Skip to main content

Erythrocyte Membrane Changes during Aging in Vivo

  • Chapter

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 1))

Abstract

The mammalian red blood cell is a specific but interesting object for research on aging. Devoid of a nucleus and other intracellular organelles, it lacks transcriptional and translational machinery. Although studies of this cell obviously cannot yield direct information on the DNA control of cellular aging, they do allow us to follow cell-age-related modifications of intracellular proteins and of the plasma membrane without the interference of the repair processes to the exchange of damaged macromolecules. Thus, the red blood cell is an ideal model for studies of membrane and protein aging in their natural cellular environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, E. C., Taylor, J. F., and Lang, C. A., 1978, Influence of mouse age and erythrocyte age on glutathione metabolism, Biochem. J. 174: 819–825.

    PubMed  CAS  Google Scholar 

  • Alderman, E. M., Fudenberg, H. H., and Lovins, R. E., 1980, Binding of immunoglobulin classes to subpopulations of human red blood cells separated by density-gradient centrifugation, Blood 55: 817–822.

    PubMed  CAS  Google Scholar 

  • Allison, A. C., 1960, Turnover of erythrocytes and plasma proteins in mammals, Nature 180: 37–40.

    Google Scholar 

  • Aminoff, D., 1988, The role of sialoglycoconjugates in the aging and sequestration of red cells from circulation, Blood Cells 14: 229–247.

    PubMed  CAS  Google Scholar 

  • Aminoff, D., Ghalambor, M. A., and Heinrich, C. J., 1981, GOST, galactose oxidase and sialyl transferase, substrate and receptor sites in erythrocyte senescence, in: Erythrocyte Membranes. 2. Recent Clinical and Experimental Advances (W. C. Kruckenberg, J. W. Eaton, and G. J. Brewers, eds.), pp. 267–278, Liss, New York.

    Google Scholar 

  • Ashby, W., 1919, The determination of the length of life of transfused blood corpuscles in man, J. Exp. Med. 29: 267–281.

    PubMed  CAS  Google Scholar 

  • Au, K. S., and Chan, K. C., 1983, Variations in (Ca2+Mg2+)_ATPase, its inhibitor protein and calmodulin of density (age) separated rabbit erythrocytes, Biochim. Biophys. Acta 761: 291–295.

    PubMed  CAS  Google Scholar 

  • Barber, J. R., and Clarke, S., 1983, Membrane protein carboxyl methylation increases with human erythrocyte age, J. Biol. Chem. 258: 1189–1196.

    PubMed  CAS  Google Scholar 

  • Bartos, H. R., and Desforges, J. F., 1967, Enzymes as erythrocyte age reference standards, Am. J. Med. Sci. 254: 862–865.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., 1981a, Non-specific reactions: Molecular basis for ageing, J. Theor. Biol. 91:233–235. Bartosz, G., 1981b, Aging of the erythrocyte. IV. Spin-label studies of membrane lipid, proteins and permeability, Biochim. Biophys. Acta 644: 69–73.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., 1981c, Aging of the erythrocyte. VIII. Sensitivity to oxidant factors, Acta Biol. Med. Ger. 40: 985989.

    Google Scholar 

  • Bartosz, G., 1981d, Bovine erythrocyte membrane: Does not act as a molecular sieve or allow for hemolytic fractionation of red cells according to age, Comp. Biochem. Physiol. 68A: 273–275.

    Google Scholar 

  • Bartosz, G., 1982a, Aging of the erythrocyte. XI. Membrane glycosylation, Biochem. Med. 27: 398–400.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., 1982b, Aging of the erythrocyte. XV. Isoosmotic lysis times, Experientia 38: 1484–1485.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., and Bartkowiak, A., 1981, Aging of the erythrocyte. II. Activities of peroxide-detoxifying enzymes, Experientia 37: 722.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., Tannert, C., Fried, R., and Leyko, W., 1978, Superoxide dismutase activity decreases during erythrocyte aging, Experientia 34: 1464.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., Swiercznski, B., and Gondko, R., 1981a, Aging of the erythrocyte. III. Cation content, Experientia 37: 723.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., Szabo, G., Szöllösi, J., Szöllösi, J., and Damjanovich, S., 1981b, Aging of the erythrocyte. IX. Fluorescence studies on changes in membrane properties, Mech. Ageing Dev. 16: 265–274.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., Soszynski, M., and Wasilewski, A., 1982a, Aging of the erythrocyte, XIX. Composition of membrane proteins, Mech. Ageing Dev. 19: 45–52.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., Soszynski, M., and Wasilewski, A., 1982b, Aging of the erythrocyte. XVII. Binding of autologous immunoglobulin G, Mech. Ageing Dev. 20: 223–232.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., Grzelinska, E., and Bartkowiak, A., 1984, Aging of the erythrocyte. XIX. Decrease in surface charge density of bovine erythrocytes, Mech. Ageing Dev. 24: 1–7.

    PubMed  CAS  Google Scholar 

  • Bartosz, G., Christ, G., Bosse, H., Stephan, R., and Gärtner, H., 1987a, Thermal lability of membrane proteins of age separated erythrocytes as studied by electron spin resonance spin label technique, Z. Naturforsch. 42C: 1343–1344.

    CAS  Google Scholar 

  • Bartosz, G., Gaczynka, M., Grzelinska, E., Soszynski, M., Michalak, W., and Gondko, R., 1987b, Aged erythrocytes exhibit decreased anion exchange, Mech. Ageing. Dev. 39: 245–250.

    PubMed  CAS  Google Scholar 

  • Baumann, G., and MacCart, J. G., 1984, Kinetics of cell age-dependent decline of insulin receptors in human red cells, Am. J. Physiol. 247: E667 — E674.

    PubMed  CAS  Google Scholar 

  • Baustad, B., and Nafstad, I., 1972, Haematological response to vitamin E in piglets, Br. J. Nutr. 28: 183–191.

    CAS  Google Scholar 

  • Baxter, A., and Beeley, J. G., 1978, Surface carbohydrates of aged erythrocytes, Biochem. Biophys. Res. Commun. 83: 466–471.

    PubMed  CAS  Google Scholar 

  • Bennett, G. D., and Kay, M. M. B., 1981. Homeostatic removal of senescent murine erythrocytes by splenic macrophages, Exp. Hematol. 9: 297–307.

    PubMed  CAS  Google Scholar 

  • Berkowitz, L. R., Walstad, D., and Orringer, E. P., 1987, Effect of N-ethylmaleimide on K transport in density-separated human red blood cells, Am. J. Physiol. 253: C7 - C12.

    PubMed  CAS  Google Scholar 

  • Bernstein, R. E., 1959, Alterations in metabolic energetics and cation transport during aging of red cells, J. Clin. Invest. 38: 1572–1586.

    PubMed  CAS  Google Scholar 

  • Beutler, E., 1985a, How do red cell enzymes age? A new perspective, Br. J. Haematol. 61: 377–384.

    PubMed  CAS  Google Scholar 

  • Beutler, E., 1985b, Biphasic loss of red cell enzyme activity during in vivo ageing, in: Cellular and Molecular Aspects of Ageing: The Red Cell as a Model ( Beutler, E., eds.), pp. 317–329, New York.

    Google Scholar 

  • Bialas, W. A., 1984, Alteration of Cl-transport in erythrocytes from patients with Huntington’s disease, Gen. Physiol. Biophys. 3: 403–411.

    PubMed  CAS  Google Scholar 

  • Bishop, C., and Prentice, T. C., 1966, Separation of rabbit red cells by density in a bovine serum albumin gradient and correlation of red cell density with cell age after in vivo labeling with 59Fe, J. Cell. Physiol. 67: 197–207.

    PubMed  CAS  Google Scholar 

  • Bladier, D., Gattegno, L., Fabia, F., Perret, G., and Comillot, P., 1980, Individual variations of the seven car- bohydrate components of human erythrocyte membrane during aging in vivo, Carbohydr. Res. 83: 371–376.

