.Google Scholar
  142. Linderkamp, O., and Meiselman, H. J., 1982, Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood 59: 1121–1127.PubMedGoogle Scholar
  143. Lorand, L., Weissmann, L. B., Epel, D. L., and Bruner-Lorand, J., 1976, Role of the intrinsic transglutaminase in the Cat+-mediated crosslinking of erythrocyte proteins, Proc. Natl. Acad. Sci. USA 73: 4479–4481.PubMedGoogle Scholar
  144. Low, P. S., Waugh, S. M., Zinke, K., and Drenckhahn, D., 1985, The role of hemoglobin denaturation and band 3 clustering in red blood cell aging, Science 227: 531–533.PubMedGoogle Scholar
  145. Lowenson, J., and Clarke, S., 1988, Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? The role of protein carboxyl methylation reactions, Blood Cells 14: 103–117.PubMedGoogle Scholar
  146. Luner, S. J., Szklarek, D., Knox, R. J., Seaman, G. V. F., Josefovicz, J. Y., and Ware, B. R., 1977, Red cell charge is not a function of cell age, Nature 269: 719–721.PubMedGoogle Scholar
  147. Luthra, M. G., and Kim, H. D., 1980, (Ca2+-Mg2+)-ATPase of density separated human red cells: Effect of calcium and a soluble cytoplasmic activator (calmodulin), Biochim. Biophys. Acta 600: 480–488.Google Scholar
  148. Luthra, M. G., Friedman, J. M., and Sears, D. A., 1979, Studies of density fractions of normal human erythrocytes labeled with iron-59 in vivo, J. Lab. Clin. Med. 94: 879–896.PubMedGoogle Scholar
  149. Lutz, H. U., and Fehr, J., 1979, Total sialic acid content of glycophorins during senescence of human red blood cells, J. Biol. Chem. 254: 11177–11180.PubMedGoogle Scholar
  150. Lutz, H. U., and Stringaro-Wipf, G., 1983, Senescent red cell-bound IgG is attached to band 3 protein Biomed. Biochim. Acta 42:S117–5121.Google Scholar
  151. Lutz, H. U., Liu, S. C., and Palek, J., 1977, Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles, J. Cell Biol. 73: 548–560.PubMedGoogle Scholar
  152. Lutz, H. U., Stammler, P., Furter, C., and Faster, S., 1987, “Anti-Bande-3”-Antikörper aktivieren Komplement über den alternativen Weg Schweiz. Med. Wochenschr.117:1821–1824.Google Scholar
  153. McEvoy, L., Williamson, P., and Schlegel, R. A., 1986, Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages, Proc. Natl. Acad. Sci. USA 83: 3311–3315.PubMedGoogle Scholar
  154. Mackie, L. H., Frank, R. S., and Hochmuth, R. M., 1987, Erythrocyte density separation on discontinuous “Percoll” gradient, Biorheology 24: 227–230.PubMedGoogle Scholar
  155. Magnani, M., Papa, S., Rossi, L., Vitale, M., Fornaini, G., and Manzoni, F. A., 1988, Membrane-bound immunoglobulins increase during red blood cell aging Acta Haematol. 79:127–132.Google Scholar
  156. Malachi, T., Bogin, E., Gafter, U., and Levi, J., 1986, Parathyroid hormone effect on the fragility of human young and old red blood cells in uremia, Nephron 42: 52–57.PubMedGoogle Scholar
  157. Maridonneau, J., Braquet, P., and Garay, R. P., 1983, Na+ and K + transport damage induced by oxygen free radicals in human red cell membranes, J. Biol. Chem. 258: 3107–3113.PubMedGoogle Scholar
  158. Marikovsky, Y., and Danon, D., 1969, Electron microscope analysis of young and old red blood cells stained with colloidal iron for surface charge evaluation, J. Cell Biol. 43: 1–7.PubMedGoogle Scholar
  159. Marikovsky, Y., Danon, D., and Katchalsky, A., 1966, Agglutination by polylysine of young and old red blood cells Biochim. Biophys. Acta 124:154–159.Google Scholar
