Erythrocyte Membrane Damage in Hemolytic Anemias

  • Augusta Brovelli
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)

Abstract

Molecular defects directly affecting a membrane component can modify the shape of the red cell and reduce its survival capacity; the same effect can result from molecular lesions at the level of a cytoplasmic protein or enzyme. In some diseases where the primary defect does not involve a membrane component, a secondary membrane lesion develops, contributing to or causing red cell death. For instance, in some hemoglobinopathies, a less stable anomalous hemoglobin interacts with the membrane and modifies lipid and proteins; in erythroenzymopenias, such as glucose-6-phosphate dehydrogenase (G6PD) deficiency and pyruvate kinase (PK) deficiency, the altered structure of a key enzyme involved in glycolysis or the pentose pathway, impairs the ability of red cells to withstand stress conditions, and there are clues that lead us to suspect a membrane lesion secondary to the enzyme deficiency. In this review, membrane processes found in the three above-mentioned groups of diseases will be described: in particular, we will deal with two hemoglobinopathies, thalassemia and sickle-cell anemia; with the enzymopathies glucose-6-phosphate dehydrogenase and pyruvate kinase deficiency; and with the hereditary membrane skeleton diseases spherocytosis, elliptocytosis, and pyropoikilocytosis. A summary of membrane lesions found in each disease will be presented, more detailed reviews concerning each of these topics being available [see Wagner et al. (1985), Hebbel et al. (1985), and Hebbel (1986) for sickle cell anemia; Rachmilewitz et al. (1985) for thalassemia; Palek and Lux (1983), Becker and Lux (1985), Palek (1985) for hereditary defects of membrane skeleton; Beutler (1983), Valentine et al. (1983) for G6PD and PK deficiencies]. Membrane damage associated with an impaired survival capacity of pathological red cells will be compared with membrane properties of senescent normal red cells (see Bartosz, this volume). The general aim of the review is to analyze which membrane lesions in erythrocyte pathology shorten red cell life span, and to find insights into membrane processes that would be worth investigating in those diseases, where indirect evidence suggests the presence of membrane damage. Structural integrity of the membrane allows the erythrocyte to perform its biological role of oxygen transport from the lungs throughout the body. The ability to deform reversibly during flow is crucial to the red cell for performing its function. This property, known as cellular deformability, is determined by membrane material characteristics, cell surface-area-to-volume ratio, and cytoplasmic viscosity, and is strictly related to the red cell survival capacity (Mohandas et al., 1983). Since structure and function of the membrane are highly involved in determining cell deformability (through the maintenance of ion gradients and water distribution, and through the transport of nutrients and catabolites), the life span of a red cell ultimately depends on the integrity of its membrane.

Keywords

Sickle Cell Hemolytic Anemia Erythrocyte Membrane Pyruvate Kinase G6PD Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used in this chapter

G6PD+

glucose-6-phosphate dehydrogenase deficiency;

PK+

pyruvate kinase deficiency;

HS

hereditary spherocytosis;

HE

hereditary elliptocytosis;

HPP

hereditary pyropoikilocytosis;

ISC

irreversibly sickled cells;

PE

phosphatidylethanolamine;

PS

phosphatidylserine;

PC

phosphatidylcholine;

PI

phosphatidylinositide;

TPI

triphosphoinositide;

MDA

malonyldialdehyde;