    PubMed  CAS  Google Scholar 

  • Bladier, D., Vassy, R., Perret, G., Gattegno, L., and Cornillot, P., 1984, Evidence for the participation of glycoconjugates in the recognition of human old red blood cells by autologous macrophages, IRCS Med. Sci. 12: 889–890.

    CAS  Google Scholar 

  • Bookchin, R. M., Roth, E. F., Jr., and Lew, V. L., 1985, Near-normal circulatory survival of rabbit red cells exposed to high levels of Ca and iconophore in vitro, Blood 66: 220–223.

    PubMed  CAS  Google Scholar 

  • Boorman, K. E., Dodd, B. E., and Mollison, P. L., 1942, The clinical significance of the Rh factor Br. Med. J. 2 :535–538, 569–572.

    Google Scholar 

  • Borochov, H., and Shinitzky, M., 1976, Vertical displacement of membrane proteins mediated by changes in microviscosity, Proc. Natl. Acad. Sci. USA 73: 4526–4530.

    PubMed  CAS  Google Scholar 

  • Borun, R. E., 1964, Some differences in erythrocyte composition and uptake of radioactive potassium, sodium, chromate and triiodothyronine associated with in vivo aging, J. Lab. Clin. Med. 62: 263–278.

    Google Scholar 

  • Bosman, G.J.C.G.M., and Kay, M.M.B., 1988, Erythrocyte aging: A comparison of model systems for simulating cellular aging in vitro, Blood Cells 14: 19–35.

    PubMed  CAS  Google Scholar 

  • Botscharova, L., 1973, Eine Methode zur Berechnung des Sedimentationsverhaltens von Partiken in linearen Dextran-Dichtegradienten and ihre Anwendung aut die Trennung roter Blutzellen nach der Sedimentationsgeschwindigkeit, Acta Biol. Med. Ger. 30: 1–12.

    Google Scholar 

  • Braasch, D., 1971, Red cell deformability and capillary blood flow, Physiol. Rev. 51: 679–701.

    Google Scholar 

  • Bracey, A. M., and McFarland, F., 1984, Harvest of young red cells on an automated cell separator Transfusion 24 :330–332.

    Google Scholar 

  • Branch, D. R., Sy Siok Hian, A. L., Carlson, F., Maslow, W. C., and Petz, L. D., 1983, Erythrocyte age-fractionation using a PercollT“—Renographin’ density gradient: Application to autologous red cell antigen determinations in recently transfused patients, Am. J. Clin. Pathol. 80: 453–458.

    PubMed  CAS  Google Scholar 

  • Brewer, G. J., Mueller, G. A., Brewer, L. F., and Dick, R. D., 1985, A search for the primary biochemical effect of the Dpg gene; does this gene influence cellular aging? in: Cellular and Molecular Aspects of Ageing: The Red Cell as a Model (J. W. Eaton, D. K. Konzen, and J. G. White, eds.), pp. 403–426. Liss, New York.

    Google Scholar 

  • Brok, F., Ramot, B., Zwang, E., and Danon, D., 1966, Enzyme activities in human blood cells of different age groups, Isr. J. Med. Sci. 2: 291–296.

    PubMed  CAS  Google Scholar 

  • Brovelli, A., Seppi, C., Pallavicini, G., and Balduini, C., 1983, Membrane processes during “in vivo” aging of human erythrocytes, Biomed. Biochim. Acta 42: S122 — S126.

    PubMed  CAS  Google Scholar 

  • Brunauer, L. S., and Clarke, S., 1986, Age-dependent accumulation of protein residues which can be hydrolyzed to D-aspartic acid in human erythrocytes J. Biol. Chem. 261 :12538–12543.

    Google Scholar 

  • Carrell, R. W., Winterbourn, C. C., and Rachmilewitz, E. A., 1975, Activated oxygen and haemolysis Br. J. Haematol. 30 :259–264.

    Google Scholar 

  • Chalfin, D., 1956, Differences between young and mature rabbit erythrocytes, J. Cell. Comp. Physiol. 47: 215239.

    Google Scholar 

  • Chapman, R. G., and Schaumburg, L., 1967, Glycolysis and glycolytic enzyme activity of aging red cells in man, Br. J. Haematol. 13: 665–678.

    PubMed  CAS  Google Scholar 

  • Clark, M. R., 1985, Selected ionic and metabolic characteristics of human red cell populations separated on Stractan density gradients, in: Cellular and Molecular Aspects of Ageing: The Red Cell as a Model (J. W.

    Google Scholar 

  • Eaton, D. K. Konzen, and J. G. White, eds.), pp. 381–386, Liss, New York.

    Google Scholar 

  • Clark, M. R., 1986, Why does the normal red cell die? Blood Cells 12: 99–102.

    PubMed  CAS  Google Scholar 

  • Clark, M. R., 1988, Senescence of red blood cells: Progress and problems Physiol. Rev. 68:503–554.

    Google Scholar 

  • Clark, M. R., Mohandas, N., and Shohet, S. B., 1983, Osmotic gradient ektacytometry: Comprehensive characterization of red cell volume and surface maintenance Blood 61 :899–910.

    Google Scholar 

  • Cohen, N. S., Eckholm, J. E., Luthra, M. G., and Hanahan, D. J., 1976, Biochemical characterization of density-separated human erythrocytes, Biochim. Biophys. Acta 419: 229–242.

    PubMed  CAS  Google Scholar 

  • Corash, L. M., Piomelli, S., Chen, H. C., Seaman, G. V. F., and Gross, E., 1974, Separation of erythrocytes according to age on a simplified density gradient J. Lab. Clin. Med. 84 :147–151.

    Google Scholar 

  • Corry, W. D., and Meiselman, H. J., 1978, Centrifugal method of determining red cell deformability Blood 51:693–701.

    Google Scholar 

  • Cruz, W. O., Hahn, P. F., Bale, W. F., and Balfour, W. M., 1941, The effect of age on the susceptibility of the erythrocyte to hypotonie salt solutions, Am. J. Med. Sci. 202: 157–163.

    CAS  Google Scholar 

  • Czerwinski, M., Wasniowska, K., Steuden, I., Duk, M., Wiedlocha, A., and Lisowska, E., 1988, Degradation of the human erythrocyte membrane band 3 studied with the monoclonal antibody directed against an epitope on the cytoplasmic fragment of band 3, Eur. J. Biochem. 174: 647–654.

    Google Scholar 

  • Danon, D., 1968, Reversible deformability and mechanical fragility as a function of red cell age, in: Hemorheology ( A. L. Copley, ed.), pp. 497–504, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Danon, D., and Marikovsky, Y., 1961, Difference de charge electrique de surface entre erythrocytes jeunes et ages, C. R. Acad. Sci. 253: 1271–1272.

    Google Scholar 

  • Danon, D., and Marikovsky, Y., 1964, Determination of density distribution of red cell population, J. Lab. Clin. Med. 64: 668–674.

    PubMed  CAS  Google Scholar 

  • Danon, D., and Marikovsky, Y., 1988, The aging of the red blood cell. A multifactor process, Blood Cells 14: 715.

    Google Scholar 

  • Danon, D., Marikovsky, Y., and Skutelsky, E., 1971, The sequestration of old red cells and expulsed nuclei, in: Red Cell Structure and Metabolism ( B. Ramot, ed.), pp. 23–38, Academic Press, New York.

    Google Scholar 

  • Danon, D., Goldstein, L., Marikovsky, Y., and Skutelsky, E., 1972, Use of cationized ferritin as label of negative charges on cell surfaces, J. Ultrastruct. Res. 38: 500–510.

    PubMed  CAS  Google Scholar 

  • Dhermy, D., Simeon, J., Wautier, M.-P., Boivin, P., and Wautier, J.-L., 1987, Role of membrane sialic acid content in the adhesiveness of aged erythrocytes to human cultured endothelial cells, Biochim. Biophys. Acta 904: 201–206.

    PubMed  CAS  Google Scholar 

  • Dons, R. F., Corash, L. M., and Gorden, P., 1981, The insulin receptor is an age-dependent integral component of the human erythrocyte membrane, J. Biol. Chem. 256: 2982–2987.