  160. Marin, M. S., Sanchez-Yagüe, J., Caberaz, J. A., and Llanillo, M., 1988, Phospholipid composition and aminophospholipid topology in erythrocyte plasma membranes of different ages, 14th International Congress of Biochemistry, Prague, Abstracts, Thursday: 674.Google Scholar
  161. Marks, P. A., and Johnson, A. B., 1958, Relationship between the age of human erythrocytes and their osmotic resistance: A basis for separating young and old erythrocytes, J. Clin. Invest. 37: 1542–1548.PubMedGoogle Scholar
  162. Marks, P. A., Johnson, A. B., and Hirschberg, E., 1958a, Effect of age on the enzyme activity in erythrocytes, Proc. Natl. Acad. Sci. USA 44: 529–536.PubMedGoogle Scholar
  163. Marks, P. A., Johnson, A. B., Hirschberg, E., and Banks, J., 19586, Studies on the mechanism of aging of human red blood cells, Ann. N.Y. Acad. Sci. 75: 95–105.Google Scholar
  164. Matovcik, L. M., Gröschel-Stewart, U., and Schrier, S. L., 1986, Myosin in adult and neonatal human erythrocyte membranes, Blood 67: 1668–1674.PubMedGoogle Scholar
  165. Monzon, C. M., Penniston, J. T., Fairbanks, V. F., and Burgert, E. O., Jr., 1982, Erythrocyte calmodulin correlates with red cell age, Br. J. Haematol. 51: 261–264.PubMedGoogle Scholar
  166. Morrison, M., Jackson, C. W., Mueller, T. J., Huang, T., Dockter, M. E., Walker, W. S., Singer, J. A., and Edwards, H. H., 1983, Does cell density correlate with red cell age? Biomed. Biochim. Acta 42: S107 — S111.PubMedGoogle Scholar
  167. Mosior, M., Gomutkiewicz, J., Bobrowska, M., Komorowska, M., and Koter, M., 1984, Effect of phosphate ions on osmotic fragility and membrane fluidity of bovine erythrocytes, Stud. Biophys. 99: 117–126.Google Scholar
  168. Mueller, T. J., Jackson, C. W., Dockter, M. E., and Morrison, M., 1987, Membrane skeletal alterations during in vivo mouse red cell aging. Increase in the band 4.1b ratio, J. Clin. Invest. 79: 492–499.PubMedGoogle Scholar
  169. Müller, M., Dumdey, R., and Rapoport, S., 1983, Superoxide radicals in the metabolism of the red cell, Biomed. Biochim. Acta 42: 5297 — S301.Google Scholar
  170. Murphy, J. R., 1973, Influence of temperature and method of centrifugation on the separation of erythrocytes, J. Lab. Clin. Med. 82: 334–341.PubMedGoogle Scholar
  171. Nash, G. B., and Meiselman, H. J., 1981, Red cell ageing: Changes in deformability and other possible determinants of in vivo survival, Microcirculation 1: 255–284.Google Scholar
  172. Nash, G. B., and Meiselman, H. J., 1983, Red cells and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging, Biophys. J. 43: 63–73.PubMedGoogle Scholar
  173. Nash, G. B., and Wyard, S. J., 1980, Changes in surface area and volume measured by micropipette aspiration for erythrocytes ageing in vivo, Biorheology 17: 479–484.PubMedGoogle Scholar
  174. Nash, G. B., and Wyard, S. J., 1982, Shape of ageing erythrocytes, Biorheology 19: 727.PubMedGoogle Scholar
  175. Nash, G. B., Linderkamp, O., Pfafferoth, C., and Meiselman, H. J., 1988, Changes in red cell mechanisms during in vivo aging: Possible influence on removal of senescent cells, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 99–112, Springer, Berlin.Google Scholar
  176. O’Connell, D. J., Caruso, C. J., and Sass, M. D., 1965, Separation of erythrocytes of different ages, Clin. Chem. (Winston-Salem, N.C.) 11: 771–781.Google Scholar
  177. O’Connell, M. A., and Swislocki, N. I., 1983, Spectrin phosphorylation in senescent rat erythrocytes, Mech. Ageing Dev. 22: 51–70.PubMedGoogle Scholar
  178. Ogiso, T., Iwaki, M., Takagi, T., Hirai, I., and Kashiyama, T., 1985, Increased sensitivity of aged erythrocytes to drugs and age-related loss of cell components, Chem. Pharm. Bull. 33: 5404–5412.PubMedGoogle Scholar