Hb

haemoglobin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agre, P., Casella, J. F., Zinkham, W. H., McMillan, C., and Bennett, V., 1985, Partial deficiency of erythrocyte spectrin in hereditary spherocytosis, Nature 314: 380–383.PubMedGoogle Scholar
  2. Agre, P., Asimos, A., Casella, J. F., and McMillan, C., 1986, Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis, N. Engl. J. Med. 315: 1579–1583.PubMedGoogle Scholar
  3. Alhanaty, E., Snyder, M., and Sheetz, M. P., 1984, G6PD-deficient erythrocytes have an impaired shape recovery mechanism, Blood 63: 1198–1202.PubMedGoogle Scholar
  4. Allan, D., Limbrick, A. R., Thomas, P., and Westerman, M. P., 1982, Release of spectrin-free spicules on reoxygenation of sickled erythrocytes, Nature 295: 612–613.PubMedGoogle Scholar
  5. Allen, D. W., Johnson, G. J., Cadman, S., and Kaplan, M. E., 1978, Membrane polypeptide aggregates in G6PD-deficient and in vitro aged red blood cells, J. Lab. Clin. Med. 91: 321–327.PubMedGoogle Scholar
  6. Allen, D. W., Groat, J. D., Finkel, B., Rank, B. H., Wood, P. A., and Eaton, J. W., 1983, Increased adsorption of cytoplasmic proteins to the erythrocyte membrane in ATP-depleted normal and PK-deficient mature cells and reticulocytes, Am. J. Hematol. 14: 11–25.PubMedGoogle Scholar
  7. Alloisio, N., Dorleac, E., Delauney, J., Girot, R., Galand, C., and Boivin, P., 1982, A shortened variant of red cell membrane protein 4.1, Blood 60: 265–267.PubMedGoogle Scholar
  8. Anstee, D. J., Parsons, S. F., Ridgwell, K., Tanner, M. J. A., Merry, A. H., and Thomson, E. E., 1984, Two individuals with elliptocytic red cells apparently lack three minor erythrocyte membrane sialoglycoproteins, Biochem. J. 218: 615–619.PubMedGoogle Scholar
  9. Ballas, S. K., Burka, E. R., and Gill, F. M., 1982, Abnormal red cell membrane proteolytic activity in severe heterozygous 0-thalassemia, J. Lab. Clin. Med. 99: 263–274.PubMedGoogle Scholar
  10. Becker, P. S., and Lux, S. E., 1985, Hereditary spherocytosis and related disorders, Clin. Haematol. 14: 15–43.PubMedGoogle Scholar
  11. Becker, P. S., Morrow, J. S., and Lux, S. E., 1987, Abnormal oxidant sensitivity and 0-chain structure of spectrin in hereditary spherocytosis associated with defective spectrin-4.1 binding. J. Clin. invest. 80: 557–565.PubMedGoogle Scholar
  12. Bennet, V., 1978, Purification of an active proteolytic fragment of the membrane attachment site for human erythrocyte spectrin, J. Biol. Chem. 253: 2292–2299.Google Scholar
  13. Bernard, J. F., 1977, Anomalies des transferts cationiques transmembranaires au cours des anémies hémolitiques congenitals, Nouv. Rev. Fr. Hematol. 18: 117–137.Google Scholar
  14. Beutler, E., 1983, Erythrocyte disorders: Anemias due to increased destruction of erythrocytes with enzyme deficiencies, in: Hematology, 3rd ed. ( W. J. Williams, E. Beutler, A. J. Erslev, and M. A. Lichtman, eds.), pp. 561–582, McGraw—Hill, New York.Google Scholar
  15. Campwala, H. Q., and Desforges, J. F., 1982, Membrane-bound hemichrome in density-separated cohorts of normal (AA) and sickled (SS) cells, J. Lab. Clin. Med. 99: 25–28.PubMedGoogle Scholar
  16. Chasis, J. A., Agre, P., and Mohandas, N., 1988, Decreased membrane mechanical stability and in vivo loss of surface area reflect spectrin deficiencies in hereditary spherocytosis, J. Clin. Invest. 82: 617–623.PubMedGoogle Scholar
  17. Choe, H. R., Schlegel, R. A., Rubin, E., Williamson, P., and Westerman, M. P., 1986, Alterations of red cell membrane organization in sickle cell anemia, Br. J. Haematol. 63: 761–773.PubMedGoogle Scholar
  18. Clark, M. R., 1988, Senescence of red blood cells: Progress and problems, Physiol. Rev. 68: 503–554.PubMedGoogle Scholar
