Action of Drugs on the Erythrocyte Membrane

  • Bernhard Deuticke
  • Reinhard Grebe
  • Cees W. M. Haest
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)

Abstract

Drugs in the sense of pharmacologically active compounds have been important tools in the analysis of the structure and function of the erythrocyte (RBC) membrane. Conversely, the RBC membrane is also a well-established experimental model for the pharmacologically and medically relevant targets of many membrane-active drugs.

Keywords

Erythrocyte Membrane Human Erythrocyte Human Erythrocyte Membrane Outer Membrane Leaflet Human Erythrocyte Ghost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agam, G., Hatzav, P., Abekasis, S., and Livne, A., 1987, Elevated intracellular Cat+ affects Li,–Na„ countertransport in human red blood cells, Biochim. Biophys. Acta 904: 207–215.PubMedCrossRefGoogle Scholar
  2. Agre, P., Gardner, K., and Bennett, V., 1983, Association between human erythrocyte calmodulin and the cytoplasmic surface of human erythrocyte membranes, J. Biol. Chem. 258: 6258–6265.PubMedGoogle Scholar
  3. Agre, P., Virshup, D., and Bennett, V., 1984, Bepridil and cetiedil. Vasodilators which inhibit Cat+-dependent calmodulin interactions with erythrocyte membranes, J. Clin. Invest. 74: 812–820.PubMedCrossRefGoogle Scholar
  4. Alhanaty, E., and Sheetz, M. P., 1984, Cell membrane shape control—Effects of chloromethyl ketone peptides, Blood 63: 1203–1208.PubMedGoogle Scholar
  5. Allan, D., Hagelberg, C., Kallen, K.-J., and Haest, C. W. M., 1989, Echinocytosis and microvesiculation of human erythrocytes induced by insertion of merocyanine 540 into the outer membrane leaflet, Biochim. Biophys. Acta 986: 115–122.PubMedCrossRefGoogle Scholar
  6. Alvarez, J., and Garcia-Sancho, J., 1987, An estimate of the number of Caz+-dependent K+ channels in the human red cell, Biochim. Biophys. Acta 903: 543–546.PubMedCrossRefGoogle Scholar
  7. Alvarez, J., and Garcia-Sancho, J., 1989, Inhibition of red cell Caz+-dependent K+ channels by snake venoms, Biochim. Biophys. Acta 980: 134–138.PubMedCrossRefGoogle Scholar
  8. Andersen, N. B., 1968, The effect of local anesthetic and pH on sodium and potassium flux in human red cells, J. Pharmacol. Exp. Ther. 163: 393–406.PubMedGoogle Scholar
  9. Andersen, O. S., Finkelstein, A., Katz, I., and Cass, A., 1976, Effect of phloretin on the permeability of thin lipid membranes, J. Gen. Physiol. 67: 749–771.PubMedCrossRefGoogle Scholar
  10. Anner, B. M., 1985, The receptor function of the Na+, K + -activated adenosine triphosphatase system, Biochem. J. 227: 1–11.PubMedGoogle Scholar
  11. Antunes-Madeira, M. C., and Madeira, V. M. C., 1984, Partition of parathion in synthetic and native membranes, Biochim. Biophys. Acta 778: 49–56.PubMedCrossRefGoogle Scholar
  12. Antunes-Madeira, M. C., and Madeira, V. M. C., 1985, Partition of lindane in synthetic and native membranes, Biochim. Biophys. Acta 820: 165–172.PubMedCrossRefGoogle Scholar
  13. Antunes-Madeira, M. C., and Madeira, V. M. C., 1989, Membrane fluidity as affected by the insecticide lindane, Biochim. Biophys. Acta 982: 161–166.PubMedCrossRefGoogle Scholar
  14. Artmann, G., 1986, A microscopic photometric method for measuring erythrocyte deformability, Clin. Hemorheol. 6: 617–627.Google Scholar
  15. Askari, A., and Rao, S. N., 1970, Drugs affecting sodium transport in human erythrocyte ghosts, J. Pharmacol. Exp. Ther. 172: 211–223.PubMedGoogle Scholar
  16. Auger, M., Jarrell, H. C., and Smith, I. C. P., 1988, Interactions of the local anesthetic tetracaine with membranes containing phosphatidylcholine and cholesterol: A 2H NMR study, Biochemistry 27: 4660–4667.PubMedCrossRefGoogle Scholar
  17. Barchfeld, G. L., and Deamer, D. W., 1985, The effect of general anesthetics on the proton and potassium permeabilities of liposomes, Biochim. Biophys. Acta 819: 161–169.PubMedCrossRefGoogle Scholar
  18. Barthel, D., Zschoernig, O., Lange, K., Lenk, R., and Arnold, K., 1988, Interaction of electrically charged drug molecules with phospholipid membranes, Biochim. Biophys. Acta 945: 361–366.PubMedCrossRefGoogle Scholar
  19. Basketter, D. A., and Widdas, W. F., 1978, Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors, J. Physiol. (London) 278: 389–401.Google Scholar
  20. Beaugé, L. A., Cavieres, J. J., Glynn, I. M., and Grantham, J. J., 1980, The effects of vanadate on the fluxes of sodium and potassium ions through the sodium pump, J. Physiol. (London) 301: 7–23.Google Scholar
  21. Beck, J. S., 1978, Relations between membrane monolayers in some red cell shape transformations, J. Theor. Biol. 75: 487–501.PubMedCrossRefGoogle Scholar
  22. Becker, B. F., and Duhm, J., 1978, Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions, J. Physiol. (London) 282: 149168.Google Scholar
  23. Becker, B. F., and Duhm, J., 1979, Studies on lithium transport across the red cell membrane. VI. Properties of a sulfhydryl group involved in ouabain-resistant Na+ —Li + (and Na+ —Na +) exchange in human and bovine erythrocytes, J. Membr. Biol. 51: 287–310.PubMedCrossRefGoogle Scholar
  24. Betz, G. G., 1981, Rubidium uptake in erythrocytes, in: Cardiac Glycosides ( K. Greeff, ed.), pp. 95–113, Springer-Verlag, Berlin.Google Scholar
  25. Belz, G. G., and Heinz, N., 1977, The influence of polar and nonpolar digoxin and digitoxin metabolites on the 86Rb-uptake of human erythrocytes and the contractility of guinea pig papillary muscles, Arzneim. Forsch. 27: 653–655.Google Scholar
  26. Benga, G., Ionescu, M., Popescu, O., and Pop, V. I., 1983, Effect of chlorpromazine on proteins in human erythrocyte membranes as inferred from spin labeling and biochemical analysis, Mol. Pharmacol. 23: 771–778.PubMedGoogle Scholar
  27. Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–285.PubMedCrossRefGoogle Scholar
  28. Bennett, V., 1989, The spectrin—actin junction of erythrocyte membrane skeletons, Biochim. Biophys. Acta 988: 107–121.PubMedCrossRefGoogle Scholar
  29. Bergmann, W. L., Dressler, V., Haest, C. W. M., and Deuticke, B., 1984, Reorientation rates and asymmetry of distribution of lysophospholipids between the inner and outer leaflet of the erythrocyte membrane, Biochim. Biophys. Acta 772: 328–336.PubMedCrossRefGoogle Scholar
  30. Berkowitz, L. R., and Orringer, E. P., 1984, An analysis of the mechanism by which cetiedil inhibits the Gardos phenomenon, Am. J. Hematol. 17: 217–223.PubMedCrossRefGoogle Scholar
  31. Berkowitz, L. R., and Orringer, E. P., 1987, Cell volume regulation in hemoglobin CC and AA erythrocytes, Am. J. Physiol. 252: C300 — C306.PubMedGoogle Scholar
  32. Bessis, P. M., 1977, Erythrocyte form and deformability for normal blood and some hereditary hemolytic anemias, Nouv. Rev. Fr. Hematol. 18: 75–94.Google Scholar
  33. Biesendorfer, H., Felix, W., and Wildenauer, D. B., 1981, Studies on the haemolytic action of amphiphilic substances in vitro, Biochem. Pharmacol. 30: 2287–2292.PubMedCrossRefGoogle Scholar
  34. Bitbol, M., Dempsey, C., Watts, A., and Devaux, P. F., 1989, Weak interaction of spectrin with phosphatidylcholine—phosphatidylserine multilayers. A 2H and 31P NMR study, FEBS Lett. 244: 217–222.PubMedCrossRefGoogle Scholar
  35. Blaiklock, R. G., and Green, J. W., 1971, Nonphotooxidative eosin Y inhibition of Na+-K+ ATPase activity in the human erythrocyte membrane, Arch. Biochem. Biophys. 145: 43–49.PubMedCrossRefGoogle Scholar
  36. Bond, G. H., and Hudgins, P. M., 1976, Inhibition of ATPase activity in human red cell membranes by tetracaine, Biochem. Pharmacol. 25: 267–270.PubMedCrossRefGoogle Scholar
  37. Bond, G. H., and Hudgins, P. M., 1977, Irreversible inactivation of human red cell ATPase activity by tetracaine, Biochem. Pharmacol. 26: 2241–2245.PubMedCrossRefGoogle Scholar
  38. Bondy, B., and Remien, J., 1981, Differential binding of chlorpromazine to human blood cells: Application of the hygroscopic desorption method, Life Sci. 28: 441–449.PubMedCrossRefGoogle Scholar
  39. Borgese, F., Garcia-Romeu, F., and Motais, R., 1986, Catecholamine-induced transport systems in trout erythrocyte. Na +/H+ countertransport or NaCI cotransport? J. Gen. Physiol. 87: 551–566.PubMedCrossRefGoogle Scholar
  40. Borgese, F., Garcia-Romeu, F., and Motais, R., 1987, Control of cell volume and ion transport by 3-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri, J. Physiol. (London) 382: 123–144.Google Scholar
  41. Boulanger, Y., Schreier, S., and Smith, I. C. P., 1981, Molecular details of anesthetic—lipid interaction as seen by deuterium and phosphorus-31 nuclear magnetic resonance, Biochemistry 20: 6824–6830.PubMedCrossRefGoogle Scholar
  42. Brahm, J., 1982, Diffusional water permeability of human erythrocytes and their ghosts, J. Gen. Physiol. 79: 791–819.PubMedCrossRefGoogle Scholar
  43. Brahm, J., 1983, Urea permeability of human red cells, J. Gen. Physiol. 82: 1–23.PubMedCrossRefGoogle Scholar
  44. Brahm, J., and Galey, W. R., 1987, Diffusional solute flux during osmotic water flow across the human red cell membrane, J. Gen. Physiol. 89: 703–716.PubMedCrossRefGoogle Scholar
  45. Brasseur, R., Chatelain, P., Goormaghtigh, E., and Ruysschaert, J.-M., 1985, A semi-empirical conformational analysis of the interaction of n-alkanols with dipalmitoylphosphatidylcholine, Biochim. Biophys. Acta 814: 227–236.CrossRefGoogle Scholar
  46. Brazy, P. C., and Gunn, R. B., 1976, Furosemide inhibition of chloride transport in human red blood cells, J. Gen. Physiol. 68: 583–599.PubMedCrossRefGoogle Scholar
  47. Bree, F., Gault, I., D’Athis, P., and Tillement, J. P., 1984, Beta adrenoceptors of human red blood cells, determination of their subtypes, Biochem. Pharmacol. 33: 4045–4050.PubMedCrossRefGoogle Scholar
  48. Broekhuyse, R. M., 1974, Improved lipid extraction of erythrocytes, Clin. Chim. Acta 51: 341–343.PubMedCrossRefGoogle Scholar
  49. Brown, L., and Erdmann, E., 1984, Comparison of the affinity of human, beef and cat heart (Na + K+)ATPase for different digitalis derivatives, Arzneim. Forsch. 34: 1314–1318.Google Scholar
  50. Brugnara, C., Van Ha, T., and Tosteson, D. C., 1989, Role of chloride in potassium transport through a K—Cl cotransport system in human red blood cells, Am. J. Physiol. 256: C994 — C1003.PubMedGoogle Scholar
  51. Bull, B. S., 1986, Report: JCSH expert panel on blood rheology: Guidelines for measurement of blood viscosity and erythrocyte deformability, Clin. Hemorheol. 6: 439–453.Google Scholar
  52. Bull, M. H., Brailsford, J. D., and Bull, B. S., 1982, Erythrocyte membrane expansion due to the volatile anesthetics, the 1-alkanols, and benzyl alcohol, Anesthesiology 57: 399–403.PubMedCrossRefGoogle Scholar
  53. Burgin, H., and Schatzmann, H. J., 1979, The relation between net calcium, alkali cation and chloride movements in red cells exposed to salicylate, J. Physiol. (London) 287: 15–32.Google Scholar
  54. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978, The anion transport system of the red blood cell. The role of membrane protein evaluated by use of “probes,” Biochim. Biophys. Acta 515: 239–302.PubMedCrossRefGoogle Scholar
  55. Cala, P. M., Norby, J. G., and Tosteson, D. C., 1982, Effects of the plant alkaloid sanguinarine on cation transport by human red blood cells and lipid bilayer membranes, J. Membr. Biol. 64: 23–31.PubMedCrossRefGoogle Scholar
  56. Caldwell, K. K., and Harris, R. A., 1985, Effects of anesthetic and anticonvulsant drugs on calcium-dependent efflux of potassium from human erythrocytes, Eur. J. Pharmacol. 107: 119–125.PubMedCrossRefGoogle Scholar