  179. O’Malley, B. W., Engel, C. E., Meriwether, W. D., and Zirkle, L. G., Jr., 1966, Inhibition of erythrocyte acetylcholinesterase by peroxides, Biochemistry 5: 40–45.PubMedGoogle Scholar
  180. Orringer, E. P., 1984, A further characterization of the selective K movements observed in human red blood cells following acetylphenylhydrazine exposure, Am. J. Hematol. 16: 355–366.PubMedGoogle Scholar
  181. Palmer, F.B.St.C., 1985, Polyphosphoinositide metabolism in aging human erythrocytes, Can. J. Biochem. Cell Biol. 63: 927–931.PubMedGoogle Scholar
  182. Peterson, C. M., Jones, R. L., Koenig, R. J., Melvin, E. T., and Lehrman, M. L., 1977, Reversible hematologic sequelae of diabetes mellitus, Ann. Intern. Med. 86: 425–429.PubMedGoogle Scholar
  183. Pfeffer, S. R., and Swislocki, N. I., 1976, Age-related decline in the activities of erythrocyte membrane adenylate cyclase and protein kinase, Arch. Biochem. Biophys. 177: 117–122.PubMedGoogle Scholar
  184. Pfeffer, S. R., and Swislocki, N. I., 1982, Role of peroxidation in erythrocyte aging, Mech. Ageing Dev. 18: 355–367.PubMedGoogle Scholar
  185. Phillips, G. B., Dodge, J. T., and Howe, C., 1969, The effect of aging of human red cells in vivo on their fatty acid composition, Lipids 4: 544–549.PubMedGoogle Scholar
  186. Picot, C., Girot, R., Loutounda, J., Mattlinger, B., Maier-Redelsperger, M., Feo, C., Chevalier, A., and Barritault, L., 1987, Enrichment of blood units with young red cells (neocytes) with the IBM 2991 cell washer, Eur. J. Haematol. 39: 214–220.PubMedGoogle Scholar
  187. Piomelli, S., and Wyss, S. R., 1971, Metabolic death of the red blood cell, Blood 38: 832.Google Scholar
  188. Piomelli, S., Lurinsky, G., and Wasserman, L. R., 1967, The mechanism of red cell aging. I. Relationship between cell age and specific gravity evaluated by ultracentrifugation in a discontinuous density gradient, J. Lab. Clin. Med. 69: 659–674.PubMedGoogle Scholar
  189. Piomelli, S., Seaman, C., Reibman, J., Tytun, A., Graziano, J., Tabachnik, N., and Corash, L., 1978, Separation of younger red cells with improved survival in vivo: An approach to chronic transfusion therapy, Proc. Natl. Acad. Sci. USA 75: 3474–3478.PubMedGoogle Scholar
  190. Platt, D., and Norwig, P., 1980, Biochemical studies of membrane glycoproteins during red cell aging, Mech. Ageing Dev. 14: 119–126.PubMedGoogle Scholar
  191. Powers, H. J., and Thumham, D. I., 1980, Effect of cell age on the malondialdehyde formation in erythrocytes in vitro, Biochem. Soc. Trans. 8: 195–196.PubMedGoogle Scholar
  192. Prankerd, T. A. J., 1958, Ageing of red cells, J. Physiol. (London) 143: 325–331.Google Scholar
  193. Rahman, Y. E., Elson, D. L., and Cerny, E. A., 1973, Studies on the mechanism of erythrocyte aging and destruction. I. Separation of rat erythrocytes according to age by Ficoll gradient centrifugation, Mech. Ageing Dev. 2: 141–150.PubMedGoogle Scholar
  194. Ravindranath, Y., Brohn, F., and Johnson, R. M., 1987, Erythrocyte age-dependent changes of membrane protein 4.1: Studies in transient erythroblastopenia, Pediatr. Res. 21: 275–278.PubMedGoogle Scholar
  195. Rennie, C. M., Thompson, S., Parker, A. C., and Maddy, A., 1979, Human erythrocyte fractionation in “Percoll” density gradients, Clin. Chim. Acta 98: 119–125.PubMedGoogle Scholar
  196. Rice-Evans, C., and Hochstein, P., 1981, Alterations in erythrocyte membrane fluidity by phenylhydrazineinduced peroxidation of lipids, Biochem. Biophys. Res. Commun. 100: 1537–1542.PubMedGoogle Scholar