  19. Clark, M. R., Morrison, C. E., and Shohet, S. B., 1978, Monovalent cation transport in irreversibly sickled cells, J. Clin. Invest. 62: 329–337.PubMedGoogle Scholar
  20. Coetzer, T., and Zail, S., 1980, Membrane protein complexes in GSH- depleted red cells, Blood 56: 159–167.PubMedGoogle Scholar
  21. Coetzer, T. L., Lawler, J., Liu, S. C., Prchal, J. T., Gualtieri, R. J., Brain, M. C., Dacie, J. V., and Palek, J., 1988a, Partial ankyrin and spectrin deficiency in severe, atypical hereditary spherocytosis, N. Engl. J. Med. 318: 230–234.Google Scholar
  22. Coetzer, T., Lawler, J., Prchal, J. T., and Palek, J., 1988b, Molecular determinants of clinical expression of hereditary elliptocytosis, Blood 70: 766–772.Google Scholar
  23. Cohen, A. M., Liu, S. C., Lawler, J., Derick, L., and Palek, J., 1988, Identification of the protein 4.1 binding site to phosphatidylserine vesicles, Biochemistry 27: 614–619.PubMedGoogle Scholar
  24. Das, S. K., and Nair, R. C., 1980, Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes, Br. J. Haematol. 44: 87–92.PubMedGoogle Scholar
  25. Davies, K. J. A., and Goldberg, A. L., 1987, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262: 8227–8234.PubMedGoogle Scholar
  26. De Flora, A., Benatti, U., Guida, L., Forteleoni, G., and Meloni, T., 1985, Favism: Disordered erythrocyte calcium homeostasis, Blood 66: 294–297.PubMedGoogle Scholar
  27. Dhermy, D., Lecomte, M. C., Garbarz, M., Bournier, O., Galand, C., Gautero, H., Feo, C., Alloisio, N., Delaunay, J., and Boivin, P., 1982, Spectrin 13 chain variant associated with hereditary elliptocytosis, J. Clin. Invest. 70: 707–715.PubMedGoogle Scholar
  28. Eaton, J. W., Skelton, T. D., Swofford, H. S., Kolpin, C. E., and Jacob, H. S., 1973, Elevated erythrocyte calcium in sickle cell disease, Nature 246: 105–106.PubMedGoogle Scholar
  29. Evans, E., Mohandas, N., and Leung, A., 1984, Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. Blood 73: 477–488.Google Scholar
  30. Fischer, T. M., Meloni, T., Pescarmona, G. P., and Arese, P., 1985, Membrane cross bonding in red cells in favic crisis: A missing link in the mechanism of extravascular hemolysis, Br. J. Haematol. 59: 159–169.PubMedGoogle Scholar
  31. Gaczynska, M., Bartosz, G., Judkiewicz, L., and Rosin, J., 1987, Abnormal degradation of erythrocyte membrane proteins in hereditary spherocytosis, Clin. Chim. Acta 168: 7–11.PubMedGoogle Scholar
  32. Galili, U., Korkesh, A., Kahane, I., and Rachmilewitz, E. A., 1983, Demonstration of a natural antigalactosyl Ig antibody on thalassemic red blood cells, Blood 61: 1258–1264.PubMedGoogle Scholar
  33. Goodman, S. R., Shiffer, K. A., Casoria, L. A., and Eyster, M. E., 1982, Identification of the molecular defect in the erythrocyte membrane skeleton of some kindreds with hereditary spherocytosis, Blood 60: 772–784.PubMedGoogle Scholar
  34. Greenquist, A. C., Shohet, S. B., and Berstein, S. E., 1978, Marked reduction of spectrin in hereditary spherocytosis in the common house mouse, Blood 51: 1149–1155.PubMedGoogle Scholar
  35. Gunn, R. B., Silvers, D. N., and Rosse, W. F., 1972, Potassium permeability in 3-thalassemia minor red blood cells, J. Clin. Invest. 51: 1044–1049.Google Scholar
  36. Haest, C. W. M., 1982, Interaction between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694: 331–352.PubMedGoogle Scholar
  37. Hebbel, R. P., 1986, Autoxidation and the sickle erythrocyte membrane: A possible model of of iron decompartmentalization, in: Free Radicals, Aging and Degenerative Diseases ( J. E. Johnson, D. Harman, R. Walford, and J. Miguel, eds.), pp. 395–424, Liss, New York.Google Scholar