  57. Canessa, M., Spalvins, A., and Nagel, R. L., 1986, Volume-dependent and NEM-stimulated K+, Cl — transport is elevated in oxygenated SS, SC and CC human red cells, FEBS Leu. 200: 197–202.CrossRefGoogle Scholar
  58. Carlsen, A., and Wieth, J. 0., 1976, Glycerol transport in human red cells, Acta Physiol. Scand. 97: 501–513.PubMedCrossRefGoogle Scholar
  59. Carraway, K. L., and Carothers Carraway, C. A., 1989, Membrane—cytoskeleton interactions in animal cells, Biochim. Biophys. Acta 988: 147–171.PubMedCrossRefGoogle Scholar
  60. Carruthers, A., 1988, The glucose transporter reconsidered, Trends Biochem. Sci. 13: 426–427.PubMedCrossRefGoogle Scholar
  61. Carruthers, A., and Melchior, D. L., 1988, Effect of lipid environment on membrane transport: The protein/lipid bilayer system, Annu. Rev. Physiol. 50: 257–271.PubMedCrossRefGoogle Scholar
  62. Castle, N. A., and Strong, P. N., 1986, Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel, FEBS Lett. 209: 117–121.PubMedCrossRefGoogle Scholar
  63. Cevc, G., and Marsh, D., 1987, Phospholipid Bilayers: Physical Principles and Models, Wiley, New York.Google Scholar
  64. Chabanel, A., Abbott, R. E., Chien, S., and Schachter, D., 1985, Effects of benzyl alcohol on erythrocyte shape, membrane hemileaflet fluidity and membrane viscoelasticity, Biochim. Biophys. Acta 816: 142–152.PubMedCrossRefGoogle Scholar
  65. Chasan, B., and Solomon, A. K., 1985, Urea reflection coefficient for the human red cell membrane, Biochim. Biophys. Acta 821: 56–62.CrossRefGoogle Scholar
  66. Chien, S., 1987, Red cell deformability and its relevance to blood flow, Annu. Rev. Physiol. 49:177–192. Chien, S., Sung, K.-L. P., Skalak, R., Usami, S., and Tözeren, A., 1978, Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophys. J. 24: 463–487.CrossRefGoogle Scholar
  67. Chin, J. H., and Goldstein, D. B., 1977, Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes, Mol. Pharmacol. 13: 435–441.PubMedGoogle Scholar
  68. Chipperfield, A. R., 1981, Chloride dependence of furosemide-and phloretin-sensitive passive sodium and potassium fluxes in human red cells, J. Physiol. (London) 312: 435–444.Google Scholar
  69. Chipperfield, A. R., 1986, The (Na+-K+-CI—) cotransport system, Clin. Sci. 71: 465–476.PubMedGoogle Scholar
  70. Clark, M. R., 1988, Senescence of red blood cells: Progress and problems, Physiol. Rev. 68: 503–554.PubMedGoogle Scholar
  71. Classen, J., Haest, C. W. M., Tournois, H., and Deuticke, B., 1987, Gramicidin-induced enhancement of transbilayer reorientation of lipids in the erythrocyte membrane, Biochemistry 26: 6604–6612.PubMedCrossRefGoogle Scholar
  72. Coakley, W. T., and Deeley, J. 0. T., 1980, Effects of ionic strength, serum protein and surface charge on membrane movements and vesicle production in heated erythrocytes, Biochim. Biophys. Acta 602: 355–375.PubMedCrossRefGoogle Scholar
  73. Cokelet, G. R., and Meiselman, H. J., 1968, Rheological comparison of hemoglobin solutions and erythrocyte suspensions, Science 162: 275–277.PubMedCrossRefGoogle Scholar
  74. Colley, C. M., and Metcalfe, J. C., 1972, The localisation of small molecules in lipid bilayers, FEBS Leu. 24: 241–246.CrossRefGoogle Scholar
  75. Conrad, M. J., and Singer, S. J., 1979, Evidence for a large internal pressure in biological membranes, Proc. Natl. Acad. Sci. USA 76: 5202–5206.PubMedCrossRefGoogle Scholar
  76. Conrad, M. J., and Singer, S. J., 1981, The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure, Biochemistry 20: 808–818.PubMedCrossRefGoogle Scholar
  77. Cousin, J. L., and Motais, R., 1976, The role of carbonic anhydrase inhibitors on anion permeability into ox red blood cells, J. Physiol. (London) 256: 61–80.Google Scholar
  78. Cousin, J. L., and Motais, R., 1978, Effect of phloretin on chloride permeability: A structure—activity study, Biochim. Biophys. Acta 507: 531–538.CrossRefGoogle Scholar
  79. Cousin, J. L., and Motais, R., 1979, Inhibition of anion permeability by amphiphilic compounds in human red cells: Evidence for interactions of niflumic acid with the band 3 protein, J. Membr. Biol. 46: 125–153.PubMedCrossRefGoogle Scholar
  80. Cousin, J. L., and Motais, R., 1982a, Inhibition of anion transport in the red blood cells by anionic amphiphilic compounds. I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein, Biochim. Biophys. Acta 687: 147–155.PubMedCrossRefGoogle Scholar
  81. Cousin, J. L., and Motais, R., 1982b, Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds. II. Chemical properties of the flufenamate-binding site on the band 3 protein, Biochim. Biophys. Acta 687: 156–164.PubMedCrossRefGoogle Scholar
  82. Cullis, P. R., and Verkleij, A. J., 1979, Modulation of membrane structure by Cat+ and dibucaine as detected by 31p NMR, Biochim. Biophys. Acta 552: 546–551.PubMedCrossRefGoogle Scholar
  83. Daleke, D. L., and Huestis, W. H., 1989, Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids, J. Cell Biol. 108: 1375–1385.PubMedCrossRefGoogle Scholar
  84. Daveloose, D., Sablayrolles, M., Molle, D., and Leterrier, F., 1982, Interaction of ticlopidine with the erythrocyte membrane, Biochem. Pharmacol. 31: 3949–3954.PubMedCrossRefGoogle Scholar
  85. DeHoff, R. T., and Rhines, F. N., 1968, Quantitative Microscopy, McGraw—Hill, New York.Google Scholar
  86. Demel, R. A., Geurts Van Kessel, W. S. M., Zwaal, R. F. A., Roelofsen, B., and van Deenen, L. L. M., 1975, Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers, Biochim. Biophys. Acta 406: 97–107.PubMedCrossRefGoogle Scholar
  87. Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P., 1988, Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules, J. Biol. Chem. 263: 15634–15642.PubMedGoogle Scholar
  88. Deuticke, B., 1968, Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment, Biochim. Biophys. Acta 163: 494–500.PubMedCrossRefGoogle Scholar
  89. Deuticke, B., 1970, Anion permeability of the red blood cell, Naturwissenschaften 57: 172–179.PubMedCrossRefGoogle Scholar
  90. Deuticke, B., 1974, Acetate transfer across mammalian red cell membrane: Evidence for two different path- ways, in: Comparative Biochemistry and Physiology of Transport ( L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 338–345, North-Holland, Amsterdam.Google Scholar
  91. Deuticke, B., 1977, Properties and structural basis of simple diffusion pathways in the erythrocyte membrane, Rev. Physiol. Biochem. Pharmacol. 78: 1–97.PubMedCrossRefGoogle Scholar
  92. Deuticke, B., 1982, Monocarboxylate transport in erythrocytes, J. Membr. Biol. 70: 89–103.PubMedCrossRefGoogle Scholar
  93. Deuticke, B., 1989, Monocarboxylate transport in red blood cells: Kinetics and chemical modification, Methods Enzymol. 173: 300–329.PubMedCrossRefGoogle Scholar
  94. Deuticke, B., and Haest, C. W. M., 1987, Lipid modulation of transport proteins in vertebrate cell membranes, Annu. Rev. Physiol. 49: 221–235.PubMedCrossRefGoogle Scholar
  95. Deuticke, B., and Ruska, C., 1976, Changes of nonelectrolyte permeability in cholesterol-loaded erythrocytes, Biochim. Biophys. Acta 433: 638–653.PubMedCrossRefGoogle Scholar
  96. Deuticke, B., Lütkemeier, P., and Sistemich, M., 1984, Ion selectivity of aqueous leaks induced in the erythrocyte membrane by crosslinking of membrane proteins, Biochim. Biophys. Acta 775: 150–160.PubMedCrossRefGoogle Scholar
  97. Deuticke, B., Poser, B., Lütkemeier, P., and Haest, C. W. M., 1983, Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide, Biochim. Biophys. Acta 731: 196–210.PubMedCrossRefGoogle Scholar
  98. Deuticke, B., Henseleit, U., Haest, C. W. M., Heller, K. B., and Dubbelman, T. M. A. R., 1989, Enhancement of transbilayer mobility of a membrane lipid probe accompanies formation of membrane leaks during photodynamic treatment of erythrocytes, Biochim. Biophys. Acta 982: 53–61.PubMedCrossRefGoogle Scholar
  99. De Young, L. R., and Dill, K. A., 1988, Solute partitioning into lipid bilayer membranes, Biochemistry 27: 5281–5289.PubMedCrossRefGoogle Scholar
  100. Diamond, J. M., and Katz, Y., 1974, Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water, J. Membr. Biol. 17: 121–154.PubMedCrossRefGoogle Scholar
  101. DiJulio, D., Hinds, T. R., and Vincenzi, F. F., 1989, Inhibition of basal and calmodulin-activated Cat+-pump ATPase by fractionated compound 48/80, Biochim. Biophys. Acta 981: 337–342.CrossRefGoogle Scholar
  102. Dintenfass, L., 1985, Blood Viscosity, Hyperviscosity and Hyperviscosaemia, MTP Press, Lancaster.Google Scholar
  103. Dittrich, F., Berlin, P., Köpke, K., and Repke, K R. H., 1983, Stereoelectronic interaction between cardiotonic steroids and Na, K-ATPase: Molecular mechanism of digitalis action, Curr. Top. Membr. Transp. 19: 251–255.CrossRefGoogle Scholar
  104. Dodson, B. A., and Moss, J., 1984, Molecular mechanism of action of general anesthetics, Mol. Cell. Biochem. 64: 97–103.PubMedCrossRefGoogle Scholar
  105. Donath, E., and Voigt, A., 1986, Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model, Biophys. J. 499: 493–499.CrossRefGoogle Scholar
  106. Donath, E., Herrmann, A., Coakley, W. T., Groth, T., Egger, M., and Taeger, M., 1987, The influence of the antiviral drugs amantadine and amantadine on erythrocyte and platelet membranes and its comparison with that of tetracaine, Biochem. Pharmacol. 36: 481–487.PubMedCrossRefGoogle Scholar
  107. Duggan, D. E., Bäer, J. E., and Noll, R. M., 1965, Membrane adenosinetriphosphatase and cation composition of mammalian erythrocytes, Naturwissenschaften 10: 264.CrossRefGoogle Scholar
  108. Duhm, J., 1987, Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: Modes of operation, dependence on extracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide, J. Membr. Biol. 98: 15–32.PubMedCrossRefGoogle Scholar
  109. Duhm, J., 1989, Na+ and K+ transport in human and rat erythrocytes: Features complicating the interpretation of data, in: Salt and Hypertension ( R. Rettig, D. Ganten, and F. C. Luft, eds.), pp. 35–51, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  110. Duhm, J., and Becker, B. F., 1977, Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole, Pfluegers Arch. 367: 211–219.CrossRefGoogle Scholar
  111. Duhm, J., and Becker, B. F., 1978, Studies on Na+-dependent Li+ countertransport and bicarbonate-stimulated Li+ transport in human erythrocytes, in: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach ( R. W. Straub and L. Bolis, eds.), pp. 281–295, Raven Press, New York.Google Scholar
  112. Duhm, J., and Becker, B. F., 1979, Studies on lithium transport across the red cell membrane. V. On the nature of the Na + -dependent Li+ countertransport system of mammalian erythrocytes, J. Membr. Biol. 51: 263–286.PubMedCrossRefGoogle Scholar
  113. Duhm, J., and Göbel, B. 0., 1984, Role of furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo, J. Membr. Biol. 77: 243–254.PubMedCrossRefGoogle Scholar
  114. Duhm, J., Eisenried, F., Becker, B. F., and Greil, W., 1976, Studies on lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ countertransport system of human erythrocytes, J. Membr. Biol. 364: 147–155.Google Scholar
  115. Dunham, P. B., and Ellory, J. C., 1981, Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride, J. Physiol. (London) 318: 511–530.Google Scholar
  116. Eftink, M. R., Puri, R. K., and Ghahramani, M. D., 1985, Local anesthetic—phospholipid interactions. The pH dependence of the binding of dibucaine to dimyristoylphosphatidylcholine vesicles, Biochim. Biophys. Acta 813: 137–140.PubMedCrossRefGoogle Scholar