    PubMed  CAS  Google Scholar 

  • Drenckhahn, D., 1988, Removal of old and abnormal red blood cells from circulation: Mechanical and immunologic mechanism, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 62–76, Springer, Berlin.

    Google Scholar 

  • Dumaswala, U. J., and Greenwalt, T. J., 1984, Human erythrocytes shed exocytic vesicles in vivo, Transfusion 24: 490–492.

    PubMed  CAS  Google Scholar 

  • Ekholm, J. E., Shukla, S. D., and Hanahan, D. J., 1981, Change in cytosolic calmodulin activity of density (age) separated human erythrocytes towards membrane Ca2+Mg2+ATPase, Biochem. Biophys. Res. Commun. 103: 407–413.

    PubMed  CAS  Google Scholar 

  • Fairbanks, G., Palek, J., Dino, J. E., and Liu, P. A., 1983, Protein kinase and membrane protein phosphorylation in normal and abnormal human erythrocytes: Variation related to mean cell age, Blood 61: 850–857.

    PubMed  CAS  Google Scholar 

  • Farrell, P. M., Bieri, J. G., Fratantoni, J. F., Wood, R. E., and di Sant’Agnese, P. A., 1977, The occurrence and effects of human vitamin E deficiency. A study in patients with cystic fibrosis, J. Clin. Invest. 60: 233241.

    Google Scholar 

  • Fischbeck, K. H., Bonilla, E., and Schotland, D. L., 1982, Freeze-fracture characterization of “young” and “old” human erythrocytes, Biochim. Biophys. Acta 685: 207–210.

    PubMed  CAS  Google Scholar 

  • Fornaini, G., 1967, Biochemical modifications during the life span of the erythrocyte, Ital. J. Biochem. 16: 258301.

    Google Scholar 

  • Fornaini, G., Dacha, M., Fazi, A., Gargano, M., and Schiavo, E., 1970, Relationship between age and properties of human erythrocyte glutathione reductase, Ital. J. Biochem. 19: 345–360.

    PubMed  CAS  Google Scholar 

  • Freedman, J., 1984, Membrane-bound immunoglobulins and complement components on young and old red cells, Transfusion 24: 477–481.

    PubMed  CAS  Google Scholar 

  • Gaczynska, M., and Bartosz, G., 1986, Crosslinking of membrane proteins during erythrocyte ageing, Int. J. Biochem. 18: 377–382.

    PubMed  CAS  Google Scholar 

  • Gaczynska, M., Rosin, J., Soszynski, M., and Bartosz, G., 1986, Proteolytic susceptibility of membrane proteins during erythrocyte aging, Mech. Ageing Dev. 35: 109–121.

    PubMed  CAS  Google Scholar 

  • Galbraith, D. A., and Watts, D. C., 1980, Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll—Triosil gradients. Comparison of normal humans with Duchenne muscular dystrophy, Biochem. J. 191: 63–70.

    PubMed  CAS  Google Scholar 

  • Galbraith, D. A., and Watts, D. C., 1981, Human erythrocyte acetyl cholinesterase in relation to cell age, Biochem. J. 195: 221–228.

    PubMed  CAS  Google Scholar 

  • Galili, U., Korkesh, A., Kahane, I., and Rachmilewitz, E. A., 1983, Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells. Blood 61:1258–1264:

    Google Scholar 

  • Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I., 1984, A unique natural human IgG antibody with anti-alpha-galactosyl specificity, J. Exp. Med. 160: 1519–1531.

    PubMed  CAS  Google Scholar 

  • Ganzoni, A. M., Oakes, R., and Hillman, R. S., 1971, Red cell aging in vivo, J. Clin. Inv. Med. 50: 1373 1378.

    Google Scholar 

  • Ganzoni, A. M., Barras, P., and Mart, H. R., 1976, Red cell ageing and death, Vox Sang, 30: 161–174.

    PubMed  CAS  Google Scholar 

  • Gardos, G., 1959, The role of calcium in the potassium permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 15: 121–125.

    CAS  Google Scholar 

  • Gattegno, L., Bladier, D., and Cornillot, P., 1975, Ageing in vivo and neuraminidase treatment of rabbit erythrocytes: influence on half-life as assessed by 51Cr labelling, Hoppe-Seyler’s Z. Physiol. Chem. 356: 391–397.

    PubMed  CAS  Google Scholar 

  • Gattegno, L., Bladier, D., Gamier, M., and Comillot, P., 1976, Changes in carbohydrate content of surface membranes of human erythrocytes during ageing, Carbohydr. Res. 52: 197–208.

    PubMed  CAS  Google Scholar 

  • Gattegno, L., Perret, G., Fabia, F., Bladier, D., and Comillot, P., 1981a, In vivo ageing of human erythrocytes and cell-surface labeling by D-galactose oxidase and sodium borotritide, Carbohydr. Res. 95: 283–290.

    PubMed  CAS  Google Scholar 

  • Gattegno, L., Perret, G., Fabia, F., and Comillot, P., 1981b, Decrease of carbohydrate in membrane glycoproteins during human erythrocyte ageing in vivo, Mech. Ageing Dev. 16: 205–219.

    PubMed  CAS  Google Scholar 

  • Gear, A. R. L., 1977, Age-dependent separation of erythrocyte by preparative electrophoresis, J. Lab. Clin. Med. 90: 744–753.

    PubMed  CAS  Google Scholar 

  • Gershon, D., Glass, G. A., and Gershon, H., 1988, The effect of host and cell age on the rat erythrocyte: Biochemical aspects, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 42–50, Springer, Berlin. Glass

    Google Scholar 

  • G. A., and Gershon, D., 1981, Enzymatic changes in rat erythrocytes with increasing cell and donor age: Loss of superoxide dismutase activity associated with increases in catalytically defective forms, Biochem. Biophys. Res. Commun. 103: 1245–1253.

    Google Scholar 

  • Glass, G. A., Gershon, H., and Gershon, D., 1983, The effect of donor and cell age on several characteristics of rat erythrocytes, Exp. Hematol. 11: 987–995.

    PubMed  CAS  Google Scholar 

  • Goebel, K. M., and Lanser, K. G., 1983, Biorheological and metabolic dysfunctions of density-fractionated erythrocytes in diabetics with peripheral vascular disease, Biomed. Biochim. Acta 42: 102–106.

    Google Scholar 

  • Green, G. A., Rehn, M. M., and Kalra, W. K., 1985, Cell-bound autologous immunoglobulin in erythrocyte subpopulations from patients with sickle cell disease, Blood 65: 1127–1133.

    PubMed  CAS  Google Scholar 

  • Greenwalt, T. J., and Dumaswala, U. J., 1988, Effect of red cell age on vesiculation in vitro, Br. J. Haematol. 68: 465–467.

    PubMed  CAS  Google Scholar 

  • Greenwalt, T. J., Steane, E. A., and Pine, N. E., 1971, Changes in erythrocyte surface antigens with aging in vivo, in: Glycoproteins of Blood Cells and Plasma ( G. A. Jamieson and T. J. Greenwalt, eds.), pp. 235–244, Lippincott, Philadelphia.

    Google Scholar 

  • Greenwalt, T. J., Steane, E. A., Lau, F. O., and Sweeney-Hammond, K., 1980, Aging of the human erythrocyte, in: Immunobiology of the Erythrocyte ( S. G. Sandler, J. Nusbacher, and M. S. Schanfield, eds.), pp. 195–212, Liss, New York.

    Google Scholar 

  • Gross, J., Staak, R., and Syllm-Rapoport, I., 1978, Veränderungen der anorganischen Pyrophosphatase während Reifung and Altem von roten Blutzellen des Neugeborenen, Acta Biol. Med. Ger. 37: 403–408.

    PubMed  CAS  Google Scholar 

  • Grzelinska, E., and Bartosz, G., 1988, Membrane potential decreases during erythrocyte aging, Cell Biol. Int. Rep. 12: 497.