  38. Hebbel, R. P., Schwartz, R. S., and Mohandas, N., 1985, The adhesive sickle erythrocyte: Cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes, Clin. Haematol. 14: 141–161.PubMedGoogle Scholar
  39. Jacob, H. S., and Lux, S. E., 1968, Degradation of membrane phospholipids and thiols in peroxide hemolysis: Studies on vit E deficiency, Blood 32: 549–568.Google Scholar
  40. Jain, S. K., and Shohet, S. B., 1984, A novel phospholipid in irreversibly sickled erythrocytes: Evidence for in vivo peroxidative membrane damage in sickle cell disease, Blood 63: 362–367.PubMedGoogle Scholar
  41. Johnson, G. J., Allen, D. W., Cadman, S., Fairbanks, V. F., White, J. G., Lampkin, B. C., and Kaplan, M. E., 1979, Red cell membrane polypeptide aggregates in G6PD mutants with chronic hemolytic disease, N. Engl. J. Med. 301: 522–527.PubMedGoogle Scholar
  42. Kahane, I., and Rachmilewitz, E. A., 1976, Alterations in the red blood cell membrane and the effect of vit Eon osmotic fragility in thalassemia major, Isr. J. Med. Sci. 12: 11–15.PubMedGoogle Scholar
  43. Kahane, I., Shifter, A., and Rachmilewitz, E. A., 1978a, Cross linking of red blood cell membrane proteins induced by oxidative stress in 3-thalassemia, FEBS Lett. 85: 267–271.PubMedGoogle Scholar
  44. Kahane, I., Polliack, A., Rachmilewitz, E. A., Bayer, E. A., and Skutelsky, E., 1978b, Distribution of sialic acids on the red blood cell membrane in p-thalassemia, Nature 271: 674–675.PubMedGoogle Scholar
  45. Kahane, I., Ben-Chetrit, E., Shifter, A., and Rachmilewitz, E. A., 1980, The erythrocyte membranes in 13 thalassemia. Lower sialic acid levels in glycophorin, Biochim. Biophys. Acta 596: 10–17.PubMedGoogle Scholar
  46. Knowles, W. J., Morrow, J. S., Speicher, D. W., Zarkowsky, H. S., Mohandas, N., Mentzer, W. C., Shohet, S. B., and Marchesi, V. T., 1983, Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis, J. Clin. Invest. 71: 1867–1877.PubMedGoogle Scholar
  47. Kondo, T., Kawakami, Y., Taniguchi, N., and Beutler, E., 1987, Glutathione disulfide stimulated Mgt+ATPase of human erythrocyte membranes, Proc. Natl. Acad. Sci. 84: 7373–7377.PubMedGoogle Scholar
  48. Kosower, N. S., Zipser, Y., and Faltin, Z., 1982, Membrane thiol—disulfide status in G6PD-deficient red cells: Relationship to cellular glutathione, Biochim. Biophys. Acta 691: 345–352.PubMedGoogle Scholar
  49. Kuross, S. A., Rank, B. H., and Hebbel, R. P., 1988, Excess heme in sickle erythrocyte inside-out membranes: Possible role in thiol oxidation, Blood 71: 876–882.PubMedGoogle Scholar
  50. Lakomek, M., Tillmann, W., Scharnetzky, M., Schroter, W., and Winkler, H., 1983, Erythrocyte pyruvate kinase deficiency. A kinetic study of the membrane-localized and cytoplasmatic enzyme from six patients, Enzyme 29: 189–197.PubMedGoogle Scholar
  51. Lamchiagdhase, P., Wilairat, P., Sahaphong, S., Bunyaratvej, A., and Fucharoen, S., 1987, Defective spectrin dimer self-association in thalassemic red cells, Eur. J. Haematol. 38: 246–250.PubMedGoogle Scholar
  52. Larsen, R. L., Katz, S., Roufogalis, B. D., and Brooks, D. E., 1981, Physiological shear stresses enhance the Caz+ permeability of human erythrocytes, Nature 294: 667–668.PubMedGoogle Scholar
  53. Liu, S. C., Palek, J., Prchal, J., and Castleberry, R. P., 1981, Altered spectrin dimer—dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis, J. Clin. Invest. 68: 597–605.PubMedGoogle Scholar
  54. Liu, S. C., Derick, L. H., Agre, P., and Palek, J., 1986, Alteration of the red cell membrane skeletal ultrastructure in hereditary spherocytosis, Blood 68: 56a.Google Scholar