  117. Eisinger, J., and Flores, J., 1982, The relative locations of intramembrane fluorescent probes and of the cytosol hemoglobin in erythrocytes, studied by transverse resonance energy transfer, Biophys. J. 37: 6–7.PubMedCrossRefGoogle Scholar
  118. Ellens, H., Siegel, D. P., Alford, D., Yeagle, P. L., Boni, L., Lis, L. J., Quinn, P. J., and Bentz, J., 1989, Membrane fusion and inverted phases, Biochemistry 28: 3692–3703.PubMedCrossRefGoogle Scholar
  119. Ellory, J. C., and Stewart, G. W., 1982, The human erythrocyte Cl-dependent Na-K cotransport system as a possible model for studying the action of loop diuretics, Br. J. Pharmacol. 75: 183–188.PubMedCrossRefGoogle Scholar
  120. Engelmann, B., and Duhm, J., 1989, Distinction of two components of passive Cat+ entry blockers, Biochim. Biophys. Acta 981: 36–42.CrossRefGoogle Scholar
  121. Ernst, E., 1987, Hemorheological treatment, in: Clinical Hemorheology ( S. Chien, J. Dormandy, E. Ernst, and A. Matrai, eds.), pp. 229–373, Nijhoff, The Hague.Google Scholar
  122. Escobales, N., and Canessa, M., 1985, Cat+-activated Na+ fluxes in human red cells. Amiloride sensitivity, J. Biol. Chem. 260: 11914–11923.PubMedGoogle Scholar
  123. Escobales, N., and Canessa, M., 1986, Amiloride-sensitive Na+ transport in human red cells: Evidence for a Na/H exchange system, J. Membr. Biol. 90: 21–28.PubMedCrossRefGoogle Scholar
  124. Escobales, N., and Rivera, A., 1987, Na+ for H+ exchange in rabbit erythrocytes, J. Cell. Physiol. 132: 7380.CrossRefGoogle Scholar
  125. Evans, E. A., and LaCelle, P. L., 1975, Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation, Blood 45: 29–43.PubMedGoogle Scholar
  126. Evans, E. A., and Skalak, R., 1979a, Mechanics and thermodynamics of biomembranes: Part 1, CRC Crit. Rev. Bioeng. 3: 181–323.PubMedGoogle Scholar
  127. Evans, E. A., and Skalak, R., 1979b, Mechanics and thermodynamics of biomembranes: Part 2, CRC Crit. Rev. Bioeng. 3: 331–418.PubMedGoogle Scholar
  128. Evans, E., Mohandas, N., and Leung, A., 1984, Static and dynamic rigidities of normal and sickle erythrocytes, J. Clin. Invest. 73: 477–488.PubMedCrossRefGoogle Scholar
  129. Fannin, F. F., Evans, J. O., Gibbs, E. M., and Diedrich, D. F., 1981, Phloretinyl-3’-benzylazide: A high affinity probe for the sugar transporter in human erythrocytes. I. Hexose transport inhibition and photolabelling of mutarotase, Biochim. Biophys. Acta 649: 189–201.PubMedCrossRefGoogle Scholar
  130. Fehlau, R., Grygorczyk, R., Fuhrmann, G. F., and Schwarz, W., 1989, Modulation of the Cat+- or Pb2+activated K+-selective channels in human red cells. II. Parallelisms to modulation of the activity of a membrane-bound oxidoreductase, Biochim. Biophys. Acta 978: 37–42.PubMedCrossRefGoogle Scholar
  131. Feinstein, M. B., Fernandez, S. M., and Sha’afi, R. I., 1975, Fluidity of natural membranes and phosphatidylserine and ganglioside dispersions. Effects of local anesthetics, cholesterol and protein, Biochim. Biophys. Acta 413: 354–370.PubMedCrossRefGoogle Scholar
  132. Feinstein, M. B., Volpi, M., Perrie, S., Makriyannis, A., and Sha’afi, R. I., 1977, Mechanisms of local anesthetic action on the permeability of erythrocytes, leukocytes, and liposomes containing the erythrocyte anion channel protein, Mol. Pharmacol. 13: 840–851.PubMedGoogle Scholar
  133. Feo, C., and Mohandas, N, 1977, Clarification of the role of ATP in red cell morphology and function, Nature 265: 166.PubMedCrossRefGoogle Scholar
  134. Féray, J.-C., and Garay, R., 1986, An Na + -stimulated Mgt+-transport system in human red blood cells, Biochim. Biophys. Acta 856: 76–84.PubMedCrossRefGoogle Scholar
  135. Féray, J.-C., and Garay, R., 1987, A one-to-one Mgt+: Mn2+ exchange in rat erythrocytes, J. Biol. Chem. 262: 5763–5768.PubMedGoogle Scholar
  136. Féray, J.-C., and Garay, R., 1988, Demonstration of a Na+: Mgt+ exchange in human red cells by its sensitivity to tricyclic antidepressant drugs, Naunyn-Schmiedeberg’s Arch. Pharmacol. 338: 332–337.PubMedGoogle Scholar
  137. Ferrell, J. E., Jr., and Huestis, W. H., 1984, Phosphoinositide metabolism and the morphology of human erythrocytes, J. Cell Biol. 98: 1992–1998.PubMedCrossRefGoogle Scholar
  138. Ferrell, J. E., Lee, K.-J., and Huestis, W. M., 1985, Membrane bilayer balance and erythrocyte shape: A quantitative assessment, Biochemistry 24: 2849–2857.PubMedCrossRefGoogle Scholar
  139. Fischer, T., and Schmid-Schönbein, H., 1977, Tank tread motion of red cell membranes in viscometric flow: Behavior of intracellular and extracellular markers (with film), Blood Cells 3: 351–365Google Scholar
  140. Forbush, B., III, 1983, Cardiotonic steroid binding to Na,K-ATPase, Curr. Top. Membr. Transp. 19: 167201.Google Scholar
  141. Ford, D. A., Sharp, J. A., and Rovetto, M. J., 1985, Erythrocyte adenosine transport: Effects of Cat+ channel antagonists and ions, Am. J. Physiol. 248: H593 — H598.PubMedGoogle Scholar
  142. Forman, S. A., Verkman, A. S., Dix, J. A., and Solomon, A. K., 1982, Interaction of phloretin with the anion transport protein of the red blood cell membrane, Biochim. Biophys. Acta 689: 531–538.PubMedCrossRefGoogle Scholar
  143. Forman, S. A., Verkman, A. S., Dix, J. A., and Solomon, A. K., 1985, n-Alkanols and halothane inhibit red cell anion transport and increase band 3 conformational change rate, Biochemistry 24: 4859–4866.Google Scholar
  144. Forrest, B. J., and Rodham, D. K., 1985, An anesthetic-induced phosphatidylcholine hexagonal phase, Biochim. Biophys. Acta 814: 281–288.CrossRefGoogle Scholar
  145. Fortes, P. A. G., Ellory, J. C., and Lew, V. L., 1973, Suramin: A potent ATPase inhibitor which acts on the inside surface of the sodium pump, Biochim. Biophys. Acta 318: 262–272.PubMedCrossRefGoogle Scholar
  146. Freedman, J. C., and Novak, T. S., 1983, Membrane potentials associated with Ca-induced K conductance in human red blood cells: Studies with a fluorescent oxonol dye, WW 781, J. Membr. Biol. 72: 59–74.PubMedCrossRefGoogle Scholar
  147. Frezzatti, W. A., Jr., Toselli, W. R., and Schreier, S., 1986, Spin label study of local anesthetic—lipid membrane interactions. Phase separation of the uncharged form and bilayer micellization by the charged form of tetracaine, Biochim. Biophys. Acta 860: 531–538.PubMedCrossRefGoogle Scholar
  148. Fröhlich, O., 1984, How channel-like is a biological carrier? Studies with the erythrocyte anion transporter, Biophys. J. 45: 93–94.PubMedCrossRefGoogle Scholar
  149. Fröhlich, O., and Gunn, R. B., 1986, Erythrocyte anion transport: The kinetics of a single-site obligatory exchange system, Biochim. Biophys. Acta 864: 169–194.PubMedCrossRefGoogle Scholar
  150. Fröhlich, O., and Gunn, R. B., 1987, Interactions of inhibitors on anion transporter of human erythrocyte, Am. J. Physiol. 252: C153 — C162.PubMedGoogle Scholar
  151. Fröhlich, O., and Mayer, S., 1989, Mechanism of phloretin inhibition of erythrocyte anion exchange, Biophys. J. 55: 145a.Google Scholar
  152. Fuhrmann, G. F., Schwarz, W., Kersten, R., and Sdun, H., 1985, Effects of vanadate, menadione and menadione analogs on the Cat+-activated K + channels in human red cells. Possible relations to membrane-bound oxidoreductase activity, Biochim. Biophys. Acta 820: 223–234.PubMedCrossRefGoogle Scholar
  153. Fujii, T., Sato, T., Tamura, A., Wakatsuki, M., and Kanaho, Y., 1979, Shape changes of human erythrocytes induced by various amphipathic drugs acting on the membrane of the intact cells, Biochem. Pharmacol. 28: 613–620.PubMedCrossRefGoogle Scholar
  154. Fullerton, D. S., Kitatsuji, E., and Deffo, T., 1983, Use of prophet and MMS-X computer graphics in the study of the cardiac steroid receptor site of Na,K-ATPase, Curr. Top. Membr. Transp. 19: 257–264.CrossRefGoogle Scholar
  155. Fung, Y. C., Tsang, W. C. O., and Patitucci, P., 1981, High-resolution data on the geometry of red blood cells, Biorheology 18: 369–385.PubMedGoogle Scholar
  156. Gaffney, B. J., Willingham, G. L., and Schepp, R. S., 1983, Synthesis and membrane interactions of spin-label bifunctional reagents, Biochemistry 22: 881–892.PubMedCrossRefGoogle Scholar
  157. Garay, R. P., Diez, J., Nazaret, C., Dagher, G., and Abitol, J. P., 1985, The interaction of canrenone with the Na+,K+ pump in human red blood cells, Naunyn-Schmiedeberg’s Arch. Pharmacol. 329: 311–315.PubMedCrossRefGoogle Scholar
  158. Garay, R. P., Hannaert, P. A., Nazaret, C., and Cragoe, E. J., Jr., 1986, The significance of the relative effects of loop diuretics and anti-brain edema agents on the Na+,K+,CI— cotransport system and the Cl—/NaCO3 anion exchanger, Naunyn-Schmiedeberg’s Arch. Pharmacol. 334: 202–209.PubMedCrossRefGoogle Scholar
  159. Garay, R. P., Nazaret, C., Hannaert, P. A., and Cragoe, E. J., Jr., 1988, Demonstration of a [K+,CI—]cotransport in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: Regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,CI—]-cotransport system, Mol. Pharmacol. 33: 696–701.PubMedGoogle Scholar
  160. Garcia-Sancho, J., Sanchez, A., and Herreros, B., 1979, Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane, Biochim. Biophys. Acta 556: 118–130.PubMedCrossRefGoogle Scholar
  161. Gardos, G., and Szasz, I., 1968, The mechanism of ion transport in human erythrocytes. II. The role of histamine in the regulation of cation transport, Acta Biochim. Biophys. Acad. Sci. Hung. 3: 13–27.Google Scholar
  162. Geck, P., and Heinz, E., 1986, The Na-K-2C1 cotransport system, J. Membr. Biol. 91: 97–105.PubMedCrossRefGoogle Scholar
  163. Gerlach, E., Deuticke, B., and Koss, F. W., 1965, Einfluß von Pyrimidopyrimidin-und Pteridin-Derivaten auf Phosphat-und Adenosin-Permeabilität menschlicher Erythrozyten, Arzneim. Forsch. 15: 558–563.Google Scholar
  164. Gietzen, K., Mansard, A., and Bader, H., 1980, Inhibition of human erythrocyte Ca2+-transport ATPase by phenothiazines and butyrophenones, Biochem. Biophys. Res. Commun. 94: 674–681.PubMedCrossRefGoogle Scholar
  165. Gietzen, K., Wüthrich, A., and Bader, H., 1981, R 24571: A powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions, Biochem. Biophys. Res. Commun. 101: 418–425.PubMedCrossRefGoogle Scholar
  166. Gietzen, K., Sadorf, I., and Bader, H., 1982a, A model for the regulation of the calmodulin-dependent enzymes erythrocyte Cat+-transport ATPase and brain phosphodiesterase by activators and inhibitors, Biochem. J. 207: 541–548.PubMedGoogle Scholar
  167. Gietzen, K., Wüthrich, A. and Bader, H., 1982b, Effects of microtubular inhibitors on plasma membrane calmodulin-dependent Cat+-transport ATPase, Mol. Pharmacol. 22: 413–420.PubMedGoogle Scholar
  168. Gietzen, K., Adamczyk-Engelmann, P., Wüthrich, A., Konstantinova, A., and Bader, H., 1983, Compound 48/80 is a selective and powerful inhibitor of calmodulin-regulated functions, Biochim. Biophys. Acta 736: 109–118.PubMedCrossRefGoogle Scholar
  169. Giraud, F., Claret, M., Bruckdorfer, K. R., and Chailley, B., 1981, The effects of membrane lipid order and cholesterol on the internal and external cationic sites of the Na+—K+ pump in erythrocytes, Biochim. Biophys. Acta 647: 249–258.PubMedCrossRefGoogle Scholar
  170. Goldstein, D. B., 1984, The effects of drugs on membrane fluidity, Annu. Rev. Pharmacol. Toxicol. 24: 43–64.PubMedCrossRefGoogle Scholar
  171. Goodman, S. R., Krebs, K. E., Whitfield, C. F., Riederer, B. M., and Zagon, I. S., 1988, Spectrin and related molecules, CRC Crit. Rev. Biochem. 23: 171–234.PubMedCrossRefGoogle Scholar
  172. Grebe, R., and Schmid-Schönbein, H., 1985, Tangent counting for objective assessment of erythrocyte shape changes, Biorheology 22: 455–469.PubMedGoogle Scholar
  173. Grebe, R., and Zuckermann, M., 1989, Erythrocyte shape simulation by numerical optimization, Biorheology 26: 505.Google Scholar