    PubMed  CAS  Google Scholar 

  • Grzelinska, E., and Bartosz, G., 1989, Effect of cell age on the quenching of erythrocyte membrane protein fluorescence, Cytobios 57: 149–154.

    PubMed  CAS  Google Scholar 

  • Grzelinska, E., Bartosz, G., and Bartkowiak, A., 1983, Aging of the erythrocyte. XVIII. Changes in kinetic properties of acetylcholinesterase, Enzyme 30: 95–98.

    PubMed  CAS  Google Scholar 

  • Halbhuber, K.-J., Linss, W., Zimmermann, N., Oehring, H., and Pätzold, L., 1986, Cytochemical and cell-biological investigations of the signal function of the erythrocyte plasmalemma—The membrane structure as code for cell life span, Acta Histochem. 33: S23 — S44.

    Google Scholar 

  • Hall, A. C., and Ellory, J. C., 1986, Evidence for the presence of volume-sensitive KCl transport in “young” human red cells, Biochim. Biophys. Acta 858: 317–320.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1986, Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts, Arch. Biochem. Biophys. 246: 501–514.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. J., and Ekholm, J. E., 1978, The expression of optimum ATPase activities in human erythrocytes. A comparison of different lytic procedures, Arch. Biochem. Biophys. 187: 170–179.

    PubMed  CAS  Google Scholar 

  • Harm, W., and Deamer, D. W., 1977, Altered potassium permeability in vitamin E-deficient rat erythrocytes, Physiol. Chem. Phys. 9: 501–512.

    PubMed  CAS  Google Scholar 

  • Hebbel, R. P., 1986, Autoxidation and the sickle erythrocyte membrane: A possible model of iron decompartmentalization, in: Free Radicals, Aging, and Degenerative Diseases, pp. 395–424, Liss, New York.

    Google Scholar 

  • Hebbel, R. P., Eaton, J. W., Balasingam, M., and Steinberg, M. H., 1982, Spontaneous oxygen radical generation by sickle erythrocytes, J. Clin. Invest. 70: 1253–1259.

    PubMed  CAS  Google Scholar 

  • Hentschel, W. M., Wu, L. L., Tobin, G. O., Anstall, H. B., Smith, J. B., Williams, R. R., and Ash, K. O., 1986, Erythrocyte cation transport activities as a function of cell age, Clin. Chim. Acta 157: 33–44.

    PubMed  CAS  Google Scholar 

  • Hoffman, J. F., 1958, On the relationship of certain erythrocyte characteristics to their physiological age, J. Cell. Comp. Physiol. 51: 415–423.

    Google Scholar 

  • Inaba, M., and Maede, Y., 1988, Correlation between protein 4.1a14.lb ratio and erythrocyte life span, Biochim. Biophys. Acta 944: 256–264.

    CAS  Google Scholar 

  • Jain, S. K., 1988, Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes, Biochim. Biophys. Acta 937: 205–210.

    PubMed  CAS  Google Scholar 

  • Jain, S. K., and Hochstein, P., 1980, Polymerization of membrane components in aging red blood cells, Biochem. Biophys. Res. Commun. 92: 247–254.

    PubMed  CAS  Google Scholar 

  • Jain, S. K., Mohandas, N., Clark, M. R., and Shohet, S. B., 1983, The effect of malonyldialdehyde, a product of lipid peroxidation on the deformability, dehydration and 51Cr-survival of erythrocytes, Br. J. Haematol. 53: 247–255.

    PubMed  CAS  Google Scholar 

  • Jancik, J., and Schauer, R., 1974, Sialic acid—a determinant of the life-time of erythrocytes, Hoppe-Seyler’s Z. Physiol. Chem. 355: 395–400.

    PubMed  CAS  Google Scholar 

  • Joiner, C. H., and Lauf, P. K., 1978, Ouabain binding and potassium transport in young and old populations of human red cells, Membr. Biochem. 1: 187–202.

    PubMed  CAS  Google Scholar 

  • Juckett, D. A., and Rosenberg, B., 1982, The kinetics and thermodynamics of lysis of young and old sheep red blood cells, Mech. Ageing Dev. 18: 33–45.

    PubMed  CAS  Google Scholar 

  • Kadlubowski, M., 1979, The effect of in vivo aging of the human erythrocyte on the protein of the plasma membrane: A characterization, Int. J. Biochem. 9: 67–88.

    Google Scholar 

  • Kadlubowski, M., and Agutter, P. S., 1977, Changes in the activities of some membrane-associated enzymes during in vivo ageing of the normal human erythrocyte, Br. J. Haematol. 37: 111–125.

    PubMed  CAS  Google Scholar 

  • Kamber, E., Poyiagi, A., and Deliconstantinos, G., 1984, Modifications in the activity of membrane-bound enzymes during in vivo ageing of human and rabbit erythrocytes, Comp. Biochem. Physiol. 77B: 9599.

    Google Scholar 

  • Katsumoto, Y., Tanaka, F., Hagihara, M., and Yagi, K., 1977, Changes in membrane fluidity of erythrocytes during cell maturation, Biochem. Biophys. Res. Commun. 78: 609–614.

    Google Scholar 

  • Kay, M.M.B., 1978, Role of physiologic autoantibody in the removal of senescent human red cells, J. Supramol. Struct. 9: 555–567.

    PubMed  CAS  Google Scholar 

  • Kay, M.M.B., 1984a, Localization of senescent cell antigen on band 3, Proc. Natl. Acad. Sci. USA 81: 57535757.

    Google Scholar 

  • Kay, M.M.B., 1984b, Band 3, the predominant transmembrane polypeptide, undergoes proteolytic degradation as cells age, Monogr. Dev. Biol. 17: 245–253.

    PubMed  CAS  Google Scholar 

  • Kay, M.M.B., Goodman, S., Whitfield, C., Wong, P., Zaki, L., and Rudloff, V., 1984, The senescent cell antigen is immunologically related to band 3, Proc. Natl. Acad. Sci. USA 80: 1631–1635.

    Google Scholar 

  • Kay, M.M.B., Bosman, G.J.C.G.M., Shapiro, S. S., Bendich, A., and Bassel, P., 1986, Oxidation as a possible mechanism of cellular aging: Vitamin E deficiency causes premature aging and IgG binding to erythrocytes, Proc. Natl. Acad. Sci. USA 83:2463–2467.

    Google Scholar 

  • Kay, M.M.B., Bosman, G.J.C.G.M., Johnson, G. J., and Beth, A. H., 1988, Band-3 polymers and aggregates, and hemoglobin precipitates in red cell aging, Blood Cells 14: 275–289.

    PubMed  CAS  Google Scholar 

  • Khansari, N., 1988, Mechanism for elimination of senescent red blood cells from circulation, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 77–89, Springer, Berlin.

    Google Scholar 

  • Kimura, R. E., Suzuki, T., and Kinoshita, Y., 1960, Separation of reticulocytes by means of multi-layer centrifugation, Nature 188: 1201–1202.

    PubMed  CAS  Google Scholar 

  • Kondo, T., Dale, G. L., and Beutler, E., 1981, Studies on glutathione transport utilizing inside-out vesicles prepared from human erythrocytes, Biochim. Biophys. Acta 645: 132–136.

    PubMed  CAS  Google Scholar 

  • Kosmakos, F. C., Nagulesparan, M., and Bennett, P. H., 1980, Insulin binding to erythrocytes: A negative correlation with red cell age, J. Clin. Endocrinol. Metab. 51: 46–50.

    PubMed  CAS  Google Scholar 

  • Küster, J. M., and Schauer, R., 1981, Phagocytosis of sialidase-treated rat erythrocytes: Evidence for a two-step mechanism, Hoppe-Seyler’s Z. Physiol. Chem. 362: 1507–1514.

    PubMed  Google Scholar 

  • LaCelle, P. L., Kirkpatrick, F. H., and Udkow, M., 1973a, Relation of altered deformability, ATP, DPG and Ca+ + concentration in senescent erythrocytes, in: Erythrocytes, Thrombocytes, Leukocytes. Recent Advances in Membrane and Metabolic Research ( E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), pp. 49–52, Thieme, Stuttgart.