  197. Rifkind, M., Araki, K., and Hadley, E. C., 1983, The relationship between the osmotic fragility of human erythrocytes and cell age, Arch. Biochem. Biophys. 222: 582–589.PubMedGoogle Scholar
  198. Ripoche, J., and Sim, R. B., 1986, Loss of complement receptor type 1 (CRI) on ageing of erythrocytes. Studies of proteolytic release of the receptor, Biochem. J. 235: 815–821.PubMedGoogle Scholar
  199. Rothstein, M., 1979, The formation of altered enzymes in aging animals, Mech. Ageing Dev. 9: 197–202.PubMedGoogle Scholar
  200. Salvo, G., Caprari, P., Samoggia, P., Mariani, G., and Salvati, A. M., 1982, Human erythrocyte separation according to age on a discontinuous Percoll density gradient, Clin. Chim. Acta 122: 293–300.PubMedGoogle Scholar
  201. Sanderson, R. J., and Bird, K. W., 1977, Separation by counterflow centrifugation, Methods Cell Biol. 15: 1–14.PubMedGoogle Scholar
  202. Sanderson, R. J., Bird, K. E., Palmer, N. F., and Brenman, J., 1976, Design principles for a counterflow centrifugation cell separation chamber, Anal. Biochem. 71: 615–622.PubMedGoogle Scholar
  203. Sass, M. D., Levy, L. M., and Walter, H., 1963, Characteristics of erythrocytes of different ages. II. Enzyme activity and osmotic fragility, Can. J. Biochem. Physiol. 41: 2287–2296.PubMedGoogle Scholar
  204. Sauberman, N., Fortier, N. L., Fairbanks, G. F., O’Connor, R. J., and Snyder, L. M., 1979, Red cell membrane in hemolytic disease. Studies on variables affecting electrophoretic analysis, Biochim. Biophys. Acta 556: 292–313.PubMedGoogle Scholar
  205. Scarpa, M., Rigo, A., Mono, F., Isacchi, G., Novelli, G., and Dallapiccola, B., 1985, Increased rate of superoxide ion generation in Fanconi anemia erythrocytes, Biochem. Biophys. Res. Commun. 130: 127–132.PubMedGoogle Scholar
  206. Schacter, L. P., 1986, Generation of superoxide anion and hydrogen peroxide by erythrocytes from individuals with sickle cell trait or normal hemoglobin, Eur. J. Clin. Invest. 16: 204–210.PubMedGoogle Scholar
  207. Schleicher, E., Scheller, L., and Wieland, D. H., 1981, Quantitation of lysine-bound glucose of normal and diabetic erythrocyte membranes by HPLC analysis of furosine [E-N(L-furoylmethyl)-L-lysinel, Biochem. Biophys. Res. Commun. 99: 1011–1019.PubMedGoogle Scholar
  208. Schlepper-Schäfer, J., Kolb-Bachofen, V., and Kolb, H., 1983, Identification of a receptor for senescent erythrocytes on liver macrophages, Biochem. Biophys. Res. Commun. 115: 551–559.PubMedGoogle Scholar
  209. Schlüter, K., and Drenckhahn, D., 1986, Co-clustering of denatured hemoglobin with band 3: Its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes, Proc. Natl. Acad. Sci. USA 83: 61316141.Google Scholar
  210. Schroit, A. J., Madsen, J. W., and Tanaka, Y., 1985, In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes, J. Biol. Chem. 260: 5131–5138.PubMedGoogle Scholar
  211. Seaman, G.V.F., 1983, Electrochemical properties of the peripheral zone of erythrocytes, Ann. N.Y. Acad. Sci. 416: 176–189.PubMedGoogle Scholar
  212. Seaman, G.V.F., Knox, R. J., Nordt, F. J., and Regan, D. H., 1977, Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes, Blood 50: 1001–1011.PubMedGoogle Scholar
  213. Shalev, O., Leida, M. N., Hebbel, R. P., Jacob, H. S., and Eaton, J. W., 1981, Abnormal erythrocyte calcium homeostasis in oxidant-induced hemolytic disease, Blood 58: 1232–1235.PubMedGoogle Scholar
  214. Shiga, T., Maeda, N., Suda, T., Kon, K., and Sekiya, M., 1979, The decreased membrane fluidity of in vivo aged, human erythrocytes. A spin label study, Biochim. Biophys. Acta 553: 84–95.PubMedGoogle Scholar