  174. Grebe, R., Wolff, H., and Schmid-Schoenbein, H., 1988a, Influence of red cell surface charge on red cell membrane curvature, Pfluegers Arch. 413: 77–83.CrossRefGoogle Scholar
  175. Grebe, R., Zuckermann, M., and Schmid-Schönbein, H., 1988b, Erythrocyte shape is influenced by free electric and chemical energy, in: Electromagnetic Fields and Biomembranes ( M. Markov and M. Blank, eds.), pp. 141–144, Plenum Press, New York.CrossRefGoogle Scholar
  176. Griffith, O. H., Dehlinger, P. J., and Van, S. P., 1974, Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes), J. Membr. Biol. 15: 159–192.PubMedCrossRefGoogle Scholar
  177. Gruen, D. W. R., and Haydon, D. A., 1981, A mean-field model of the alkane-saturated lipid bilayer above its phase transition, Biophys. J. 33: 167–188.PubMedCrossRefGoogle Scholar
  178. Grunze, M., Haest, C. W. M., and Deuticke, B., 1982, Lateral segregation of membrane lipids and formation of stable rod-shaped membrane projections in erythrocytes treated with long-chain alcohols, Biochim. Biophys. Acta 693: 237–245.PubMedCrossRefGoogle Scholar
  179. Grygorczyk, R., and Schwarz, W., 1985, Cat -activated K+ permeability in human erythrocytes: Modulation of single-channel events, Eur. Biophys. J. 12: 57–65.PubMedCrossRefGoogle Scholar
  180. Gunn, R. B., 1985, Bumetanide inhibition of anion exchange in human red blood cells, Biophys. J. 47: 326a.Google Scholar
  181. Gunn, R. B., and Cooper, J. A., Jr., 1975, Effect of local anesthetics on chloride transport in erythrocytes, J. Membr. Biol. 25: 311–326.PubMedCrossRefGoogle Scholar
  182. Günther, I., and Vormann, J., 1985, Mgt+ efflux is accomplished by an amiloride sensitive Na+/Mg2+ antiport, Biochem. Biophys. Res. Commun. 130: 540–545.PubMedCrossRefGoogle Scholar
  183. Gutknecht, J., and Tosteson, D. C., 1970, Ionic permeability of thin lipid membranes. Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine, J. Gen. Physiol. 55: 359–374.PubMedCrossRefGoogle Scholar
  184. Haas, M., 1989, Properties and diversity of (Na—K—CI) cotransporters, Annu. Rev. Physiol. 51: 443–457.PubMedCrossRefGoogle Scholar
  185. Haas, M., and Forbush, B., III, 1986, [3H]bumetanide binding to duck red cells. Correlation with inhibition of (Na + K + 2C1) cotransport, J. Biol. Chem. 261: 8434–8441.Google Scholar
  186. Haas, M., and Harrison, J. H., Jr., 1989, Stimulation of K—Cl cotransport in rat red cells by a hemolytic anemia-producing metabolite of dapsone, Am. J. Physiol. 256: C265 — C272.PubMedGoogle Scholar
  187. Haas, M., and McManus, T. J., 1983, Bumetanide inhibits (Na + K + 2Cl) cotransport at a chloride site, Am. J. Physiol. 245: C235 — C240.PubMedGoogle Scholar
  188. Haas, M., Schooler, J., and Tosteson, D. C., 1975, Coupling of lithium to sodium transport in human red cells, Nature 258: 425–427.PubMedCrossRefGoogle Scholar
  189. Haest, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694: 331–352.PubMedCrossRefGoogle Scholar
  190. Haest, C. W. M., Plasa, G., and Deuticke, B., 1981, Selective removal of lipids from the outer membrane layer of human erythrocytes without hemolysis, Biochim. Biophys. Acta 649: 701–708.PubMedCrossRefGoogle Scholar
  191. Hammond, J. R., Jarvis, S. M., Paterson, A. R. P., and Alexander, S., 1983, Benzodiazepine inhibition of nucleoside transport in human erythrocytes, Biochem. Pharmacol. 32: 1229–1235.PubMedCrossRefGoogle Scholar
  192. Hammond, J. R., Williams, E. F., and Clanachan, A. S., 1985, Affinity of calcium channel inhibitors, benzodiazepines, and other vasoactive compounds for the nucleoside transport system, Can. J. Pharmacol. 63: 1302–1307.CrossRefGoogle Scholar
  193. Hannaert, P. A., and Garay, R. P., 1986, A kinetic analysis of Na—Li countertransport in human red blood cells, J. Gen. Physiol. 87: 353–368.PubMedCrossRefGoogle Scholar
  194. Hanpft, R., and Mohr, K., 1985, Influence of cationic amphiphilic drugs on the phase-transition temperature of phospholipids with different polar headgroups, Biochim. Biophys. Acta 814: 156–162.CrossRefGoogle Scholar
  195. Haydon, D. A., and Elliott, J. R., 1986, Surface potential changes in lipid monolayers and the “cut-off” in anesthetic effects of N-alkanols, Biochim. Biophys. Acta 863: 337–340.PubMedCrossRefGoogle Scholar
  196. Heinrich, R., Gaestel, M., and Glaser, R., 1982, The electric potential profile across the erythrocyte membrane, J. Theor. Biol. 96: 211–231.PubMedCrossRefGoogle Scholar
  197. Heller, K. B., Jahn, B., and Deuticke, B., 1987, Peroxidative membrane damage in human erythrocytes induced by a concerted action of iodoacetate, vanadate and ferricyanide, Biochim. Biophys. Acta 901: 6777.Google Scholar
  198. Hershfield, R., and Richards, F. M., 1976, Reversible inhibition of glucose transport in human erythrocytes by a series of pyridine derivatives, J. Biol. Chem. 251: 5141–5148.PubMedGoogle Scholar
  199. Hinds, T. R., Raess, B. U., and Vincenzi, F. F., 1981, Plasma membrane Cat+ transport: Antagonism by several potential inhibitors, J. Membr. Biol. 58: 57–65.PubMedCrossRefGoogle Scholar
  200. Hochmuth, R. M., 1987, Properties of red blood cells, in: Handbook of Bioengineering (R. Skalak and S. Chien, eds.), pp. 12.1–12. 17, McGraw—Hill, New York.Google Scholar
  201. Hochmuth, R. M., and Waugh, R. E., 1987, Erythrocyte membrane elasticity and viscosity, Annu. Rev. Physiol. 49: 209–219.PubMedCrossRefGoogle Scholar
  202. Hochmuth, R. M., Buxbaum, K. L., and Evans, E. A., 1980, Temperature dependence of the viscoelastic recovery of red cell membrane, J. Biophys. 29: 177–182.CrossRefGoogle Scholar
  203. Hochmuth, R. M., Wiles, H. C., Evans, E. A., and McCown, J. T., 1982, Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment, Biophys. J. 39: 83–89.PubMedCrossRefGoogle Scholar
  204. Hoffman, E. K., and Simonsen, L. O., 1989, Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiol. Rev. 69: 315–382.Google Scholar
  205. Hoffman, J. F., 1986, Active transport of Na+ and K+ by red blood cells, in: Membrane Transport Disorders, 2nd ed. ( T. Andreoli, J. F. Hoffman, S. G. Schultz, and D. D. Fanestil, eds.), pp. 221–234, Plenum Press, New York.Google Scholar
  206. Hoffman, J. F., and Forbush, B., III (eds.), 1983, Structure, Mechanism, and Function of the Na/K Pump, Curr. Top. Membr. Transp. 19.Google Scholar
  207. Hoffman, J. F., Yingst, D. R. Goldinger, J. M., Blum, R. M., and Knauf, P. A., 1980, On the mechanism of Ca-dependent K transport in human red blood cells, in: Membrane Transport in Erythrocytes, Alfred Benzon Symposium 14 ( U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Munksgaard, Copenhagen.Google Scholar
  208. Holmes, D. E., and Piette, L. H., 1970, Effects of phenothiazine derivatives on biological membranes: Drug-induced changes in electron spin resonance spectra from spin-labeled erythrocyte ghost membranes, J. Pharmacol. Exp. Ther. 173: 78–84.PubMedGoogle Scholar
  209. Hope, M. J., and Cullis, P. R., 1981, The role of nonbilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens, Biochim. Biophys. Acta 640: 82–90.PubMedCrossRefGoogle Scholar
  210. Hornby, A. P., and Cullis, P. R., 1981, Influence of local and neutral anesthetics on the polymorphic phase preferences of egg yolk phosphatidylethanolamine, Biochim. Biophys. Acta 647: 285–292.PubMedCrossRefGoogle Scholar
  211. Howland, J. L., Daughtey, J. N., Donatelli, M., and Theofrastous, J. P., 1984, Inhibition of the erythrocyte calcium-sensitive potassium channel by probucol, Pharmacol. Res. Commun. 16: 1057–1064.PubMedCrossRefGoogle Scholar
  212. Isomaa, B., and Engblom, A. C., 1988, Is calmodulin inhibition involved in shape transformations induced by amphiphiles in erythrocytes? Biochim. Biophys. Acta 940: 121–126.PubMedCrossRefGoogle Scholar
  213. Isomaa, B., and Hägerstrand, H., 1988, Effects of nonionic amphiphiles at sublytic concentrations on the erythrocyte membrane, Cell Biochem. Funct. 6: 183–190.PubMedCrossRefGoogle Scholar
  214. Isomaa, B., Bergman, H., and Sandberg, P., 1979, The binding of CTAB, a cationic surfactant, to the rat erythrocyte membrane, Acta Pharmacol. Toxicol. 44: 36–42.CrossRefGoogle Scholar
  215. Isomaa, B., Hägerstrand, H., Paatero, G., and Englbom, A. C., 1986, Permeability alterations and anti-haemolysis induced by amphiphiles in human erythrocytes, Biochim. Biophys. Acta 860: 510–524.PubMedCrossRefGoogle Scholar
  216. Isomaa, B., Hägerstrand, H., and Paatero, G., 1987, Shape transformations induced by amphiphiles in erythro-cytes, Biochim. Biophys. Acta 899: 93–103.PubMedCrossRefGoogle Scholar
  217. Jain, M. K., and Wu, N. M., 1977, Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer. III. Phase transition in lipid bilayer, J. Membr. Biol. 34: 157–201.CrossRefGoogle Scholar
  218. Janoff, A. S., Mazorow, D. L., Coughlin, R. T., Bowdler, A. J., Haug, A., and McGroarty, E. J., 1981, The modification of human erythrocyte membrane structure by membrane stabilizers: An electron spin resonance study, Am. J. Hematol. 10: 171–179.PubMedCrossRefGoogle Scholar
  219. Jarvis, S. M., 1986, Nitrobenzylthioinosine-sensitive nucleoside transport system: Mechanism of inhibition by dipyridamole, Mol. Pharmacol. 30: 659–665.PubMedGoogle Scholar
  220. Jarvis, S. M., 1987, Kinetics and molecular properties of nucleoside transporters in animal cells, in: Topics and Perspectives in Adenosine Research ( E. Gerlach and B. F. Becker, eds.), pp. 102–117, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  221. Jarvis, S. M., McBride, D., and Young, J. D., 1982, Erythrocyte nucleoside transport: Asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites, J. Physiol. (London) 324: 31–46.Google Scholar
  222. Jarvis, S. M., Janmohamed, S. N., and Young, J. D., 1983, Kinetics of nitrobenzylthioinosine binding to the human erythrocyte nucleoside transporter, Biochem. J. 216: 661–667.PubMedGoogle Scholar
  223. Jay, A. W. L., 1975, Geometry of the human erythrocyte. I. Effect of albumin on cell geometry, Biophys. J. 15: 205–222.PubMedCrossRefGoogle Scholar
  224. Jennings, M. L., 1989, Structure and function of the red blood cell anion transport protein, Annu. Rev. Biophys. Biophys. Chem. 18: 397–430.PubMedCrossRefGoogle Scholar
  225. Jennings, M. L., and Adams-Lackey, M., 1982, A rabbit erythrocyte membrane protein associated with I-lactate transport, J. Biol. Chem. 257: 12866–12871.PubMedGoogle Scholar
  226. Jennings, M. L., and Solomon, A. K., 1976, Interaction between phloretin and the red blood cell membrane, J. Gen. Physiol. 67: 381–397.PubMedCrossRefGoogle Scholar
  227. Jennings, M. L., Douglas, S. M., and McAndrew, P. E., 1986, Amiloride-sensitive sodium—hydrogen exchange in osmotically shrunken rabbit red blood cells, Am. J. Physiol. 251: C32 — C40.PubMedGoogle Scholar
  228. Johnson, R. M., 1985, pH effects on red cell deformability, Blood Cells 11: 317–321.Google Scholar
  229. Johnson, S. M., and Bangham, A. D., 1969, The action of anaesthetics on phospholipid membranes, Biochim. Biophys. Acta 193: 92–104.PubMedCrossRefGoogle Scholar
  230. Joiner, C. H., and Lauf, P. K., 1978, The correlation between ouabain binding and potassium pump inhibition in human and sheep erythrocytes, J. Physiol. (London) 283: 155–175.Google Scholar
  231. Jones, O. T., and Lee, A. G., 1985, Interactions of hexachlorocyclohexanes with lipid bilayers, Biochim. Biophys. Acta 812: 731–739.CrossRefGoogle Scholar
  232. Jorgensen, P. L., and Andersen, J. P., 1988, Structural basis for E1—E2 conformational transitions in Na,Kpump and Ca-pump proteins, J. Membr. Biol. 103: 95–120.PubMedCrossRefGoogle Scholar