    Google Scholar 

  • LaCelle, P. L., Kirkpatrick, F. H., Udkow, M. D., and Arkin, B., 1973b. Membrane fragmentation and Ca-membrane interaction: Potential mechanisms of shape change in the senescent red cell, in: Red Cell Shape ( M. Bessis, R. I. Weed, and P. F. Leblond, eds.), pp. 69–78, Springer, Berlin.

    Google Scholar 

  • Leif, R. C., and Vinograd, J., 1964, The distribution of buoyant density of human erythrocytes in bovine serum albumin solutions, Proc. Natl. Acad. Sci. USA 51: 520–528.

    PubMed  CAS  Google Scholar 

  • Levy, L. M., Walter, H., and Sass, M. D., 1959, Enzymes and radioactivity in erythrocytes of different age, Nature 184: 643–644.

    PubMed  CAS  Google Scholar 

  • Li, C. K. N., and Li, E. K. H., 1983, Mechanical fatigue as a possible determinant of in vivo longevity of red blood cells, IEEE Trans. Biomed. Eng. 30: 226–227.

    PubMed  CAS  Google Scholar 

  • Lichtman, M. A., 1975, Does ATP decrease exponentially during red cell aging? Nouv. Rev. Fr. Hematol. 15:625–632.

    Google Scholar 

  • Linderkamp, O., and Meiselman, H. J., 1982, Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood 59: 1121–1127.

    PubMed  CAS  Google Scholar 

  • Lorand, L., Weissmann, L. B., Epel, D. L., and Bruner-Lorand, J., 1976, Role of the intrinsic transglutaminase in the Cat+-mediated crosslinking of erythrocyte proteins, Proc. Natl. Acad. Sci. USA 73: 4479–4481.

    PubMed  CAS  Google Scholar 

  • Low, P. S., Waugh, S. M., Zinke, K., and Drenckhahn, D., 1985, The role of hemoglobin denaturation and band 3 clustering in red blood cell aging, Science 227: 531–533.

    PubMed  CAS  Google Scholar 

  • Lowenson, J., and Clarke, S., 1988, Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? The role of protein carboxyl methylation reactions, Blood Cells 14: 103–117.

    PubMed  CAS  Google Scholar 

  • Luner, S. J., Szklarek, D., Knox, R. J., Seaman, G. V. F., Josefovicz, J. Y., and Ware, B. R., 1977, Red cell charge is not a function of cell age, Nature 269: 719–721.

    PubMed  CAS  Google Scholar 

  • Luthra, M. G., and Kim, H. D., 1980, (Ca2+-Mg2+)-ATPase of density separated human red cells: Effect of calcium and a soluble cytoplasmic activator (calmodulin), Biochim. Biophys. Acta 600: 480–488.

    Google Scholar 

  • Luthra, M. G., Friedman, J. M., and Sears, D. A., 1979, Studies of density fractions of normal human erythrocytes labeled with iron-59 in vivo, J. Lab. Clin. Med. 94: 879–896.

    PubMed  CAS  Google Scholar 

  • Lutz, H. U., and Fehr, J., 1979, Total sialic acid content of glycophorins during senescence of human red blood cells, J. Biol. Chem. 254: 11177–11180.

    PubMed  CAS  Google Scholar 

  • Lutz, H. U., and Stringaro-Wipf, G., 1983, Senescent red cell-bound IgG is attached to band 3 protein Biomed. Biochim. Acta 42:S117–5121.

    Google Scholar 

  • Lutz, H. U., Liu, S. C., and Palek, J., 1977, Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles, J. Cell Biol. 73: 548–560.

    PubMed  CAS  Google Scholar 

  • Lutz, H. U., Stammler, P., Furter, C., and Faster, S., 1987, “Anti-Bande-3”-Antikörper aktivieren Komplement über den alternativen Weg Schweiz. Med. Wochenschr.117:1821–1824.

    Google Scholar 

  • McEvoy, L., Williamson, P., and Schlegel, R. A., 1986, Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages, Proc. Natl. Acad. Sci. USA 83: 3311–3315.

    PubMed  CAS  Google Scholar 

  • Mackie, L. H., Frank, R. S., and Hochmuth, R. M., 1987, Erythrocyte density separation on discontinuous “Percoll” gradient, Biorheology 24: 227–230.

    PubMed  CAS  Google Scholar 

  • Magnani, M., Papa, S., Rossi, L., Vitale, M., Fornaini, G., and Manzoni, F. A., 1988, Membrane-bound immunoglobulins increase during red blood cell aging Acta Haematol. 79:127–132.

    Google Scholar 

  • Malachi, T., Bogin, E., Gafter, U., and Levi, J., 1986, Parathyroid hormone effect on the fragility of human young and old red blood cells in uremia, Nephron 42: 52–57.

    PubMed  CAS  Google Scholar 

  • Maridonneau, J., Braquet, P., and Garay, R. P., 1983, Na+ and K + transport damage induced by oxygen free radicals in human red cell membranes, J. Biol. Chem. 258: 3107–3113.

    PubMed  CAS  Google Scholar 

  • Marikovsky, Y., and Danon, D., 1969, Electron microscope analysis of young and old red blood cells stained with colloidal iron for surface charge evaluation, J. Cell Biol. 43: 1–7.

    PubMed  CAS  Google Scholar 

  • Marikovsky, Y., Danon, D., and Katchalsky, A., 1966, Agglutination by polylysine of young and old red blood cells Biochim. Biophys. Acta 124:154–159.

    Google Scholar 

  • Marin, M. S., Sanchez-Yagüe, J., Caberaz, J. A., and Llanillo, M., 1988, Phospholipid composition and aminophospholipid topology in erythrocyte plasma membranes of different ages, 14th International Congress of Biochemistry, Prague, Abstracts, Thursday: 674.

    Google Scholar 

  • Marks, P. A., and Johnson, A. B., 1958, Relationship between the age of human erythrocytes and their osmotic resistance: A basis for separating young and old erythrocytes, J. Clin. Invest. 37: 1542–1548.

    PubMed  CAS  Google Scholar 

  • Marks, P. A., Johnson, A. B., and Hirschberg, E., 1958a, Effect of age on the enzyme activity in erythrocytes, Proc. Natl. Acad. Sci. USA 44: 529–536.

    PubMed  CAS  Google Scholar 

  • Marks, P. A., Johnson, A. B., Hirschberg, E., and Banks, J., 19586, Studies on the mechanism of aging of human red blood cells, Ann. N.Y. Acad. Sci. 75: 95–105.

    Google Scholar 

  • Matovcik, L. M., Gröschel-Stewart, U., and Schrier, S. L., 1986, Myosin in adult and neonatal human erythrocyte membranes, Blood 67: 1668–1674.

    PubMed  CAS  Google Scholar 

  • Monzon, C. M., Penniston, J. T., Fairbanks, V. F., and Burgert, E. O., Jr., 1982, Erythrocyte calmodulin correlates with red cell age, Br. J. Haematol. 51: 261–264.

    PubMed  CAS  Google Scholar 

  • Morrison, M., Jackson, C. W., Mueller, T. J., Huang, T., Dockter, M. E., Walker, W. S., Singer, J. A., and Edwards, H. H., 1983, Does cell density correlate with red cell age? Biomed. Biochim. Acta 42: S107 — S111.

    PubMed  CAS  Google Scholar 

  • Mosior, M., Gomutkiewicz, J., Bobrowska, M., Komorowska, M., and Koter, M., 1984, Effect of phosphate ions on osmotic fragility and membrane fluidity of bovine erythrocytes, Stud. Biophys. 99: 117–126.

    CAS  Google Scholar 

  • Mueller, T. J., Jackson, C. W., Dockter, M. E., and Morrison, M., 1987, Membrane skeletal alterations during in vivo mouse red cell aging. Increase in the band 4.la: 4.1b ratio, J. Clin. Invest. 79: 492–499.