  55. Lubin, B., Chiu, D., Bastacky, J., Roelofsen, B., and van Deenen, L. L. M., 1981, Abnormalities in membrane phospholipid organization in sickled erythrocytes, J. Clin. Invest. 67: 1643–1649.PubMedGoogle Scholar
  56. Lux, S. E., John, K. M., and Karnovsky, M. J., 1976, Irreversible deformation of spectrin—actin lattice in irreversibly sickled cells, J. Clin. Invest. 58: 955–963.PubMedGoogle Scholar
  57. Marchesi, S. L., Knowles, W. J., Morrow, J. S., Bologna, M., and Marchesi, V. T., 1986, Abnormal spectrin in hereditary elliptocytosis, Blood 67: 141–151.PubMedGoogle Scholar
  58. Marchesi, V. T., 1985, Stabilizing infrastructure of cell membranes, Annu. Rev. Cell Biol. 1: 531–561.PubMedGoogle Scholar
  59. Marik, T., Brabec, V., Kodicek, M., and Jarolim, P., 1988, Pyruvate kinase-deficiency anemia: Membrane approach, Biochem. Med. Metab. Biol. 39: 55–63.PubMedGoogle Scholar
  60. Middelkoop, E., Lubin, B. H., Bevers, E. M., Op Den Kamp, J., Comfurius, P., Chiu, D. T. Y., Zwaal, R. F. A., van Deenen, L. L. M., and Roelofsen, B., 1988, Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins, Biochim. Biophys. Acta 937: 281–288.PubMedGoogle Scholar
  61. Mohandas, N., Chasis, J. A., and Shohet, S. B., 1983, The influence of membrane skeleton on red cell deformability, membrane material properties, and shape, Semin. Hematol. 20: 225–242.PubMedGoogle Scholar
  62. Morelli, A., Grasso, M., Meloni, T., Forteleoni, G., Zocchi, E., and De Flora, A., 1987, Favism: Impairment of proteolytic systems in red blood cells, Blood 69: 1753–1758.PubMedGoogle Scholar
  63. Nash, G. B., Johnson, C. S., and Meiselman, H. J., 1984, Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease, Blood 63: 73–82.PubMedGoogle Scholar
  64. Palek, J., 1977, Red cell calcium content and transmembrane calcium movements in sickle cell anemia, J. Lab. Clin. Med. 89: 1365–1374.PubMedGoogle Scholar
  65. Palek, J., 1985, Hereditary elliptocytosis and related disorders, Clin. Haematol. 14: 45–87.PubMedGoogle Scholar
  66. Palek, J., and Lux, S. E., 1983, Red cell membrane skeletal defects in hereditary and acquired hemolytic anemias, Semin. Hematol. 20: 189–224.PubMedGoogle Scholar
  67. Palek, J., Liu, S. C., Liu, P. Y., Prehal, J., and Castleberry, R. P., 1981, Altered assembly of spectrin in red cell membranes in hereditary pyropoikilocytosis, Blood 57: 130–139.PubMedGoogle Scholar
  68. Petz, L. D., Yam, P., Wilkinson, L., Garatty, G., Lubin, B., and Mentze, W., 1984, Increased IgG molecules bound to the surface of red blood cells of patients with sickle cell anemia, Blood 64: 301–304.PubMedGoogle Scholar
  69. Platt, O. S., Falcone, J. F., and Lux, S. E., 1985, Molecular defect in the sickle erythrocyte skeleton: abnormal spectrin binding to sickle inside-out vesicles, J. Clin. Invest. 75: 266–271.PubMedGoogle Scholar
  70. Pontremoli, S., and Melloni, E., 1986, Extralysosomal protein degradation, Annu. Rev. Biochem. 55: 455–481.PubMedGoogle Scholar
  71. Rachmilewitz, E. A., Pleisach, J., Bradley, T. B., and Blumberg, W., 1969, Role of hemicromes in the formation of inclusion bodies in haemoglobin H disease, Nature 222: 248–250.PubMedGoogle Scholar
  72. Rachmilewitz, E. A., Shinar, E., Shalev, O., Galili, U., and Schrier, S. L., 1985, Erythrocyte membrane alterations in 3-thalassemia, Clin. Haematol. 14: 163–182.PubMedGoogle Scholar
  73. Rank, B. H., Carlsson, J., and Hebbel, R. P., 1985, Abnormal redox status of membrane—protein thiols in sickle erythrocytes, J. Clin. Invest. 75: 1531–1537.PubMedGoogle Scholar
  74. Raval, P. J., and Allan, D., 1986, Changes in membrane polypeptides, polyphosphoinositides and phosphatidatr in dense fractions of sickle cells, Biochim. Biophys. Acta 856: 595–601.PubMedGoogle Scholar