  215. Shinozuka, T., Takei, S., and Watanabe H., 1986, Affinity of young and old human erythrocytes for alkylSepharose 6 MB gels, J. Chromatogr. 375: 380–385.PubMedGoogle Scholar
  216. Shinozuka, T., Takei, S., Yanagida, J. I., Watanabe, H., and Ohkuma, S., 1988a, Comparative study on the main membrane-surface sialoglycopeptides released from young and old human erythrocytes with trypsin, Comp. Biochem. Physiol. 89B: 309–315.Google Scholar
  217. Shinozuka, T., Takei, S., Yanagida, J. I., Watanabe, H., and Ohkuma, S., 1988b, Number and distribution density of ABH and MN antigen sites on young and old human erythrocyte surfaces, Life Sci. 43: 683–689.PubMedGoogle Scholar
  218. Shukla, S. D., and Hanahan, D. J., 1981, Identification of domains of phosphatidylcholine in human erythrocyte plasma membranes, J. Biol. Chem. 257: 2908–2911.Google Scholar
  219. Simon, E. R., and Topper, Y. L., 1957, Fractionation of human erythrocytes on the basis of their age, Nature 459: 1211–1212.Google Scholar
  220. Singer, J. A., Jennings, L. K., Jackson, C. W., Dockter, M. E., Morrison, M., and Walker, W. S., 1986, Erythrocyte homeostasis: Antibody-mediated recognition of the senescent state by macrophages, Proc. Natl. Acad. Sci. USA 83: 5498–5501.PubMedGoogle Scholar
  221. Smalley, C. E., and Tucker, E. M., 1983, Blood group A antigen site distribution and immunoglobulin binding in relation to red cell age, Br. J. Haematol. 54: 209–219.PubMedGoogle Scholar
  222. Snyder, L. M., Sauberman, N., Condara, H., Dolan, J., Jacobs, J., Szymanski, I., and Fortier, N. L., 1981, Red cell membrane response to hydrogen-peroxide sensitivity in hereditary xerocytosis and in other abnormal red cells, Br. J. Haematol. 48: 435–444.PubMedGoogle Scholar
  223. Snyder, L. M., Leb, L., Piotrowski, J., Sauberman, N., Liu, S. C., and Fortier, N. L., 1983, Irreversible spectrin—hemoglobin crosslinking in vivo: A marker for red cell senescence, Br. J. Haematol. 53: 379384.Google Scholar
  224. Snyder, L. M., Fairbanks, G., (Piotrowski) Trainor, J., Fortier, N. L., Jacobs, J. B., and Leb, L., 1985, Properties and characterization of vesicles released by young and old human red cells, Br. J. Haematol. 59: 513–522.Google Scholar
  225. Spooner, R. J., Percy, R. A., and Rumley, A. G., 1979, The effect of erythrocyte ageing on some vitamin and mineral dependent enzymes, Clin. Biochem. 12: 289–290.PubMedGoogle Scholar
  226. Sutera, S. P., Gardner, R. A., Boylan, C. W., Carroll, G. L., Chang, K. C., Marvel, J. S., Kilo, C., Gonen, B., and Williamson, J. R., 1985, Age-related changes in deformability of human erythrocytes, Blood 65: 275282.Google Scholar
  227. Suzuki, T., and Dale, G. L., 1987, Biotinylated erythrocytes: In vivo survival and in vitro recovery, Blood 70: 791–795.PubMedGoogle Scholar
  228. Suzuki, T., and Dale, G. L., 1988, Senescent erythrocytes: Isolation of in vivo aged cells and their biochemical characteristics, Proc. Natl. Acad. Sci. USA 85: 1647–1651.PubMedGoogle Scholar
  229. Takeshita, M., Tamura, M., Yubisui, T., and Yoneyama, Y., 1983, Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: Relation to the increased methemoglobin content, J. Biochem. 93: 931–934.PubMedGoogle Scholar
  230. Takeuchi, N., Shishino, K., Bando, S., Murase, M., Go, S., and Uchida, K., 1985, Aging change of riboflavin concentration and glutathione reductase activity in erythrocytes, Arch. Gerontol. Geriatr. 4: 205–210.PubMedGoogle Scholar
  231. Tanaka, Y., and Schroit, A. J., 1983, Insertion of a fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages, J. Biol. Chem. 258: 11335–113343.Google Scholar
  232. Teitel, P., 1977, Basic principles of the filterability test and analysis of erythrocyte flow behaviour, Blood Cells 3: 55–70.Google Scholar
  233. ten Brinke, M., and de Regt, J., 1970, 51Cr-half life time of heavy and light human erythrocytes, Scand. J. Hematol. 7: 36–41.Google Scholar
  234. Tillman, W., Levin, C., Prindull, G., and Schröter, W., 1980, Rheological properties of young and aged human erythrocytes, Klin. Wochenschr. 58: 569–574.Google Scholar
  235. Todd, C., and White, R. G., 1911, On the fate of red blood corpuscles when injected into the circulation of an animal of the same species: With a new method for the determination of the total volume of blood, Proc. R. Soc. London Ser. B 84: 255–259.Google Scholar
  236. Tosteson, D. C., Carlsen, E., and Dunham, E. T., 1955, The effect of sickling on ion transport. I. Effect of sickling on potassium transport, J. Gen. Physiol. 39: 31–53.PubMedGoogle Scholar
  237. Turner, B. M., Fisher, R. A., and Harris, H., 1974, The stage related loss of activity of four enzymes in the human erythrocyte, Clin. Chim. Acta 50: 85–95.PubMedGoogle Scholar
  238. Usami, S., Chein, S., and Gregersen, M. I., 1971, Viscometric behaviour of young and aged erythrocytes, in: Theoretical and Clinical Hemorheology ( H. H. Hartert and A. L. Copley, eds.), pp. 266–270, Springer, Berlin.Google Scholar
  239. van der Vegt, S. G. L., Ruben, A. M. T., Werre, J. M., de Gier, J., and Staal, G. E. J., 1985a, Membrane characteristics and osmotic fragility of red cells, fractionated with anglehead centrifugation and counterflow centrifugation, Br. J. Haematol. 61: 405–413.PubMedGoogle Scholar
  240. van der Vegt, S. G. L., Ruben, A. M. T., Werre, J. M., Palsma, D. M. H., Verhofen, C. W., de Gier, J., and Staal, G. E. J., 1985b, Counterflow centrifugation of red cell populations: A cell age related separation technique, Br. J. Haematol. 61: 393–403.PubMedGoogle Scholar
  241. van Gastel, C., van den Berg, D., de Gier, J., and van Deenen, L. L. M., 1965, Some lipid characteristics of normal red blood cells of different age, Br. J. Haematol. 11: 193–199.PubMedGoogle Scholar
  242. van Oss, C. J., 1982, Shape of aging erythrocytes, Biorheology 19: 725.Google Scholar
  243. Vaysse, J., Gattegno, L., Bladier, D., and Aminoff, D., 1986, Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by beta-galactosyl derivatives, Proc. Natl. Acad. Sci. USA 83: 1339–1343.PubMedGoogle Scholar
  244. Vaysse, J., Vassy, R., Eclache, V., Bladier, D., Gattegno, L., and Pilardeau, P., 1988a, Does red blood cell size correlate with red blood cell age in mouse? Mech. Ageing Dev. 44: 265–276.PubMedGoogle Scholar
  245. Vaysse, J., Vassy, R., Eclache, V., Gattegno, L., Bladier, D., and Pilardeau, P., 19886, Some characteristics of human red blood cells separated according to their size: A comparison with density-fractionated red blood cells, Am. J. Hematol. 28: 232–238.Google Scholar
  246. Vettore, L., de Matteis, M. C., and Zampini, P., 1980, A new density gradient system for the separation of human red blood cells, Am. J. Hematol. 8: 291–297.PubMedGoogle Scholar
  247. Vlassara, H., Valinsky, J., Brownlee, M., Cerami, C., Nishimoto, S., and Cerami, A., 1987, Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turnover of aging cells, J. Exp. Med. 166: 539–549.PubMedGoogle Scholar
  248. Walls, R., Kumar, K. S., and Hochstein, P., 1976, Aging of human erythrocytes. Differential sensitivity of young and old erythrocytes to hemolysis induced by peroxide in the presence of thyroxine, Arch. Biochem. Biophys. 174: 463–468.PubMedGoogle Scholar
  249. Walter, H., and Krob, E. J., 1983, Detection of surface differences between two closely related cell populations by partitioning isotopically labeled mixed cell populations in two-polymer aqueous phases. I. Human red blood cell subpopulations, Cell Biophys. 5: 301–306.PubMedGoogle Scholar
  250. Walter, H., Krob, E. J., and Ascher, G. S., 1981, Aging of erythrocytes results in altered red cell surface properties in the rat, but not in the human. Studies by partitioning in two-polymer aqueous phase systems, Biochim. Biophys. Acta 641: 202–215.PubMedGoogle Scholar
  251. Walter, H., Tamblyn, C. H., Krob, E. J., and Seaman, G. V. F., 1983, The effect of neuraminidase on the relative surface charge-associated properties of rat red blood cells of different ages, Biochim. Biophys. Acta 734: 368–372.PubMedGoogle Scholar
  252. Warth, J. A., Brewer, G. J., Gnegy, M. E., Treisman, G., and Near, K., 1983, Calmodulin level in whole blood correlates with the percentage of reticulocytes, Am. J. Hematol. 15: 153–157.PubMedGoogle Scholar
  253. Weed, R. I., 1970, The importance of erythrocyte deformability, Am. J. Med. 49: 147–150.PubMedGoogle Scholar
  254. Weed, R. I., and Reed, C. F., 1966, Membrane alterations leading to red cell destruction, Am. J. Med. 41: 68 1698.Google Scholar
  255. Weed, R. I., LaCelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795–809.Google Scholar
  256. Westerman, M. P., Pierce, L. E., and Jensen, W. N., 1963, Erythrocyte lipids: A comparison of normal ytung and normal old populations, J. Lab. Clin. Med. 62: 394–400.PubMedGoogle Scholar
  257. Wiener, A. S., 1942, Hemolytic transfusion reactions. I. Diagnosis, with special reference to the method of differential agglutination, Am. J. Clin. Pathol. 12: 189–199.Google Scholar
  258. Williams, A. R., and Morris, D. R., 1980, The internal viscosity of the human erythrocyte may determine its lifespan in vivo, Scand. J. Haematol. 24: 57–62.PubMedGoogle Scholar
  259. Williamson, J. R., Gardner, R. A., Boylan, C. W., Carroll, G. L., Chang, K. I., Marvel, J. S., Gonen, B., Kilo, C.. Tran-Son-Tay, R., and Sutera, S. P., 1985, Microrheologic investigation of erythrocyte deformability in diabetes mellitus, Blood 65: 283–288.PubMedGoogle Scholar
  260. Wilson, C., and Peterson, S. W., 1986, Insulin receptor processing as a function of erythrocyte age. A kinetic model for down-regulation, J. Biol. Chem. 261: 2123–2128.PubMedGoogle Scholar
  261. Wilton, A., 1966, An attempt to separate erythrocytes according to age by a new type of centrifuge, Acta Haematol. 35: 163–175.Google Scholar
  262. Winterboum, C. C., and Batt, R. D., 1970, Lipid composition of human red cells of different ages, Biochim. Biophys. Acta 202: 1–8.Google Scholar
  263. Yaari, A., 1969, Mobility of human red blood cells of different age groups in an electric field, Blood 33: 159163.Google Scholar
  264. Yamaguchi, T., Fujita, Y., Kuroki, S., Ohtsuka, K., and Kimoto, E., 1983, A study on the reaction of human erythrocytes with hydrogen peroxide, J. Biochem. 94: 379–386.PubMedGoogle Scholar
  265. Zanner, M. A., and Galey, W. R., 1985, Aged human erythrocytes exhibit increased anion exchange, Biochim. Biophys. Acta 818: 310–315.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Grzegorz Bartosz
    • 1
  1. 1.Laboratory of Biophysics of Development and Aging, Department of BiophysicsUniversity of LodzLodzPoland

Personalised recommendations