    PubMed  CAS  Google Scholar 

  • Müller, M., Dumdey, R., and Rapoport, S., 1983, Superoxide radicals in the metabolism of the red cell, Biomed. Biochim. Acta 42: 5297 — S301.

    Google Scholar 

  • Murphy, J. R., 1973, Influence of temperature and method of centrifugation on the separation of erythrocytes, J. Lab. Clin. Med. 82: 334–341.

    PubMed  CAS  Google Scholar 

  • Nash, G. B., and Meiselman, H. J., 1981, Red cell ageing: Changes in deformability and other possible determinants of in vivo survival, Microcirculation 1: 255–284.

    Google Scholar 

  • Nash, G. B., and Meiselman, H. J., 1983, Red cells and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging, Biophys. J. 43: 63–73.

    PubMed  CAS  Google Scholar 

  • Nash, G. B., and Wyard, S. J., 1980, Changes in surface area and volume measured by micropipette aspiration for erythrocytes ageing in vivo, Biorheology 17: 479–484.

    PubMed  CAS  Google Scholar 

  • Nash, G. B., and Wyard, S. J., 1982, Shape of ageing erythrocytes, Biorheology 19: 727.

    PubMed  CAS  Google Scholar 

  • Nash, G. B., Linderkamp, O., Pfafferoth, C., and Meiselman, H. J., 1988, Changes in red cell mechanisms during in vivo aging: Possible influence on removal of senescent cells, in: Blood Cells, Rheology, and Aging ( D. Platt, ed.), pp. 99–112, Springer, Berlin.

    Google Scholar 

  • O’Connell, D. J., Caruso, C. J., and Sass, M. D., 1965, Separation of erythrocytes of different ages, Clin. Chem. (Winston-Salem, N.C.) 11: 771–781.

    Google Scholar 

  • O’Connell, M. A., and Swislocki, N. I., 1983, Spectrin phosphorylation in senescent rat erythrocytes, Mech. Ageing Dev. 22: 51–70.

    PubMed  Google Scholar 

  • Ogiso, T., Iwaki, M., Takagi, T., Hirai, I., and Kashiyama, T., 1985, Increased sensitivity of aged erythrocytes to drugs and age-related loss of cell components, Chem. Pharm. Bull. 33: 5404–5412.

    PubMed  CAS  Google Scholar 

  • O’Malley, B. W., Engel, C. E., Meriwether, W. D., and Zirkle, L. G., Jr., 1966, Inhibition of erythrocyte acetylcholinesterase by peroxides, Biochemistry 5: 40–45.

    PubMed  Google Scholar 

  • Orringer, E. P., 1984, A further characterization of the selective K movements observed in human red blood cells following acetylphenylhydrazine exposure, Am. J. Hematol. 16: 355–366.

    PubMed  CAS  Google Scholar 

  • Palmer, F.B.St.C., 1985, Polyphosphoinositide metabolism in aging human erythrocytes, Can. J. Biochem. Cell Biol. 63: 927–931.

    PubMed  CAS  Google Scholar 

  • Peterson, C. M., Jones, R. L., Koenig, R. J., Melvin, E. T., and Lehrman, M. L., 1977, Reversible hematologic sequelae of diabetes mellitus, Ann. Intern. Med. 86: 425–429.

    PubMed  CAS  Google Scholar 

  • Pfeffer, S. R., and Swislocki, N. I., 1976, Age-related decline in the activities of erythrocyte membrane adenylate cyclase and protein kinase, Arch. Biochem. Biophys. 177: 117–122.

    PubMed  CAS  Google Scholar 

  • Pfeffer, S. R., and Swislocki, N. I., 1982, Role of peroxidation in erythrocyte aging, Mech. Ageing Dev. 18: 355–367.

    PubMed  CAS  Google Scholar 

  • Phillips, G. B., Dodge, J. T., and Howe, C., 1969, The effect of aging of human red cells in vivo on their fatty acid composition, Lipids 4: 544–549.

    PubMed  CAS  Google Scholar 

  • Picot, C., Girot, R., Loutounda, J., Mattlinger, B., Maier-Redelsperger, M., Feo, C., Chevalier, A., and Barritault, L., 1987, Enrichment of blood units with young red cells (neocytes) with the IBM 2991 cell washer, Eur. J. Haematol. 39: 214–220.

    PubMed  CAS  Google Scholar 

  • Piomelli, S., and Wyss, S. R., 1971, Metabolic death of the red blood cell, Blood 38: 832.

    Google Scholar 

  • Piomelli, S., Lurinsky, G., and Wasserman, L. R., 1967, The mechanism of red cell aging. I. Relationship between cell age and specific gravity evaluated by ultracentrifugation in a discontinuous density gradient, J. Lab. Clin. Med. 69: 659–674.

    PubMed  CAS  Google Scholar 

  • Piomelli, S., Seaman, C., Reibman, J., Tytun, A., Graziano, J., Tabachnik, N., and Corash, L., 1978, Separation of younger red cells with improved survival in vivo: An approach to chronic transfusion therapy, Proc. Natl. Acad. Sci. USA 75: 3474–3478.

    PubMed  CAS  Google Scholar 

  • Platt, D., and Norwig, P., 1980, Biochemical studies of membrane glycoproteins during red cell aging, Mech. Ageing Dev. 14: 119–126.

    PubMed  CAS  Google Scholar 

  • Powers, H. J., and Thumham, D. I., 1980, Effect of cell age on the malondialdehyde formation in erythrocytes in vitro, Biochem. Soc. Trans. 8: 195–196.

    PubMed  CAS  Google Scholar 

  • Prankerd, T. A. J., 1958, Ageing of red cells, J. Physiol. (London) 143: 325–331.

    CAS  Google Scholar 

  • Rahman, Y. E., Elson, D. L., and Cerny, E. A., 1973, Studies on the mechanism of erythrocyte aging and destruction. I. Separation of rat erythrocytes according to age by Ficoll gradient centrifugation, Mech. Ageing Dev. 2: 141–150.

    PubMed  CAS  Google Scholar 

  • Ravindranath, Y., Brohn, F., and Johnson, R. M., 1987, Erythrocyte age-dependent changes of membrane protein 4.1: Studies in transient erythroblastopenia, Pediatr. Res. 21: 275–278.

    PubMed  CAS  Google Scholar 

  • Rennie, C. M., Thompson, S., Parker, A. C., and Maddy, A., 1979, Human erythrocyte fractionation in “Percoll” density gradients, Clin. Chim. Acta 98: 119–125.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C., and Hochstein, P., 1981, Alterations in erythrocyte membrane fluidity by phenylhydrazineinduced peroxidation of lipids, Biochem. Biophys. Res. Commun. 100: 1537–1542.

    PubMed  CAS  Google Scholar 

  • Rifkind, M., Araki, K., and Hadley, E. C., 1983, The relationship between the osmotic fragility of human erythrocytes and cell age, Arch. Biochem. Biophys. 222: 582–589.

    PubMed  CAS  Google Scholar 

  • Ripoche, J., and Sim, R. B., 1986, Loss of complement receptor type 1 (CRI) on ageing of erythrocytes. Studies of proteolytic release of the receptor, Biochem. J. 235: 815–821.

    PubMed  CAS  Google Scholar 

  • Rothstein, M., 1979, The formation of altered enzymes in aging animals, Mech. Ageing Dev. 9: 197–202.

    PubMed  CAS  Google Scholar 

  • Salvo, G., Caprari, P., Samoggia, P., Mariani, G., and Salvati, A. M., 1982, Human erythrocyte separation according to age on a discontinuous Percoll density gradient, Clin. Chim. Acta 122: 293–300.

    PubMed  CAS  Google Scholar 

  • Sanderson, R. J., and Bird, K. W., 1977, Separation by counterflow centrifugation, Methods Cell Biol. 15: 1–14.

    PubMed  CAS  Google Scholar 

  • Sanderson, R. J., Bird, K. E., Palmer, N. F., and Brenman, J., 1976, Design principles for a counterflow centrifugation cell separation chamber, Anal. Biochem. 71: 615–622.