  75. Rice-Evans, C., Rush, J., Omorphos, S. C., and Flynn, D. M., 1981, Erythrocyte membrane abnormalities in G6PD-deficiency of the Mediterranean and A-types, FEBS Leu. 136: 148–152.Google Scholar
  76. Rice-Evans, C., Omorphos, S. C., and Baysal, E., 1986, Sickle cell pathology: Is the membrane important? in: Free Radicals, Cell Damage and Disease ( C. Rice-Evans, ed.), Richelieu Press, London.Google Scholar
  77. Rothstein, A., 1981, Mercurials and red cell membranes, in: The Function of Red Blood Cells: Erythrocyte Pathobiology ( D. F. H. Wallach, ed.), pp. 105–131, Liss, New York.Google Scholar
  78. Rybicki, A. C., Heath, R., Wolf, J. L., Lubin, B., and Schwartz, R. S., 1986, Deficiency of protein 4.2 in erythrocytes from a patient with a Coombs negative hemolytic anemia, J. Clin. Invest. 81: 893–901.Google Scholar
  79. Rybicki, A. C., Russel, H., Lubin, B., and Schwartz, R. S., 1988, Human erythrocyte protein 4.1 is a phosphatidylserine binding protein, J. Clin. Invest. 81: 255–260.PubMedGoogle Scholar
  80. Schiffer, K. A. Goerke, J., Duzgunes, N., Fedor, J., and Shohet, S. B., 1988, Interaction of erythrocyte protein 4.1 with phospholipids. A monolayer and liposome study, Biochim. Biophys. Acta 937: 269–280.Google Scholar
  81. Schroeter, W., and Tillmann, W., 1975, Membrane-localized pyruvate kinase of red blood cells in hemolytic anemia associated with PK-deficiency, Klin. Wochenschr. 53: 1101–1106.Google Scholar
  82. Schwartz, R. S., Rybicki, A. C., Heath, R. H., and Lubin, B. H., 1987, Protein 4.1 in sickle erythrocytes. Evidence for oxidative damage, J. Biol. Chem. 262: 15666–15672.PubMedGoogle Scholar
  83. Schwarzer, E., Reimann, B., Jacobasch, G., and Maretzki, D., 1987, Metabolism of polyphosphositides of G6PD- and PK-deficient red blood cells, Biomed. Biochim. Acta 46: 182–183.Google Scholar
  84. Shalev, O., Mogilner, S., Shinar, E., Rachmilewitz, E. A., and Schrier, S. L., 1984, Impaired erythrocyte calcium homeostasis in ß-thalassemia, Blood 64: 564–566.PubMedGoogle Scholar
  85. Shalev, O., Lavi, V., Hebbel, R. P., and Eaton, J. W., 1985, Erythrocyte (Ca2+ + Mg2±)-ATPase activity: Increased sensitivity to oxidative stress in G6PD-deficiency, Am. J. Hematol. 19: 131–136.PubMedGoogle Scholar
  86. Shohet, S. B., 1979, Reconstitution of spectrin deficient spherocytic mouse erythrocyte membranes, J. Clin. Invest. 64: 483–494.Google Scholar
  87. Shohet, S. B., and Ness, P. M., 1976, Hemolytic anemias. Failure of the red cell membrane, Med. Clin. North Am. 60: 913–932.Google Scholar
  88. Stocks, J., Offerman, E. L., Modell, C. B., and Dormandy, T. L., 1972, The susceptibility to autooxidation of human red cell lipids in health and disease, Br. J. Haematol. 23: 713–724.PubMedGoogle Scholar
  89. Streichman, S., Hertz, E., and Tatarsky, I., 1988, Direct involvement of spectrin thiols in maintaining erythrocyte membrane thermal stability and spectrin dimer self association, Biochim. Biophys. Acta 942: 333–340.PubMedGoogle Scholar
  90. Tanaka, Y., and Schroit, A. J., 1983, Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages, J. Biol. Chem. 258: 11335–11343.PubMedGoogle Scholar
  91. Tchemia, G., Mohandas, N., and Shohet, S. B., 1981, Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability, J. Clin. Invest. 68: 454–460.Google Scholar
  92. Tillmann, W., and Schroeter, W., 1979, Rheological properties of erythrocytes in heterozygous and homozygous ß-thalassemia, Br. J. Haematol. 43: 401–411.PubMedGoogle Scholar