  233. Jung, C. Y., and Mookerjee, B. K., 1976, Inhibitory effect of furosemide on glucose transport, J. Lab. Clin. Med. 87: 960–966.PubMedGoogle Scholar
  234. Jung, C. Y., and Rampal, A. L., 1977, Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts, J. Biol. Chem. 252: 5456–5463.PubMedGoogle Scholar
  235. Kahn, J. B., Jr., 1955, Effects of two erythrophleum alkaloids on potassium transfer in human erythrocytes, Proc. Soc. Exp. Biol. Med. 110: 412–414.Google Scholar
  236. Kaji, D., 1986, Volume-sensitive K transport in human erythrocytes, J. Gen. Physiol. 88: 719–738.PubMedCrossRefGoogle Scholar
  237. Katz, Y., and Diamond, J. M., 1974, Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water, J. Membr. Biol. 17: 101–120.PubMedCrossRefGoogle Scholar
  238. Kelleher, R. S., Murray, E. F., and Peterson, S. W., 1987, Insulin causes insulin-receptor internalization in human erythrocyte ghosts, Biochem. J. 241: 93–97.PubMedGoogle Scholar
  239. Kim, H. D., Sergeant, S., Forte, L. R., Hwan Sohn, D., and Hyok, Im, J., 1989, Activation of a Cl-dependent K flux by cAMP in pig red cells, Am. J. Physiol. 256: C772 — C778.PubMedGoogle Scholar
  240. Kirkpatrick, F. H., 1979, New models of cellular control: Membrane cytoskeletons, membrane curvature potential, and possible interactions, Biosystems 11: 93–109.PubMedCrossRefGoogle Scholar
  241. Kita, Y., and Miller, K. W., 1982, Partial molar volumes of some 1-alkanols in erythrocyte ghosts and lipid bilayers, Biochemistry 21: 2840–2847.PubMedCrossRefGoogle Scholar
  242. Kita, Y., Bennett, L. J., and Miller, K. W., 1981, The partial molar volumes of anesthetics in lipid bilayers, Biochim. Biophys. Acta 647: 130–139.PubMedCrossRefGoogle Scholar
  243. Kleinfeld, A. M., 1987, Current views of membrane structure, Curr. Top. Membr. Transp. 29: 1–27.CrossRefGoogle Scholar
  244. Knauf, P. A., 1979, Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure, Curr. Top. Membr. Transp. 12: 249–363.CrossRefGoogle Scholar
  245. Knauf, P. A., 1986, Anion transport in erythrocytes, in: Membrane Transport Disorders, 2nd ed. ( T. Andreoli, J. F. Hoffman, S. G. Schultz, and D. D. Fanestil, eds.), pp. 191–220, Plenum Press, New York.Google Scholar
  246. Knauf, P. A., and Mann, N. A., 1984, Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system, J. Gen. Physiol. 83: 703–725.PubMedCrossRefGoogle Scholar
  247. Kobayashi, R., Tawata, M., and Hidaka, H., 1979, Cat+ regulated modulator protein interacting agents: Inhibition of Ca2+_Mg2+_ATPase of human erythrocyte ghost, Biochem. Biophys. Res. Commun. 88: 1037–1045.PubMedCrossRefGoogle Scholar
  248. Koblin, D. D., and Wang, H. H., 1976, The effect of chemical modifiers on the interaction of a spin-labeled local anesthetic with human erythrocyte membranes, Biochem. Pharmacol. 25: 1405–1413.PubMedCrossRefGoogle Scholar
  249. Koblin, D. D., Pace, W. D., and Wang, H. H., 1975, The penetration of local anesthetics into the red blood cell membrane as studied by fluorescence quenching, Arch. Biochem. Biophys. 171: 176–182.PubMedCrossRefGoogle Scholar
  250. Korten, K., and Miller, K. W., 1979, Erythrocyte ghost—buffer partition coefficients of phenobarbital, pentobarbital, and thiopental support the pH-partition hypothesis, Can. J. Physiol. Pharmacol. 57: 325–328.PubMedCrossRefGoogle Scholar
  251. Korten, K., Sommer, T. J., and Miller, K. W., 1980, Membrane composition modulates thiopental partitioning in bilayers and biomembranes, Biochim. Biophys. Acta 599: 271–279.PubMedCrossRefGoogle Scholar
  252. Kotyk, A., Kolinska, J., Verse, K., and Szammer, J., 1965, Inhibition by phloretin and phlorizin derivatives of sugar transport in different cells, Biochem. Z. 342: 129–138.PubMedGoogle Scholar
  253. Kregenow, F. M., Caryk, T., and Siebens, A. W., 1985, Further studies of the volume-regulatory response of Amphiuma red cells in hypertonic media. Evidence for amiloride-sensitive Na/H exchange, J. Gen. Physiol. 86: 565–584.PubMedCrossRefGoogle Scholar
  254. Krupka, R. M., 1985, Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes, J. Membr. Biol. 83: 71–80.PubMedCrossRefGoogle Scholar
  255. Krupka, R. M., and Devés, R., 1980a, Evidence for allosteric inhibition sites in the glucose camer of erythrocytes, Biochim. Biophys. Acta 598: 127–133.PubMedCrossRefGoogle Scholar
  256. Krupka, R. M., and Devés, R., 1980b, Asymmetric binding of steroids to internal and external sites in the glucose carrier of erythrocytes, Biochim. Biophys. Acta 598: 134–144.PubMedCrossRefGoogle Scholar
  257. Krupka, R. M., and Devés, R., 1986, Looking for probes of gated channels: Studies of the inhibition of glucose and choline transport in erythrocytes, Biochem. Cell Biol. 64: 1099–1107.PubMedCrossRefGoogle Scholar
  258. Kuriki, Y., and Racker, E., 1976, Inhibition of (Na +,K+) adenosine triphosphatase and its partial reactions by quercetin, Biochemistry 15: 4951–4956.PubMedCrossRefGoogle Scholar
  259. Kutchai, H., Chandler, L. H., and Geddis, L. M., 1980, Effects of anesthetic alcohols on membrane transport processes in human erythrocytes, Biochim. Biophys. Acta 600: 870–881.PubMedCrossRefGoogle Scholar
  260. Lackington, I., and Orrego, F., 1981, Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs, FEBS Lett. 133: 103–106.PubMedCrossRefGoogle Scholar
  261. Lacko, L., and Wittke, B., 1984, The affinities of benzodiazepines to the transport protein of glucose in human erythrocytes, Drug Res. 34: 403–407.Google Scholar
  262. Lacko, L., Wittke, B., and Geck, P., 1974, Interaction of alcohols with the transport system of glucose in human erythrocytes, J. Cell. Physiol. 83: 267–274.PubMedCrossRefGoogle Scholar
  263. Lacko, L., Wittke, B., and Geck, P., 1975, Interaction of steroids with the transport system of glucose in human erythrocytes, J. Cell. Physiol. 86: 673–680.PubMedCrossRefGoogle Scholar
  264. Lacko, L., Wittke, B., and Lacko, I., 1977, Interaction of local anesthetics with the transport system of glucose in human erythrocytes, J. Cell. Physiol. 92: 257–264.PubMedCrossRefGoogle Scholar
  265. Lacko, L., Wittke, B., and Lacko, I., 1978, Inhibition of glucose transport in human erythrocytes by benzylalcohol, J. Cell. Physiol. 96: 199–202.PubMedCrossRefGoogle Scholar
  266. Lacko, L., Wittke, B., and Lacko, I., 1979, The effect of homologous local anesthetics of the 4-alkoxyand 4-alkylamino-benzoic acid-diethylamino-ethylester-hydrochloride-series on the glucose transport in human erythrocytes, J. Cell. Physiol. 100: 169–174.PubMedCrossRefGoogle Scholar
  267. Lacko, L., Wittke, B., and Zimmer, G., 1981, Interaction of benzoic acid derivatives with the transport system of glucose in human erythrocytes, Biochem. Pharmacol. 30: 1425–1431.PubMedCrossRefGoogle Scholar
  268. Lande, W. M., Thiemann, P. V. W., and Mentzen, W. C., Jr., 1982, Missing band 7 membrane protein in two patients with high Na, low K erythrocytes, J. Clin. Invest. 70: 1273–1280.PubMedCrossRefGoogle Scholar
  269. Lang, R. D. A., Wickenden, C., Wynne, J., and Lucy, J. A., 1984, Proteolysis of ankyrin and of band 3 protein in chemically induced cell fusion, Biochem. J. 218: 295–305.PubMedGoogle Scholar
  270. Langdon, R. G., and Holman, V. P., 1988, Immunological evidence that band 3 is the major glucose transporter of the human erythrocyte membrane, Biochim. Biophys. Acta 945: 23–32.PubMedCrossRefGoogle Scholar
  271. Lange, Y., and Slayton, J. M., 1982, Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape Lipid Res. 23: 1121–1127.Google Scholar
  272. Lange, Y., Dolde, J., and Steck, T. L., 1981, The rate of transmembrane movement of cholesterol in the human erythrocyte, J. Biol. Chem. 256: 5321–5323.PubMedGoogle Scholar
  273. Latorre, R., Oberhauser, A., Labarca, P., and Alvarez, O., 1989, Varieties of calcium-activated potassium channels, Anna. Rev. Physiol. 51: 385–399.CrossRefGoogle Scholar
  274. Latron, F., Blanchard, D., and Carton, J. P., 1987, Immunochemical characterization of the human blood cell membrane glycoprotein recognized by the monoclonal antibody 12E7, Biochem. J. 247: 757–764.PubMedGoogle Scholar
  275. Lauf, P. K., 1984, Thiol-dependent passive K/Cl transport in sheep red cells. IV. Furosemide inhibition as a function of external Rb+, Na+, and Cl—, J. Membr. Biol. 77: 57–62.PubMedCrossRefGoogle Scholar
  276. Lauf, P. K., 1985, K+: Cl— cotransport: Sulthydryls, divalent cations, and the mechanism of volume activation in a red cell, J. Membr. Biol. 88: 1–13.PubMedCrossRefGoogle Scholar
  277. Lauf, P. K., 1986, Chloride-dependent cation cotransport and cellular differentiation: A comparative approach, Curr. Top. Membr. Transp. 27: 89–125.CrossRefGoogle Scholar
  278. Lauf, P. K., McManus, T. J., Haas, M., Forbush, B., Duhm, J., Flatman, P. W., Saier, M. H., Jr., and Russell, J. M., 1987, Physiology and biophysics of chloride and cation cotransport across cell membranes, Fed. Proc. 46: 2377–2394.PubMedGoogle Scholar
  279. Lavis, V. R., Lee, D. P., and Shenolikar, S., 1987, Evidence that forskolin binds to the glucose transporter of human erythrocytes, J. Biol. Chem. 262: 14571–14575.PubMedGoogle Scholar
  280. LeFevre, P. G., 1961, Sugar transport in the red blood cell: Structure—activity relationships in substrates and antagonists, Pharmacol. Rev. 13: 39–70.PubMedGoogle Scholar
  281. Legrum, B., and Passow, H., 1989, Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein, Biochim. Biophys. Acta 979: 193–207.PubMedCrossRefGoogle Scholar
  282. Leitmannova, A., and Glaser, R., 1977, Mathematical modelling of human echinocytes and the membrane bending of disocytes, stomatocytes and echinocytes, Stud. Biophys. 64: 123–141.Google Scholar
  283. Lentz, B. R., 1989, Membrane “fluidity” as detected by diphenylhexatriene probes, Chem. Phys. Lipids 50: 171–190.CrossRefGoogle Scholar
  284. Leterrier, F., Rieger, F., and Mariaud, J. F., 1973, Comparative study of the action of phenothiazine and parafluorobutyrophenone derivates on rat brain membranes using the spin label technique, J. Pharmacol. Exp. Ther. 186: 609–615.PubMedGoogle Scholar
  285. Levin, R. M., and Weiss, B., 1979, Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase, J. Pharmacol. Exp. Ther. 208: 454459.Google Scholar
  286. Lew, V., and Ferreira, H. G., 1978, Ca+ -transport and the properties of a Ca-sensitive K channel in red cell membranes, Curr. Top Membr. Transp. 10: 217–271.CrossRefGoogle Scholar
  287. Lew, V. L., Tsien, R. Y., and Miner, C., 1982, Physiological [Ca2+]; level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator, Nature 298: 478–481.PubMedCrossRefGoogle Scholar
  288. Lichtman, M. L., and Santillo, P., 1986, Red cell egress from the marrow:? vis-a-tergo, Blood Cells 12: 11–19.PubMedGoogle Scholar
  289. Lieber, R. M., Lange, Y., Weinstein, R. S., and Steck, T. L., 1984, Interaction of chlorpromazine with the human erythrocyte membrane, J. Biol. Chem. 259: 9225–9234.PubMedGoogle Scholar
  290. Lilley, G. L., and Fung, L. W. M., 1987, Hemoglobin—membrane interaction at physiological ionic strength and temperature, Life Sci. 41: 2429–2439.PubMedCrossRefGoogle Scholar
  291. Linderkamp, O., and Meiselman, H. J., 1982, Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood 59: 1121–1127.PubMedGoogle Scholar
  292. Liu, S. C., Derick, L. H., and Palek, J., 1987, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol. 104: 527–536.PubMedCrossRefGoogle Scholar
  293. Low, M. G., 1987, Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors, Biochem. J. 244: 1–13.PubMedGoogle Scholar