    PubMed  CAS  Google Scholar 

  • Sass, M. D., Levy, L. M., and Walter, H., 1963, Characteristics of erythrocytes of different ages. II. Enzyme activity and osmotic fragility, Can. J. Biochem. Physiol. 41: 2287–2296.

    PubMed  CAS  Google Scholar 

  • Sauberman, N., Fortier, N. L., Fairbanks, G. F., O’Connor, R. J., and Snyder, L. M., 1979, Red cell membrane in hemolytic disease. Studies on variables affecting electrophoretic analysis, Biochim. Biophys. Acta 556: 292–313.

    PubMed  CAS  Google Scholar 

  • Scarpa, M., Rigo, A., Mono, F., Isacchi, G., Novelli, G., and Dallapiccola, B., 1985, Increased rate of superoxide ion generation in Fanconi anemia erythrocytes, Biochem. Biophys. Res. Commun. 130: 127–132.

    PubMed  CAS  Google Scholar 

  • Schacter, L. P., 1986, Generation of superoxide anion and hydrogen peroxide by erythrocytes from individuals with sickle cell trait or normal hemoglobin, Eur. J. Clin. Invest. 16: 204–210.

    PubMed  CAS  Google Scholar 

  • Schleicher, E., Scheller, L., and Wieland, D. H., 1981, Quantitation of lysine-bound glucose of normal and diabetic erythrocyte membranes by HPLC analysis of furosine [E-N(L-furoylmethyl)-L-lysinel, Biochem. Biophys. Res. Commun. 99: 1011–1019.

    PubMed  CAS  Google Scholar 

  • Schlepper-Schäfer, J., Kolb-Bachofen, V., and Kolb, H., 1983, Identification of a receptor for senescent erythrocytes on liver macrophages, Biochem. Biophys. Res. Commun. 115: 551–559.

    PubMed  Google Scholar 

  • Schlüter, K., and Drenckhahn, D., 1986, Co-clustering of denatured hemoglobin with band 3: Its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes, Proc. Natl. Acad. Sci. USA 83: 61316141.

    Google Scholar 

  • Schroit, A. J., Madsen, J. W., and Tanaka, Y., 1985, In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes, J. Biol. Chem. 260: 5131–5138.

    PubMed  CAS  Google Scholar 

  • Seaman, G.V.F., 1983, Electrochemical properties of the peripheral zone of erythrocytes, Ann. N.Y. Acad. Sci. 416: 176–189.

    PubMed  CAS  Google Scholar 

  • Seaman, G.V.F., Knox, R. J., Nordt, F. J., and Regan, D. H., 1977, Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes, Blood 50: 1001–1011.

    PubMed  CAS  Google Scholar 

  • Shalev, O., Leida, M. N., Hebbel, R. P., Jacob, H. S., and Eaton, J. W., 1981, Abnormal erythrocyte calcium homeostasis in oxidant-induced hemolytic disease, Blood 58: 1232–1235.

    PubMed  CAS  Google Scholar 

  • Shiga, T., Maeda, N., Suda, T., Kon, K., and Sekiya, M., 1979, The decreased membrane fluidity of in vivo aged, human erythrocytes. A spin label study, Biochim. Biophys. Acta 553: 84–95.

    PubMed  CAS  Google Scholar 

  • Shinozuka, T., Takei, S., and Watanabe H., 1986, Affinity of young and old human erythrocytes for alkylSepharose 6 MB gels, J. Chromatogr. 375: 380–385.

    PubMed  CAS  Google Scholar 

  • Shinozuka, T., Takei, S., Yanagida, J. I., Watanabe, H., and Ohkuma, S., 1988a, Comparative study on the main membrane-surface sialoglycopeptides released from young and old human erythrocytes with trypsin, Comp. Biochem. Physiol. 89B: 309–315.

    CAS  Google Scholar 

  • Shinozuka, T., Takei, S., Yanagida, J. I., Watanabe, H., and Ohkuma, S., 1988b, Number and distribution density of ABH and MN antigen sites on young and old human erythrocyte surfaces, Life Sci. 43: 683–689.

    PubMed  CAS  Google Scholar 

  • Shukla, S. D., and Hanahan, D. J., 1981, Identification of domains of phosphatidylcholine in human erythrocyte plasma membranes, J. Biol. Chem. 257: 2908–2911.

    Google Scholar 

  • Simon, E. R., and Topper, Y. L., 1957, Fractionation of human erythrocytes on the basis of their age, Nature 459: 1211–1212.

    Google Scholar 

  • Singer, J. A., Jennings, L. K., Jackson, C. W., Dockter, M. E., Morrison, M., and Walker, W. S., 1986, Erythrocyte homeostasis: Antibody-mediated recognition of the senescent state by macrophages, Proc. Natl. Acad. Sci. USA 83: 5498–5501.

    PubMed  CAS  Google Scholar 

  • Smalley, C. E., and Tucker, E. M., 1983, Blood group A antigen site distribution and immunoglobulin binding in relation to red cell age, Br. J. Haematol. 54: 209–219.

    PubMed  CAS  Google Scholar 

  • Snyder, L. M., Sauberman, N., Condara, H., Dolan, J., Jacobs, J., Szymanski, I., and Fortier, N. L., 1981, Red cell membrane response to hydrogen-peroxide sensitivity in hereditary xerocytosis and in other abnormal red cells, Br. J. Haematol. 48: 435–444.

    PubMed  CAS  Google Scholar 

  • Snyder, L. M., Leb, L., Piotrowski, J., Sauberman, N., Liu, S. C., and Fortier, N. L., 1983, Irreversible spectrin—hemoglobin crosslinking in vivo: A marker for red cell senescence, Br. J. Haematol. 53: 379384.

    Google Scholar 

  • Snyder, L. M., Fairbanks, G., (Piotrowski) Trainor, J., Fortier, N. L., Jacobs, J. B., and Leb, L., 1985, Properties and characterization of vesicles released by young and old human red cells, Br. J. Haematol. 59: 513–522.

    CAS  Google Scholar 

  • Spooner, R. J., Percy, R. A., and Rumley, A. G., 1979, The effect of erythrocyte ageing on some vitamin and mineral dependent enzymes, Clin. Biochem. 12: 289–290.

    PubMed  CAS  Google Scholar 

  • Sutera, S. P., Gardner, R. A., Boylan, C. W., Carroll, G. L., Chang, K. C., Marvel, J. S., Kilo, C., Gonen, B., and Williamson, J. R., 1985, Age-related changes in deformability of human erythrocytes, Blood 65: 275282.

    Google Scholar 

  • Suzuki, T., and Dale, G. L., 1987, Biotinylated erythrocytes: In vivo survival and in vitro recovery, Blood 70: 791–795.

    PubMed  CAS  Google Scholar 

  • Suzuki, T., and Dale, G. L., 1988, Senescent erythrocytes: Isolation of in vivo aged cells and their biochemical characteristics, Proc. Natl. Acad. Sci. USA 85: 1647–1651.

    PubMed  CAS  Google Scholar 

  • Takeshita, M., Tamura, M., Yubisui, T., and Yoneyama, Y., 1983, Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: Relation to the increased methemoglobin content, J. Biochem. 93: 931–934.

    PubMed  CAS  Google Scholar 

  • Takeuchi, N., Shishino, K., Bando, S., Murase, M., Go, S., and Uchida, K., 1985, Aging change of riboflavin concentration and glutathione reductase activity in erythrocytes, Arch. Gerontol. Geriatr. 4: 205–210.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., and Schroit, A. J., 1983, Insertion of a fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages, J. Biol. Chem. 258: 11335–113343.

    Google Scholar 

  • Teitel, P., 1977, Basic principles of the filterability test and analysis of erythrocyte flow behaviour, Blood Cells 3: 55–70.

    Google Scholar 

  • ten Brinke, M., and de Regt, J., 1970, 51Cr-half life time of heavy and light human erythrocytes, Scand. J. Hematol. 7: 36–41.