  93. Tomaselli, M. B., John, K. M., and Lux, S. E., 1981, Elliptical erythrocyte membrane skeletons and heat-sensitive spectrin in hereditary elliptocytosis. Implications for red cell membrane stability, Proc. Natl. Acad. Sci. USA 78: 1911–1915.PubMedGoogle Scholar
  94. Turrini, F., Naitana, A., Mannuzzu, L., Pescarmona, G. P., and Arese, P., 1985, Increased red cell calcium, decreased calcium adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis in G6PD-deficient (Mediterranean variant) individuals, Blood 66: 302–305.PubMedGoogle Scholar
  95. Valentine, W. N., Tanaka, K. R., and Miwa, S., 1961, A specific erythrocyte glycolytic enzyme defect (pyruvate kinase) in three subjects with congenital non-spherocytic hemolytic anemia, Trans. Assoc. Am. Physicians. 74: 100–110.PubMedGoogle Scholar
  96. Valentine, W. N., Tanaka, K. R., and Paglia, D. E., 1983, Pyruvate kinase and other enzyme deficiency disorders of the erythrocyte, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), pp. 1606–1628, McGraw—Hill, New York.Google Scholar
  97. Wagner, G. M., Schwartz, R. S., Tsun-Yee Chiu, D., and Lubin, B. H., 1985, Membrane phospholipid organization and vesiculation of erythrocytes in sickle cell anemia, Clin. Haematol. 14: 183–200.PubMedGoogle Scholar
  98. Waugh, S. M., and Low, P. S., 1985, Hemichrome binding to band 3: Nucleation of Heinz bodies on the erythrocyte membrane, Biochemistry 24: 34–39.PubMedGoogle Scholar
  99. Waugh, S. M., Willardson, B. M., Kannan, R., Labotka, R. J., and Low, P. S., 1986, Heinz bodies induce clustering of band 3, glycophorin, and ankyrin in sickle cell erythrocytes, J. Clin. Invest. 78: 1155–1160.PubMedGoogle Scholar
  100. Wiley, J. S., and Gill, F. M., 1976, Red cell calcium leak in congenital hemolytic anemia with extreme microcytosis, Blood 47: 197–210.PubMedGoogle Scholar
  101. Williamson, P., and Schlegel, R., 1984, Maintenance of phospholipid asymmetry and its role in erythrocyte pathology, in: Erythrocyte Membranes: Recent Clinical and Experimental Advances (W. C. Kruckeberg, J. W. Eaton, J. Aster, and G. J. Brewer, eds.), pp. 123–136, Liss, New York.Google Scholar
  102. Winkelman, J. C., Marchesi, S. L., Watkin, P., Linnenback, A. J., Agre, P., and Forget, B. G., 1986, Recessive hereditary spherocytosis is associated with an abnormal alpha-spectrin subunit, Clin. Res. 34: 474A.Google Scholar
  103. Wolfe, L. C., John, K. M., Falcone, J. C., Byrne, A. M., and Lux, S. E., 1982, A genetic defect in the binding of protein 4.1 to spectrin in a kindred with hereditary spherocytosis, N. Engl. J. Med. 307: 1367–1373.PubMedGoogle Scholar
  104. Woods, C. M., and Lazarides, E., 1988, The erythroid membrane skeleton: Expression and assembly during erythropoiesis, Annu. Rev. Med. 39: 107–122.PubMedGoogle Scholar
  105. Zanella, A., Rebulla, P., Giovanetti, A. M., Curzio, M., Pescarmona, G. P., and Sirchia, G., 1976, Effects of sulphydryl compounds on abnormal red cell pyruvate kinase, Br. J. Haematol. 32: 373–385.PubMedGoogle Scholar
  106. Zanella, A. Brovelli, A., Mantovani, A., Izzo, C., Rebulla, P., and Balduini, C., 1979, Membrane abnormalities of pyruvate kinase deficient red cells, Br. J. Haematol. 42: 101–108.PubMedGoogle Scholar
  107. Zerez, C. R., and Tanaka, K. R., 1987, Impaired nicotinamide adenine dinucleotide synthesis in PK-deficient human erythrocytes: A mechanism for decreased total NAD content and a possible secondary cause of hemolysis, Blood 69: 999–1005.PubMedGoogle Scholar
  108. Zwaal, R. F. A., 1978, Membrane and lipid involvement in blood coagulation, Biochim. Biophys. Acta 515: 163–205.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Augusta Brovelli
    • 1
  1. 1.Department of Biochemistry, Faculty of ScienceUniversity of PaviaPaviaItaly

Personalised recommendations