  294. Lowe, G. D. 0., 1988, Rheological therapy, in: Clinical Blood Rheology Volume 2 ( D. Gordon and O. Lowe, eds.), pp. 1–22, CRC Press, Boca Raton.Google Scholar
  295. Lowndes, J. M., Hokin-Neaverson, M., and Ruoho, A. E., 1987, Photoaffinity labeling of erythrocyte membrane (Na+ + K+)-ATPase with high specific activity [’25I]iodoazidogalactosyl digitoxigenin, Biochim. Biophys. Acta 904: 154–158.PubMedCrossRefGoogle Scholar
  296. Lüdi, H., and Schatzmann, H. J., 1987, Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells, J. Physiol. (London) 390: 367–382.Google Scholar
  297. Lutz, H. U., 1978, Vesicles isolated from ATP-depleted erythrocytes and out of thrombocyte-rich plasma, J. Supramol. Struct. 8: 375–389.CrossRefGoogle Scholar
  298. Luxnat, M., and Galla, H.-J., 1986, Partition of chlorpromazine into lipid bilayer membranes: The effect of membrane structure and composition, Biochim. Biophys. Acta 856: 274–282.PubMedCrossRefGoogle Scholar
  299. Lytle, C., and McManus, T. J., 1987, Effect of loop diuretics and stilbene derivatives on swelling-induced K—Cl cotransport, J. Gen. Physiol. 90: 28a.Google Scholar
  300. McConnell, H. M., and McFarland, B. G., 1970, Physics and chemistry of spin labels, Q. Rev. Biophys. 3: 91–136.PubMedCrossRefGoogle Scholar
  301. McLaughlin, S., 1985, New experimental models for the electrokinetic properties of biological membranes: The location of fixed charges affects the electrophoretic mobility of model membranes, Stud. Biophys. 110: 2528.Google Scholar
  302. McManus, T. J., and Schmidt, W. F., 1978, Ion and co-ion transport in avian red cells, Membr. Transp. Processes 1: 79–106.Google Scholar
  303. McNamara, M. K., and Wiley, J. S., 1986, Passive permeability of human red blood cells to calcium, Am. J. Physiol. 250: C26 - C31.PubMedGoogle Scholar
  304. Macey, R. I., 1984, Transport of water and urea in red blood cells, Am. J. Physiol. 246: C195 - C203.PubMedGoogle Scholar
  305. Machleidt, H., Roth, S., and Seeman, P., 1972, The hydrophobic expansion of erythrocyte membranes by the phenol anesthetics, Biochim. Biophys. Acta 255: 178–189.PubMedCrossRefGoogle Scholar
  306. Madden, T. D., 1986, Current concepts in membrane protein reconstitution, Chem. Phys. Lipids 40: 207–222.PubMedCrossRefGoogle Scholar
  307. Mahé, Y., Garcia-Romeu, F., and Motais, R., 1985, Inhibition by amiloride of both adenylate cyclase activity and the Na+/H+ antiporter in fish erythrocytes, Eur. J. Pharmacol. 116: 199–206.PubMedCrossRefGoogle Scholar
  308. Makriyannis, A, Siminovitch, D. J., Das Gupta, S. K., and Griffin, R. G., 1986, Studies on the interaction of anesthetic steroids with phosphatidylcholine using 2H and 13C solid state NMR, Biochim. Biophys. Acta 859: 49–55.PubMedCrossRefGoogle Scholar
  309. Marchesi, V. T., 1985, Stabilizing infrastructure of cell membranes, Annu. Rev. Cell Biol. 1:531–561. Marcus, D. M. (ed.), 1981, Blood group immunochemistry and genetics, Semin. Hematol. 17:1–71.Google Scholar
  310. Markle, D. R., Evans, E. A., and Hochmuth, R. M., 1983, Force relaxation and permanent deformation of erythrocyte membrane, Biophys. J. 42: 91–98.PubMedCrossRefGoogle Scholar
  311. May, J. M., 1987, Labeling of human erythrocyte band 3 with maltosylisothiocyanate, J. Biol. Chem. 262: 3140–3145.PubMedGoogle Scholar
  312. Mayrand, R. R., and Levitt, D. G., 1983, Urea and ethylene glycol-facilitated transport system in the human red cell membrane, J. Gen. Physiol. 81: 221–237.PubMedCrossRefGoogle Scholar
  313. Mercer, R. W., and Hoffman, J. F., 1985, Bumetanide-sensitive Na/K cotransport in ferret red blood cells, Biophys. J. 47: 157a.Google Scholar
  314. Metcalfe, J. C., Seeman, P., and Burgen, A. S. V., 1968, The proton relaxation of benzyl alcohol in erythrocyte membranes, Mol. Pharmacol. 4: 87–95.PubMedGoogle Scholar
  315. Middelkoop, E., Lubin, B. H., Op den Kamp, J. A. F., and Roelofsen, B., 1986, Flip—flop rates of individual molecular species of phosphatidylcholine in the human red cell membrane, Biochim. Biophys. Acta 855: 421–424.PubMedCrossRefGoogle Scholar
  316. Milanick, M. A., 1989, Na—Ca exchange in ferret red blood cells, Am. J. Physiol. 256: C390 — C398.PubMedGoogle Scholar
  317. Miller, K. W., Hammond, L., and Porter, E. G., 1977, The solubility of hydrocarbon gases in lipid bilayers, Chem. Phys. Lipids 20: 229–241.CrossRefGoogle Scholar
  318. Miller, K. W., Firestone, L. L., Alifimoff, J. K., and Streicher, P., 1989, Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids, Proc. Natl. Acad. Sci. USA 86: 1084–1087.PubMedCrossRefGoogle Scholar
  319. Minetti, M., and Di Stasi, A. M. M., 1987, Involvement of erythrocyte skeletal proteins in the modulation of membrane fluidity by phenothiazines, Biochemistry 26: 8133–8137.PubMedCrossRefGoogle Scholar
  320. Mohandas, N., Greenquist, A. C., and Shohet, S. B., 1978, Bilayer balance and regulation of red cell shape changes, J. Supramol. Struct. 9: 453–458.PubMedCrossRefGoogle Scholar
  321. Morgan, K., and Mir, M. A., 1984, Isolation of a sodium transport inhibitory factor, inhibitin, from cultured leukemic promyelocytes, J. Clin. Invest. 74: 1132–1142.PubMedCrossRefGoogle Scholar
  322. Morgan, K., Spurlock, G., Collins, P. A., and Mir, M. A., 1989, Interaction of inhibitin with the human erythrocyte Na+ (Li +);/Na. exchanger, Biochim. Biophys. Acta 979: 53–61.PubMedCrossRefGoogle Scholar
  323. Morrow, J. S., and Anderson, R. A., 1986, Shaping the too fluid bilayer, Lab. Invest. 54: 237–240.PubMedGoogle Scholar
  324. Motais, R., and Cousin, J. L., 1976, The inhibitor effect of probenecid and structural analogues on organic anions and chloride permeabilities in ox erythrocytes, Biochim. Biophys. Acta 419: 309–313.PubMedCrossRefGoogle Scholar
  325. Motais, R., and Cousin, J. L., 1978, A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: Influence of ring substituents, in: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach ( R. W. Straub and L. Bolis, eds.), Raven Press, New York. pp. 219–225.Google Scholar
  326. Motais, R., Sola, F., and Cousin, J. L., 1978, Uncouplers of oxidative phosphorylation. A structure—activity study of their inhibitory effect on passive chloride permeability, Biochim. Biophys. Acta 510: 201–207.PubMedCrossRefGoogle Scholar
  327. Motais, R., Baroin, A., Motais, A., and Baldy, S., 1980, Inhibition of anion and glucose permeability by anesthetics in erythrocytes. The mechanisms of action of positively and negatively charged drugs, Biochim. Biophys. Acta 599: 673–688.PubMedCrossRefGoogle Scholar
  328. Mueckler, M., Caruso, C., Baldwin, S., Panico, M., and Blench, I., 1985, Sequence and structure of a human glucose transporter, Science 229: 941–945.PubMedCrossRefGoogle Scholar
  329. Müller, H.-J., Luxnat, M., and Galla, H.-J., 1986, Lateral diffusion of small solutes and partition of amphipaths in defect structures of lipid bilayers, Biochim. Biophys. Acta 856: 283–289.PubMedCrossRefGoogle Scholar
  330. Naftalin, R. J., 1988, Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism, Biochim. Biophys. Acta 946: 431–438.PubMedCrossRefGoogle Scholar
  331. Nagasawa-Fujimori, H., Hiromi, K., Moriwaki, N., and Fujii, T., 1981, Application of light scattering stopped-flow method to the observation of rapid processes of shape changes of human erythrocytes induced by various drugs, Biochem. Int. 2: 129–135.Google Scholar
  332. Nelson, G. A., Andrews, M. L., and Karnovsky, M., 1983, Control of erythrocyte shape by calmodulin, J. Cell Biol. 96: 730–735.PubMedCrossRefGoogle Scholar
  333. Neyses, L., Locher, R., Stimpel, M., Streuli, R., and Vetter, W., 1985, Stereospecific modulation of the calcium channel in human erythrocytes by cholesterol and its oxidized derivatives, Biochem. J. 227: 105–112.PubMedGoogle Scholar
  334. Nicolay, K., van der Neut, R., Fok, J. J., and de Kruijyff, B., 1985, Effects of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondria] membranes, Biochim. Biophys. Acta 819: 55–65.PubMedCrossRefGoogle Scholar
  335. Noji, S., Takahashi, T., and Kon, H., 1982, A spin-label study of the correlation between stomatocyte formation and membrane fluidization of erythrocytes, Biochem. Pharmacol. 31: 3173–3180.PubMedCrossRefGoogle Scholar
  336. Ogiso, T., Iwaki, M., and Mori, K., 1981, Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation of membrane, Biochim. Biophys. Acta 649: 325–335.PubMedCrossRefGoogle Scholar
  337. Ohshima, H., Makino, K., and Kondo, T., 1986, Potential distribution across a membrane with surface charge layers: Effects of nonuniform charge distribution, J. Colloid Interface Sci. 113: 369–374.CrossRefGoogle Scholar
  338. O’Neill, W. C., 1987, Volume-sensitive Cl-dependent K transport in human erythrocytes, Am. J. Physiol. 253: C883 — C888.PubMedGoogle Scholar
  339. Op den Kamp, J. A. F., 1979, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48: 47–71.CrossRefGoogle Scholar
  340. Orme, F. W., Moronne, M. M., and Macey, R. I., 1988, Modification of the erythrocyte membrane dielectric constant by alcohols, J. Membr. Biol. 104: 57–68.PubMedCrossRefGoogle Scholar
  341. Ovchinnikov, Y., A., Arzamazova, N. M., Arystarkhove, E. A., Gevondyan, N. M., Aldanova, N. A., and Modyanov, N. N., 1987, Detailed structural analysis of exposed domains of membrane-bound Na+,K+ATPase. A model of transmembrane arrangement, FEBS Len. 217: 269–274.Google Scholar
  342. Owen, J. D., and Solomon, A. K., 1972, Control of nonelectrolyte permeability in red cells, Biochim. Biophys. Acta 290: 414–418.PubMedCrossRefGoogle Scholar
  343. Owen, N. E., and Gunn, R. B., 1983, Kinetic mechanism of chlorpromazine inhibition of erythrocyte 3–0methylglucose transport, Biochim. Biophys. Acta 727: 213–216.PubMedCrossRefGoogle Scholar
  344. Palfrey, H. C., Feit, P. W., and Greengard, P., 1980, cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics, Am. J. Physiol. 238: C139 - C148.Google Scholar
  345. Pandey, G. N., Sarkadi, B., Haas, M., Gunn, R. B., Davis, J. M., and Tosteson, D. C., 1978, Lithium transport pathways in human red blood cells, J. Gen. Physiol. 72: 233–247.PubMedCrossRefGoogle Scholar
  346. Pang, K.-Y. Y., and Miller, K. W., 1978, Cholesterol modulates the effects of membrane perturbers in phospholipid vesicles and biomembranes, Biochim. Biophys. Acta 511: 1–9.PubMedCrossRefGoogle Scholar
  347. Parker, J. C., 1978, Sodium and calcium movements in dog red blood cells, J. Gen. Physiol. 71: 1–17.PubMedCrossRefGoogle Scholar
  348. Parker, J. C., 1983a, Passive calcium movements in dog red blood cells: Anion effects, Am. J. Physiol. 244: C318 - C323.PubMedGoogle Scholar
  349. Parker, J. C., 1983b, Volume-responsive sodium movements in dog red blood cells, Am. J. Physiol. 244: C324 - C330.PubMedGoogle Scholar
  350. Parker, J. C., 1986, Interactions of lithium and protons with the sodium—proton exchanger of dog red blood cells, J. Gen. Physiol. 87: 189–200.PubMedCrossRefGoogle Scholar
  351. Parker, J. C., and Harper, J. R., Jr., 1980, Effects of amrinone, a cardiotonic drug, on calcium movements in dog erythrocytes, J. Clin. Invest. 66: 254–259.PubMedCrossRefGoogle Scholar
  352. Passow, H., 1986, Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane, Rev. Physiol. Biochem. Pharmacol. 103: 61–203.PubMedGoogle Scholar
  353. Passow, H., and Schnell, K. F., 1969, Chemical modifiers of passive ion permeability of the erythrocyte membrane, Experientia 25: 460–468.PubMedCrossRefGoogle Scholar
  354. Peters, R., 1988, Lateral mobility of proteins and lipids in the red cell membrane and the activation of adenylate cyclase by 3-adrenergic receptors, FEBS Lett. 234: 1–7.PubMedCrossRefGoogle Scholar
  355. Pinkofsky, H. B., and Jung, C. Y., 1985, Accessibility of sulfhydryl residues induced by cytochalasin B binding and conformational dynamics in the human erythrocyte glucose transporter, Arch. Biochem. Biophys. 240: 94–101.PubMedCrossRefGoogle Scholar
  356. Pjura, W. J., Kleinfeld, A. M., and Karnovsky, M. J., 1984, Partition of fatty acids and fluorescent fatty acids into membranes, Biochemistry 23: 2039–2043.PubMedCrossRefGoogle Scholar
  357. Plagemann, P. G. W., and Kraupp, M., 1986, Inhibition of nucleoside and nucleobase transport and nitrobenzylthioinosine binding by dilazep and hexobendine, Biochem. Pharmacol. 35: 2559–2567.PubMedCrossRefGoogle Scholar
  358. Plagemann, P. G. W., and Woffendin, C., 1987a, Comparison of the equilibrium exchange of nucleoside and 30-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport, Biochim. Biophys. Acta 899: 295–301.PubMedCrossRefGoogle Scholar
  359. Plagemann, P. G. W., and Woffendin, C., 1987b, Effects of Ca2 + -channel antagonists on nucleoside and nucleobase transport in human erythrocytes and cultured mammalian cells, Biochim. Biophys. Acta 928: 243–250.PubMedCrossRefGoogle Scholar
  360. Plagemann, P. G. W., Wohlhuetér, R. M., and Woffendin, C., 1988, Nucleoside and nucleobase transport in animal cells, Biochim. Biophys. Acta 947: 405–443.PubMedCrossRefGoogle Scholar
  361. Plishker, G. A., Pope, C. N., and Seinsoth, L. S., 1988, Calpromotin, a high molecular weight oligomer involved in calcium-dependent potassium transport, Biophys. J. 53: 533a.CrossRefGoogle Scholar
  362. Ponder, E., 1948, Hemolysis and Related Phenomena, Grune and Stratton, New York.Google Scholar
  363. Pope, J. M., Littlemore, L. A., and Westerman, P. W., 1989, Chain-length dependence of n-alkane solubility in phosphatidylcholine bilayers: A 2H-NMR study, Biochim. Biophys. Acta 980: 69–76.PubMedCrossRefGoogle Scholar
  364. Porzig, H., 1975, Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts, J. Physiol. (London) 249: 27–49.Google Scholar
  365. Reichstein, E., and Rothstein, A., 1981, Effects of quinine on Ca++-induced K+ efflux from human red blood cells, J. Membr. Biol. 59: 57–63.PubMedCrossRefGoogle Scholar
  366. Renner, M., Dietl, M., and Schnell, K. F., 1988, Chloride mediated inhibition of the phosphate and the sulfate transport by dipyridamole in human erythrocyte ghosts, FEBS Lett. 238: 77–81.PubMedCrossRefGoogle Scholar
  367. Ridgwell, K., Tanner, M. J. A., and Anstee, D. J., 1984, The rhesus (D) polypeptide is linked to the human erythrocyte cytoskeleton, FEBS Lett. 174: 7–12.PubMedCrossRefGoogle Scholar
  368. Robinson, J. D., 1969, Effects of phlorizin on membrane cation-dependent adenosine triphosphatase and pnitrophenyl phosphatase activities, Mol. Pharmacol. 5: 584–592.PubMedGoogle Scholar
  369. Robinson, J. D., Robinson, L. J., and Martin, N. J., 1984, Effects of oligomycin and quercetin on the hydrolytic activities of the (Na+ + K+)-dependent ATPase, Biochim. Biophys. Acta 772: 295–306.PubMedCrossRefGoogle Scholar
  370. Rogers, J. A., Cheng, S., and Betageri, G. V., 1986, Association and partitioning of propranolol in model and biological membranes, Biochem. Pharmacol. 35: 2261–2264.CrossRefGoogle Scholar
  371. Rooney, E. K., East, J. M., Jones, O. T., McWhirter, J., Simmonds, A. C., and Lee, A. G., 1983, Interaction of fatty acids with lipid bilayers, Biochim. Biophys. Acta 728: 159–170.CrossRefGoogle Scholar
  372. Rooney, M. W., Yachnin, S., Kucuk, O., Lis, L. J., and Kauffman, J. W., 1985, Oxygenated cholesterols synergistically immobilize acyl chains and enhance protein helical structure in human erythrocyte membranes, Biochim. Biophys. Acta 820: 33–39.PubMedCrossRefGoogle Scholar
  373. Rossi, J. P. F. C., Garrahan, P. F., and Rega, A. F., 1981, Vanadate inhibition of active Ca2 + transport across human red cell membranes, Biochim. Biophys. Acta 648: 145–150.PubMedCrossRefGoogle Scholar
  374. Rosso, J., Zachowski, A., and Devaux, P. F., 1988, Influence of chlorpromazine on the transverse mobility of phospholipide in the human erythrocyte membrane: Relation to shape changes, Biochim. Biophys. Acta 942: 271–279.PubMedCrossRefGoogle Scholar
  375. Roth, S., and Seeman, P., 1972, The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer—Overton rule of anesthesia; negative narcotics do not, Biochim. Biophys. Acta 255: 207–219.PubMedCrossRefGoogle Scholar
  376. Roth, S., Seeman, P., Akerman, S. B. A., and Chau-Wong, M., 1972, The action and adsorption of local anesthetic enantiomers on erythrocyte and synaptosome membranes, Biochim. Biophys. Acta 255: 199–206.PubMedCrossRefGoogle Scholar
  377. Sachs, J. R., and Welt, L. G., 1968, Concentration dependence of active potassium transport in the human red blood cell in the presence of inhibitors, J. Clin. Invest. 47: 949.PubMedCrossRefGoogle Scholar
  378. Sarkadi, B., Alifimoff, J. K., Gunn, R. B., and Tosteson, D. C., 1978, Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells, J. Gen. Physiol. 72: 249–265.PubMedCrossRefGoogle Scholar
  379. Sarkadi, B., Szasz, I., and Gardos, G., 1980, Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles, Biochim. Biophys. Acta 598: 326–338.PubMedCrossRefGoogle Scholar
  380. Sarkar, H. K., Thorens, B., Lodish, H. F., and Kaback, H. R., 1988, Expression of the human erythrocyte glucose transporter in Escherichia coli, Proc. Natl. Acad. Sci. USA 85: 5463–5467.PubMedCrossRefGoogle Scholar
  381. Scharff, O., and Foder, B., 1982, Rate constants for calmodulin binding to Cat+-ATPase in erythrocyte membranes, Biochim Biophys. Acta 691: 133–143.PubMedCrossRefGoogle Scholar
  382. Schatzmann, H. J., 1953, Herzglykoside als Hemmstoffe für den aktiven Kalium and Natrium-Transport durch die Erythrocytenmembran, Helv. Physiol. Pharmacol. Acta 11: 346.PubMedGoogle Scholar
  383. Schatzmann, H. J., 1983, The red cell calcium pump, Annu. Rev. Physiol. 45: 303–312.PubMedCrossRefGoogle Scholar
  384. Scheuring, U., Kollewe, K., Haase, W., and Schubert, D., 1986, A new method for the reconstitution of the anion transport system of the human erythrocyte membrane, J. Membr. Biol. 90: 123–135.PubMedCrossRefGoogle Scholar
  385. Scheven, C. H., and Stibenz, D., 1983, Die Elastizität der Erythrozytenmembran: Übersicht und Versuch einer Deutung auf Grund neuer Daten zur Ultrastruktur des Membranskeletts, Morph. Jahrb. 129: 287–298.Google Scholar
  386. Schlieper, P., and Steiner, R., 1983, The effect of different surface chemical groups on drug binding to liposomes, Chem. Phys. Lipids 34: 81–92.PubMedCrossRefGoogle Scholar
  387. Schmid-Schönbein, H., Grebe, R., and Heidtmann, H., 1983, A new membrane concept for viscous RBC deformation in shear: Spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending, Ann. N.Y. Acad. Sci. 416: 225–254.PubMedCrossRefGoogle Scholar
  388. Schneider, E., Haest, C. W. M., Plasa, G., and Deuticke, B., 1986, Bacterial cytotoxins, amphotericin B and local anesthetics enhance transbilayer mobility of phospholipids in erythrocyte membranes. Consequences for phospholipid asymmetry, Biochim. Biophys. Acta 855: 325–336.PubMedCrossRefGoogle Scholar
  389. Schreier, S., Frezzatti, W. A., Jr., Araujo, P. S., Chaimovich, H., and Cuccovia, I. M., 1984, Effect of lipid membranes on the apparent pK of the local anesthetic tetracaine. Spin label and titration studies, Biochim. Biophys. Acta 769: 231–237.PubMedCrossRefGoogle Scholar
  390. Schrier, S. L., Junga, I., and Ma, L., 1986, Studies on the effect of vanadate on erythrocyte and shape changes in human red blood cells and ghosts, Blood 68: 1008–1014.PubMedGoogle Scholar
  391. Schubert, D., 1987, Biophysical approaches to the study of biological membranes, in: Biological Membranes: A Practical Approach ( J. B. C. Findlay and W. H. Evans, eds.), pp. 241–280, IRL Press, Oxford.Google Scholar
  392. Schurr, A., Sheffer, N., Graziani, Y., and Livne, A., 1974, Inhibition of glucose efflux from human erythro-cytes by hashish components, Biochem. Pharmacol. 23: 2005–2009.PubMedCrossRefGoogle Scholar
  393. Schwartz, A., Lindenmayer, G. E., and Allen, J. C., 1975, The sodium—potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects, Pharmacol. Rev. 27: 3–134.PubMedGoogle Scholar
  394. Schwarz, W., and Passow, H., 1983, Cat+-activated K+ channels in erythrocytes and excitable cells, Annu. Rev. Physiol. 45: 359–374.PubMedCrossRefGoogle Scholar
  395. Schwarz, W., Keim, H., Fehlau, R., and Fuhrmann, G. F., 1989, Modulation of the Cat+- or Pb2 + -activated K+-selective channels in human red cells. I. Effects of propranolol, Biochim. Biophys. Acta 978: 32–36.PubMedCrossRefGoogle Scholar
  396. Seaman, G. V. F., 1983, Electrochemical properties of the peripheral zone of erythrocytes, Ann. N.Y. Acad. Sci. 416: 176–189.PubMedCrossRefGoogle Scholar
  397. Seelig, A., 1987, Local anesthetics and pressure: A comparison of dibucaine binding to lipid monolayers and bilayers, Biochim. Biophys. Acta 899: 196–204.PubMedCrossRefGoogle Scholar
  398. Seelig, A., Allegrini, P. R., and Seelig, J., 1988, Partitioning of local anesthetics into membranes: Surface charge effects monitored by the phospholipid head-group, Biochim. Biophys. Acta 939: 267–276.PubMedCrossRefGoogle Scholar
  399. Seeman, P., 1972, The membrane actions of anesthetics and tranquilizers, Pharmacol. Rev. 24: 583–655.PubMedGoogle Scholar
  400. Seeman, P., Roth, S., and Schneider, H., 1971, The membrane concentrations of alcohol anesthetics, Biochim. Biophys. Acta 225: 171–184.CrossRefGoogle Scholar
  401. Semplicini, A., Spalvins, A., and Canessa, M., 1989, Kinetics and stoichiometry of the human red cell Na+/H+ exchanger, J. Membr. Biol. 107: 219–228.PubMedCrossRefGoogle Scholar
  402. Senn, N., Lelièvre, L. G., Braquet, P., and Garay, R., 1988, High sensitivity of the Na+,K+-pump of human red blood cells to genins of cardiac glycosides, Br. J. Pharmacol. 93: 803–810.PubMedCrossRefGoogle Scholar
  403. Sergeant, S., and Kim, H. D., 1985, Inhibition of 3–0-methylglucose transport in human erythrocytes by forskolin, J. Biol. Chem. 260: 14677–14682.PubMedGoogle Scholar
  404. Sheetz, M. P., and Singer, S. J., 1974, Biological membranes as bilayer couples. A molecular mechanism of drug—erythrocyte interactions, Proc. Natl. Acad. Sci. USA 71: 4457–4461.PubMedCrossRefGoogle Scholar
  405. Shen, B. W., Josephs, R., and Steck, T. L., 1986, Ultrastructure of the intact skeleton of the human erythrocyte membrane, J. Cell Biol. 102: 997–1006.PubMedCrossRefGoogle Scholar
  406. Siebens, A. W., and Kregenow, F. M., 1985, Volume-regulatory response of Amphiuma red cells in anisotonic media. The effect of amiloride, J. Gen. Physiol. 86: 527–564.PubMedCrossRefGoogle Scholar
  407. Simon, S. A., Stone, W. L., and Bennett, P. B., 1979, Can regular solution theory be applied to lipid bilayer membranes? Biochim. Biophys. Acta 550: 38–47.PubMedCrossRefGoogle Scholar
  408. Simons, T. J. B., 1985, Influence of lead ions on cation permeability in human red cell ghosts, J. Membr. Biol. 84: 61–71.PubMedCrossRefGoogle Scholar
  409. Singer, M. A., and Jain, M. K., 1980, Interaction of four local anesthetics with phospholipid bilayer membranes: Permeability effects and possible mechanisms, Can. J. Biochem. 58: 815–821.PubMedGoogle Scholar
  410. Sinha, B. K., and Chignell, C. F., 1979, Interaction of antitumor drugs with human erythrocyte ghost membranes and mastocytoma P815: A spin label study, Biochem. Biophys. Res. Commun. 86: 1051–1057.PubMedCrossRefGoogle Scholar
  411. Skou, J. C., 1986, The sodium, potassium pump, Scand. J. Clin. Lab. Invest. 46: 11–23.Google Scholar
  412. Skou, J. C., and Esmann, M., 1981, Eosin, a fluorescent probe of ATP binding to the (Na+ + K+)-ATPase, Biochim. Biophys. Acta 647: 232–240.PubMedCrossRefGoogle Scholar
  413. Smith, R. A., Porter, E. G., and Miller, K. W., 1981, The solubility of anesthetic gases in lipid bilayers, Biochim. Biophys. Acta 645: 327–338.PubMedCrossRefGoogle Scholar
  414. Solomon, A. K., 1986, On the equivalent pore radius, J. Membr. Biol. 94: 227–232.PubMedCrossRefGoogle Scholar
  415. Stampe, P., and Vestergaard-Bogind, B., 1985, The Cat+-sensitive K+-conductance of the human red cell membrane is strongly dependent on cellular pH, Biochim. Biophys. Acta 815: 313–321.PubMedCrossRefGoogle Scholar
  416. Staufenbiel, M., 1987, Ankyrin-bound fatty acid turns over rapidly at the erythrocyte plasma membrane, Mol. Cell. Biol. 7: 2981–2984.Google Scholar
  417. Stein, W. D., 1986, Transport and Diffusion across Cell Membranes, Academic Press, New York.Google Scholar
  418. Stein, W. D., and Danielli, J. F., 1956, Structure and function in red cell permeability, Discuss. Faraday Soc. 21: 238–251.CrossRefGoogle Scholar
  419. Stokke, B. T., Mikkelsen, A., and Elgsaeter, A., 1986, The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechano-chemical properties, Eur. Biophys. J. 13: 203–218.PubMedCrossRefGoogle Scholar
  420. Striessnig, J., Zernig, G., and Glossmann, H., 1985, Human red-blood-cell Caz+-antagonist binding sites. Evidence for an unusual receptor coupled to the nucleoside transporter, Eur. J. Biochem. 150: 67–77.PubMedCrossRefGoogle Scholar
  421. Suda, T., Shimizu, D., Maeda, N., and Shiga, T., 1981, Decreased viscosity of human erythrocyte suspension induced by chlorpromazine and isoxsuprine, Biochem. Pharmacol. 30: 2057–2064.PubMedCrossRefGoogle Scholar
  422. Surewicz, W. K., 1982, Propranolol-induced structural changes in human erythrocyte ghost membranes. A spin label study, Biochem. Pharmacol. 31: 691–694.PubMedCrossRefGoogle Scholar
  423. Surewicz, W. K., and Leyko, W., 1981, Interaction of propranolol with model phospholipid membranes. Monolayer, spin label and fluorescence spectroscopy studies, Biochim. Biophys. Acta 643: 387–397.PubMedCrossRefGoogle Scholar
  424. Svetina, S., Ottova-Leitmannova, A., and Glaser, R., 1982, Membrane bending energy in relation to bilayer couples concept of red blood cell shape transformations, J. Theor. Biol. 94: 13–23.PubMedCrossRefGoogle Scholar
  425. Svetina, S., Brumen, M., and Zeks, B., 1985, Lipid bilayer elasticity and the bilayer couple interpretation of red cell shape transformations and lysis, Stud. Biophys. 110: 177–184.Google Scholar
  426. Szasz, I., Sarkadi, B., and Gardos, G., 1978, Effect of drugs on the calcium-dependent rapid potassium transport in calcium-loaded intact red cells, Acta Biochim. Biophys. Acad. Sci. Hung. 13: 133–141.PubMedGoogle Scholar
  427. Takakuwa, Y., and Mohandas, N., 1988, Modulation of erythrocyte membrane material properties by Caz+ and calmodulin, J. Clin. Invest. 82: 394–400.PubMedCrossRefGoogle Scholar
  428. Tamura, A., Morita, K., Fujii, T., and Kojima, K., 1982, Detection of the electrical surface charge induced by treatment of the membrane lipid bilayer of human erythrocytes, Cell Struct. Funct. 7: 21–27.CrossRefGoogle Scholar
  429. Tanford, C., 1980, Hydrophobic Effect, Wiley, New York.Google Scholar
  430. Tanford, C., 1983, Mechanism of free energy coupling in active transport, Annu. Rev. Biochem. 52: 379–409.PubMedCrossRefGoogle Scholar
  431. Tanford, C., 1985, Simple model can explain self-inhibition of red cell anion exchange, Biophys. J. 47: 15–20.PubMedCrossRefGoogle Scholar
  432. Tanner, M. J. A., Martin, P. G., and High, S., 1988, The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J. 256: 703–712.PubMedGoogle Scholar
  433. Teitel, P., and Schmid-Schönbein, H., 1990, Towards standardization of terminology in clinical hemorheology: Let us call a spade a spade, Clin. Hemorheol. in press.Google Scholar
  434. Tenforde, T., 1970, Microelectrophoretic studies on the surface chemistry of erythrocytes, Adv. Biol. Med. Phys. 13: 43–105.PubMedGoogle Scholar
  435. Toon, M. R., and Solomon, A. K., 1986, Control of red cell urea and water permeability by sulfhydryl reagents, Biochim. Biophys. Acta 860: 361–371.PubMedCrossRefGoogle Scholar
  436. Toon, M. R., and Solomon, A. K., 1987, Modulation of water and urea transport in human red cells: Effects of pH and phloretin, J. Membr. Biol. 99: 157–164.PubMedCrossRefGoogle Scholar
  437. Tournois, H., Leunissen-Bijvelt, J., Haest, C. W. M., de Gier, J., and de Kruijyff, B., 1987, Gramicidininduced hexagonal H11 phase formation in erythrocyte membranes, Biochemistry 26: 6613–6621.PubMedCrossRefGoogle Scholar
  438. Trudell, J. R., 1977, The membrane volume occupied by anesthetic molecules: A reinterpretation of the erythrocyte expansion data, Biochim. Biophys. Acta 470: 509–510.PubMedCrossRefGoogle Scholar
  439. Truong, H.-T. N., Ferrell, J. E., and Huestis, W. H., 1986, Sulfhydryl reducing agents and shape regulation in human erythrocytes, Blood 67: 214–221.PubMedGoogle Scholar
  440. Tsuji, A., and Ohnishi, S., 1986, Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: Dependence on spectrin association state, Biochemistry 25: 6133–6139.PubMedCrossRefGoogle Scholar
  441. Ungewickell, E., and Gratzer, W., 1978, Self-association of human spectrin. A thermodynamic and kinetic study, Eur. J. Biochem. 88: 379–385.PubMedCrossRefGoogle Scholar
  442. Varecka, L., and Carafoli, E., 1982, Vanadate-induced movements of Caz+ and K+ in human red blood cells, J. Biol. Chem. 257: 7414–7421.PubMedGoogle Scholar
  443. Vestergaard-Bogind, B., Stampe, P., and Christophersen, P., 1985, Single-file diffusion through the Cat+-activated K+ channel of the human red cells, J. Membr. Biol. 88: 67–75.PubMedCrossRefGoogle Scholar
  444. Viitala, J., and Järnefelt, J., 1985, The red cell surface revisited, Trends Biochem. Sci. 10: 392–395.CrossRefGoogle Scholar
  445. Vincenzi, F. F., 1982, Pharmacological modification of the Cat+-pump ATPase activity of human erythrocytes, Ann. N.Y. Acad. Sci. 402: 368–380.PubMedCrossRefGoogle Scholar
  446. Vincenzi, F. F., and Hinds, T. R., 1988, Drug effects on plasma membrane calcium transport, in: Calcium in Drug Actions ( P. F. Baker, ed.), pp. 147–162, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  447. Voge, H. J., 1988, Ligand-binding sites on calmodulin, in: Calcium in Drug Actions ( P. F. Baker, ed.), pp. 5787, Springer-Verlag, Berlin.Google Scholar
  448. Volpi, M., Sha’afi, R. I., and Feinstein, M. B., 1981, Antagonism of calmodulin by local anesthetics. Inhibition of calmodulin-stimulated calcium transport of erythrocyte inside-out membrane vesicles, Mol. Pharmacol. 20: 363–370.PubMedGoogle Scholar
  449. Wadzinski, B. E., Shanahan, M. F., and Ruoho, A. E., 1987, Derivatization of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label, J. Biol. Chem. 262: 17683–17689.PubMedGoogle Scholar
  450. Walmsley, A. R., 1988, The dynamics of the glucose transporter, Trends Biochem. Sci. 13: 226–231.PubMedCrossRefGoogle Scholar
  451. Wang, J.-F., Falke, J. J., and Chan, S. T., 1986, A proton NMR study of the mechanism of the erythrocyte glucose transporter, Proc. Natl. Acad. Sci. USA 83: 3277–3281.PubMedCrossRefGoogle Scholar
  452. Welti, R., Mullikin, L. J., Yoshimura, T., and Helmkamp, G. M., Jr., 1984, Partition of amphiphilic molecules into phospholipid vesicles and human erythrocyte ghosts: Measurements by ultraviolet difference spectroscopy, Biochemistry 23: 6086–6091.PubMedCrossRefGoogle Scholar
  453. Westman, J., Boulanger, Y., Ehrenberg, A., and Smith, I. C. P., 1982, Charge and pH dependent drug binding to model membranes. A 2H-NMR and light absorption study, Biochim. Biophys. Acta 685: 315–328.PubMedCrossRefGoogle Scholar
  454. Wheeler, T. J., and Hinkle, P. C., 1985, The glucose transporter of mammalian cells, Annu. Rev. Physiol. 47: 503–517.PubMedCrossRefGoogle Scholar
  455. Wheeler, T. J., and Whelan, J. D., 1988, Infinite-cis kinetics support the carrier model for erythrocyte glucose transport, Biochemistry 27: 1441–1450.PubMedCrossRefGoogle Scholar
  456. Whitfield, C. F., Coleman, D. B., Kay, A. M. B., Shiffer, K. A., Miller, J., and Goodman, S. R., 1985, Human erythrocyte membrane proteins of zone 4.5 exist as families of related proteins, Am. J. Physiol. 240: C70 - C79.Google Scholar
  457. Wieth, J. O., Funder, J., Gunn, R. B., and Brahm, J 1974, Passive transport pathways for chloride and urea through the red cell membrane, in: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 317–338, North-Holland, Amsterdam.Google Scholar
  458. Wilbrandt, W., 1941, Osmotische Natur sogenannter nicht osmotischer Hämolysen (Kolloidomotische Hämolyse), Pfluegers Arch. Gesamte Physiol. Menschen Tiere 245: 23–52.Google Scholar
  459. Wildenauer, D. B., and Zeeb-Wälde, B. C., 1983, Solubility of phenothiazines in red blood cell membranes as evidenced by photoaffinity labeling, Biochem. Biophys. Res. Commun. 116: 469–477.PubMedCrossRefGoogle Scholar
  460. Woffendin, C., and Plagemann, P. G. W., 1987, Interaction of [3H]dipyridamole with the nucleoside transporters of human erythrocytes and cultured animal cells, J. Membr. Biol. 98: 89–100.PubMedCrossRefGoogle Scholar
  461. Wold, F., 1986, Fatty acylation of proteins (Keep fit with fat?), Trends Biochem. Sci. 11: 58–59.CrossRefGoogle Scholar
  462. Wüthrich, A., and Schatzmann, H. J., 1980, Inhibition of the red cell calcium pump by quercetin, Cell Calcium 1: 21–35.CrossRefGoogle Scholar
  463. Wyse, J. W., Blanl, M. E., Maynard, C. L., Diedrich, D. F., and Butterfield, D. A., 1989, Electron spin resonance investigation of the interaction of the anion and glucose transport inhibitor, p-azidobenzylphlorizin, with the human red cell membrane, Biochim. Biophys. Acta 979: 127–131.PubMedCrossRefGoogle Scholar
  464. Yamaguchi, T., Watanabe, S., and Kimoto, E., 1985, ESR spectral changes induced by chlorpromazine in spin-labeled erythrocyte ghost membranes, Biochim. Biophys. Acta 820: 157–164.PubMedCrossRefGoogle Scholar
  465. Yamamoto, H.-A., and Harris, R. A., 1983a, Calcium-dependent 86Rb efflux and ethanol intoxication: Studies of human red blood cells and rodent brain synaptosomes, Eur. J. Pharmacol. 88: 357–363.PubMedCrossRefGoogle Scholar
  466. Yamamoto, H.-A., and Harris, R. A., 1983b, Effects of ethanol and barbiturates on Cat+-ATPase activity of erythrocyte and brain membranes, Biochem. Pharmacol. 32: 2787–2791.PubMedCrossRefGoogle Scholar
  467. Yeagle, P. L., 1985, Cholesterol and the cell membrane, Biochim. Biophys. Acta 822: 267–287.PubMedCrossRefGoogle Scholar
  468. Yeagle, P. L., 1987, The Membranes of Cells, pp. 83–111, Academic Press, New York.Google Scholar
  469. Yeagle, P. L., 1989, Lipid regulation of cell membrane structure and function, FASEB J. 3: 1833–1842.PubMedGoogle Scholar
  470. Zachowski, A., and Durand, P., 1988, Biphasic nature of binding of cationic amphipaths with artificial and biological membranes, Biochim. Biophys. Acta 937: 411–416.PubMedCrossRefGoogle Scholar
  471. Zaslaysky, B. Y., Ossipow, N. N., Krivich, V. S., Baholdina, L. P., and Rogozhin, S. V., 1978, Action of surface-active substances on biological membranes. II. Hemolytic activity of nonionic surfactants, Biochim. Biophys. Acta 507: 1–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Bernhard Deuticke
    • 1
  • Reinhard Grebe
    • 1
  • Cees W. M. Haest
    • 1
  1. 1.Department of Physiology, Medical FacultyTechnical UniversityAachenFederal Republic of Germany

Personalised recommendations