    Google Scholar 

  • Tillman, W., Levin, C., Prindull, G., and Schröter, W., 1980, Rheological properties of young and aged human erythrocytes, Klin. Wochenschr. 58: 569–574.

    Google Scholar 

  • Todd, C., and White, R. G., 1911, On the fate of red blood corpuscles when injected into the circulation of an animal of the same species: With a new method for the determination of the total volume of blood, Proc. R. Soc. London Ser. B 84: 255–259.

    CAS  Google Scholar 

  • Tosteson, D. C., Carlsen, E., and Dunham, E. T., 1955, The effect of sickling on ion transport. I. Effect of sickling on potassium transport, J. Gen. Physiol. 39: 31–53.

    PubMed  CAS  Google Scholar 

  • Turner, B. M., Fisher, R. A., and Harris, H., 1974, The stage related loss of activity of four enzymes in the human erythrocyte, Clin. Chim. Acta 50: 85–95.

    PubMed  CAS  Google Scholar 

  • Usami, S., Chein, S., and Gregersen, M. I., 1971, Viscometric behaviour of young and aged erythrocytes, in: Theoretical and Clinical Hemorheology ( H. H. Hartert and A. L. Copley, eds.), pp. 266–270, Springer, Berlin.

    Google Scholar 

  • van der Vegt, S. G. L., Ruben, A. M. T., Werre, J. M., de Gier, J., and Staal, G. E. J., 1985a, Membrane characteristics and osmotic fragility of red cells, fractionated with anglehead centrifugation and counterflow centrifugation, Br. J. Haematol. 61: 405–413.

    PubMed  CAS  Google Scholar 

  • van der Vegt, S. G. L., Ruben, A. M. T., Werre, J. M., Palsma, D. M. H., Verhofen, C. W., de Gier, J., and Staal, G. E. J., 1985b, Counterflow centrifugation of red cell populations: A cell age related separation technique, Br. J. Haematol. 61: 393–403.

    PubMed  CAS  Google Scholar 

  • van Gastel, C., van den Berg, D., de Gier, J., and van Deenen, L. L. M., 1965, Some lipid characteristics of normal red blood cells of different age, Br. J. Haematol. 11: 193–199.

    PubMed  CAS  Google Scholar 

  • van Oss, C. J., 1982, Shape of aging erythrocytes, Biorheology 19: 725.

    Google Scholar 

  • Vaysse, J., Gattegno, L., Bladier, D., and Aminoff, D., 1986, Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by beta-galactosyl derivatives, Proc. Natl. Acad. Sci. USA 83: 1339–1343.

    PubMed  CAS  Google Scholar 

  • Vaysse, J., Vassy, R., Eclache, V., Bladier, D., Gattegno, L., and Pilardeau, P., 1988a, Does red blood cell size correlate with red blood cell age in mouse? Mech. Ageing Dev. 44: 265–276.

    PubMed  CAS  Google Scholar 

  • Vaysse, J., Vassy, R., Eclache, V., Gattegno, L., Bladier, D., and Pilardeau, P., 19886, Some characteristics of human red blood cells separated according to their size: A comparison with density-fractionated red blood cells, Am. J. Hematol. 28: 232–238.

    Google Scholar 

  • Vettore, L., de Matteis, M. C., and Zampini, P., 1980, A new density gradient system for the separation of human red blood cells, Am. J. Hematol. 8: 291–297.

    PubMed  CAS  Google Scholar 

  • Vlassara, H., Valinsky, J., Brownlee, M., Cerami, C., Nishimoto, S., and Cerami, A., 1987, Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turnover of aging cells, J. Exp. Med. 166: 539–549.

    PubMed  CAS  Google Scholar 

  • Walls, R., Kumar, K. S., and Hochstein, P., 1976, Aging of human erythrocytes. Differential sensitivity of young and old erythrocytes to hemolysis induced by peroxide in the presence of thyroxine, Arch. Biochem. Biophys. 174: 463–468.

    PubMed  CAS  Google Scholar 

  • Walter, H., and Krob, E. J., 1983, Detection of surface differences between two closely related cell populations by partitioning isotopically labeled mixed cell populations in two-polymer aqueous phases. I. Human red blood cell subpopulations, Cell Biophys. 5: 301–306.

    PubMed  CAS  Google Scholar 

  • Walter, H., Krob, E. J., and Ascher, G. S., 1981, Aging of erythrocytes results in altered red cell surface properties in the rat, but not in the human. Studies by partitioning in two-polymer aqueous phase systems, Biochim. Biophys. Acta 641: 202–215.

    PubMed  CAS  Google Scholar 

  • Walter, H., Tamblyn, C. H., Krob, E. J., and Seaman, G. V. F., 1983, The effect of neuraminidase on the relative surface charge-associated properties of rat red blood cells of different ages, Biochim. Biophys. Acta 734: 368–372.

    PubMed  CAS  Google Scholar 

  • Warth, J. A., Brewer, G. J., Gnegy, M. E., Treisman, G., and Near, K., 1983, Calmodulin level in whole blood correlates with the percentage of reticulocytes, Am. J. Hematol. 15: 153–157.

    PubMed  CAS  Google Scholar 

  • Weed, R. I., 1970, The importance of erythrocyte deformability, Am. J. Med. 49: 147–150.

    PubMed  CAS  Google Scholar 

  • Weed, R. I., and Reed, C. F., 1966, Membrane alterations leading to red cell destruction, Am. J. Med. 41: 68 1698.

    Google Scholar 

  • Weed, R. I., LaCelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795–809.

    Google Scholar 

  • Westerman, M. P., Pierce, L. E., and Jensen, W. N., 1963, Erythrocyte lipids: A comparison of normal ytung and normal old populations, J. Lab. Clin. Med. 62: 394–400.

    PubMed  CAS  Google Scholar 

  • Wiener, A. S., 1942, Hemolytic transfusion reactions. I. Diagnosis, with special reference to the method of differential agglutination, Am. J. Clin. Pathol. 12: 189–199.

    Google Scholar 

  • Williams, A. R., and Morris, D. R., 1980, The internal viscosity of the human erythrocyte may determine its lifespan in vivo, Scand. J. Haematol. 24: 57–62.

    PubMed  CAS  Google Scholar 

  • Williamson, J. R., Gardner, R. A., Boylan, C. W., Carroll, G. L., Chang, K. I., Marvel, J. S., Gonen, B., Kilo, C.. Tran-Son-Tay, R., and Sutera, S. P., 1985, Microrheologic investigation of erythrocyte deformability in diabetes mellitus, Blood 65: 283–288.

    PubMed  CAS  Google Scholar 

  • Wilson, C., and Peterson, S. W., 1986, Insulin receptor processing as a function of erythrocyte age. A kinetic model for down-regulation, J. Biol. Chem. 261: 2123–2128.

    PubMed  CAS  Google Scholar 

  • Wilton, A., 1966, An attempt to separate erythrocytes according to age by a new type of centrifuge, Acta Haematol. 35: 163–175.

    Google Scholar 

  • Winterboum, C. C., and Batt, R. D., 1970, Lipid composition of human red cells of different ages, Biochim. Biophys. Acta 202: 1–8.

    Google Scholar 

  • Yaari, A., 1969, Mobility of human red blood cells of different age groups in an electric field, Blood 33: 159163.

    Google Scholar 

  • Yamaguchi, T., Fujita, Y., Kuroki, S., Ohtsuka, K., and Kimoto, E., 1983, A study on the reaction of human erythrocytes with hydrogen peroxide, J. Biochem. 94: 379–386.

    PubMed  CAS  Google Scholar 

  • Zanner, M. A., and Galey, W. R., 1985, Aged human erythrocytes exhibit increased anion exchange, Biochim. Biophys. Acta 818: 310–315.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bartosz, G. (1990). Erythrocyte Membrane Changes during Aging in Vivo. In: Harris, J.R. (eds) Erythroid Cells. Blood Cell Biochemistry, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9528-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9528-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9530-1

  • Online ISBN: 978-1-4757-9528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics