The Transferrin Receptor and Iron Accumulation in Erythroid Cells

  • Klas Forsbeck
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


Developing erythroid cells need large amounts of iron mainly for heme formation but also for other essential biochemical reactions. Several obstacles have to be overcome in order to get the iron distributed to the right place in sufficient quantity at the right time. In the ionic state, iron is reactive, potentially toxic, and poorly soluble. This imposes the need for appropriate carrier functions both outside and inside cells and during passage through hydrophobic membranes. The interval during erythroid differentiation with intense heme synthesis is limited, and creates a demand for an efficient iron extraction mechanism that can be turned on or shut off according to the actual iron requirement.


K562 Cell Transferrin Receptor Erythroid Cell Iron Accumulation Human Transferrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, A., and Johnstone, R. M., 1987, Protein kinase C does not phosphorylate the externalized form of the transferrin receptor, Biochem. J. 242: 151–161.PubMedGoogle Scholar
  2. Adrian, G. S., Korinek, B. W., Bowman, B. H., and Yang, F., 1986, The human transferrin gene: 5’ region contains consersed sequences which match the control elements regulated by heavy metals, glucocorticoids and acute phase reaction, Gene 49: 167–175.PubMedCrossRefGoogle Scholar
  3. Aisen, P., 1982, Current concepts in iron metabolism, Clin. Haematol. 11: 241–257.PubMedGoogle Scholar
  4. Aisen, P., and Leibman, A., 1978, Thermodynamic and accessibility factors in the specific binding to human transferrin, in: Transport by Proteins (G. Blauer and H. Sund, eds.), pp. 277–294, de Gruyter, Berlin.Google Scholar
  5. Ajioka, R. S., and Kaplan, J., 1986, Intracellular pools of transferrin receptors result from constitutive internalization of unoccupied receptors, Proc. Natl. Acad. Sci. USA 83: 6445–6449.PubMedCrossRefGoogle Scholar
  6. Ali, F. M. K., May, A., Jones, B. M., and Jacobs, A., 1983, Enrichment of erythroblasts from human bone marrow using complement-mediated lysis: Measurements of ferritin, Br. J. Haematol. 53: 227–235.PubMedCrossRefGoogle Scholar
  7. Anderson, R. G. W., and Orci, L., 1988, A view of acidic intracellular compartments, J. Cell Biol. 106: 539–543.PubMedCrossRefGoogle Scholar
  8. Anderson, R. G. W., Falck, J. R., Goldstein, J. L., and Brown, M. S., 1984, Visualization of acidic organelles in intact cells by electron microscopy, Biochemistry 24: 366–370.Google Scholar
  9. Andersson, L. C., Nilsson, K., and Gahmberg, C. G., 1979, K562—A human erythroleukemic cell line, Int. J. Cancer 23: 143–147.PubMedCrossRefGoogle Scholar
  10. Amstein, H. R. V., Langstaff, J. M., Ong, G., Threadgill, G. J., and Bonanou-Tzedaki, S. A., 1987, Control of macromolecular synthesis and degradation during terminal erythroid cell development, Biomed. Biochem. Acta 46: 5115–S119.Google Scholar
  11. Ashendel, C. L., 1985, The phorbol ester receptor: A phospholipid-regulated protein kinase, Biochim. Biophys. Acta 822: 219–242.PubMedCrossRefGoogle Scholar
  12. Aziz, N., and Munro, H. N., 1987, Iron regulates ferritin mRNA translation through a segment of its 5’ untranslated region, Proc. Natl. Acad. Sci. USA 84: 8478–8482.PubMedCrossRefGoogle Scholar
  13. Bakkeren, D. L., de Jeu-Jaspars, C. M. H., Kroos, M. J., and van Eijk, H. G., 1987, Release of iron from endosomes is an early step in the transferrin cycle, Int. J. Biochem. 19: 179–186.PubMedCrossRefGoogle Scholar
  14. Basu, S. K., Goldstein, J. L., and Brown, M. S., 1978, Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts, J. Biol. Chem. 253: 3852–3856.PubMedGoogle Scholar
  15. Beguin, Y., Huebers, H. A., Josephson, B., and Finch, C. A., 1988, Transferrin receptors in rat plasma, Proc. Natl. Acad. Sci. USA 85: 637–640.PubMedCrossRefGoogle Scholar
  16. Bleil, J. D., and Bretscher, M. S., 1982, Transferrin receptor and its recycling in HeLa cells, EMBO J. 1: 351–355.PubMedGoogle Scholar
  17. Bothwell, T. H., Charlton, R. W., Cook, J. D., and Finch, C. A., 1979, Iron Metabolism in Man, Blackwell, Oxford.Google Scholar
  18. Bottomley, S. S., Wolfe, L. C., and Bridges, K. R., 1985, Iron metabolism in K562 erythroleukemic cells, J. Biol. Chem. 260: 6811–6815.PubMedGoogle Scholar
  19. Brunel, F., Ochoa, A., Schaeffer, E., Boissier, F., Guillou, Y., Cereghini, S., Cohen, G. N., and Zakin, M. M., 1988, Interactions of DNA-binding proteins with the 5’ region of the human transferrin gene, J. Biol. Chem. 263: 10180–10185.PubMedGoogle Scholar
  20. Buys, S. S., Keogh, E. A., and Kaplan, J., 1984, Fusion of intracellular membrane pools with cell surfaces of macrophages stimulated by phorbol esters and calcium ionophores, Cell 38: 569–576.PubMedCrossRefGoogle Scholar
  21. Cairo, G., Bardella, L., Schiaffoniata, L., Arosio, P., Levi, S., and, Bernelli-Zazzera, A., 1985, Multiple mechanisms of iron-induced ferritin synthesis in HeLa cells, Biochem. Biophys. Res. Commun. 133: 314–321.PubMedCrossRefGoogle Scholar
  22. Casey, J. L., di Jeso, B., Rao, K., Klausner, R. D., and Harford, J. B., 1988a, Two genetic loci participate in the regulation by iron of the gene for the human transferrin receptor, Proc. Natl. Acad. Sci. USA 85: 1787–1791.PubMedCrossRefGoogle Scholar
  23. Casey, J. L., Hentze, M. W., Koeller, D. M., Caughman, S. W., Rouault, T. A., Klausner, R. D., and Harford, J. B., 1988b, Iron-responsive elements: Regulatory RNA sequences that control mRNA levels and translation, Science 240: 924–928.PubMedCrossRefGoogle Scholar
  24. Chasteen, N. D., 1983, The identification of the probable locus of iron and anion binding in the transferrins, Trends Biochem. Sci. 8: 272–275.CrossRefGoogle Scholar
  25. Choe, H. R., Moseley, S. T., Glass, J., and Nunez, M. T., 1987, Rabbit reticulocyte coated vesicles carrying the transferrin—transferrin receptor complex: I. Purification and partial characterization, Blood 70: 1035–1039.PubMedGoogle Scholar
  26. Chrichton, R. R., and Charloteaux-Wauters, M., 1987, Iron transport and storage, Eur. J. Biochem. 164: 485–506.CrossRefGoogle Scholar
  27. Ciechanover, A., Schwartz, A. L., Dautry-Varsat, A., and Lodish, H. F., 1983, Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effects of lysosomotropic agents, J. Biol. Chem. 258: 9681–9689.PubMedGoogle Scholar
  28. Cox, T. M., O’Donnell, M. W., Aisen, P., and London, I. M., 1985, Hemin inhibits internalization of the membrane transferrin receptor, Proc. Natl. Acad. Sci. USA 82: 5170–5174.PubMedCrossRefGoogle Scholar
  29. Crane, F. L., Sun, I. L., Clark, M. G., Grebing, C., and Löw, H., 1985, Transplasma-membrane redox systems in growth and development, Biochim. Biophys. Acta 811: 233–264.PubMedCrossRefGoogle Scholar
  30. Dautry-Varsat, A., Ciechanover, A., and Lodish, H. F., 1983, pH and the recycling of transferrin during receptor-mediated endocytosis, Proc. Natl. Acad. Sci. USA 80: 2258–2262.PubMedCrossRefGoogle Scholar
  31. Davis, R. J., and Meisner, H., 1987, Regulation of transferrin receptor cycling by protein kinase C is independent of receptor phosphorylation at serine 24 in Swiss 3T3 fibroblasts, J. Biol. Chem. 262: 16041–16047.PubMedGoogle Scholar
  32. Davis, R. J., Johnson, G. L., Kelleher, D. J., Anderson, J. K., and Czech, M. P., 1986, Identification of serine 24 as the unique site on the transferrin receptor phosphorylated by protein kinase C, J. Biol. Chem. 261: 9034–9041.PubMedGoogle Scholar
  33. Davis, R. J., Faucher, M., Racaniello, L. K., Carruthers, A., and Czech, M. P., 1987, Insulin-like growth factor I and epidermal growth factor regulate the expression of transferrin receptors at the cell surface by distinct mechanisms, J. Biol. Chem. 262: 13126–13134.PubMedGoogle Scholar
  34. Deiss, A., and Cartwright, G. E., 1970, Ferritin metabolism in reticulated-siderocytes, J. Clin. Invest. 49: 517–523.PubMedCrossRefGoogle Scholar
  35. Dickson, R. B., Beguinot, L., Hanover, J. A., Richert, N. D., Willingham, M. C., and Pastan, I., 1983a, Isolation and characterisation of a highly enriched preparation of receptosomes (endosomes) from a human cell line, Proc. Natl. Acad. Sci. USA 80: 5335–5339.PubMedCrossRefGoogle Scholar
  36. Dickson, R. B., Hanover, J. A., Willingham, M. C., and Pastan, I., 1983b, Prelysosomal divergence of transferrin and epidermal growth factor during receptor-mediated endocytosis, Biochemistry 22: 5667–5674.PubMedCrossRefGoogle Scholar
  37. Flatmark, T., and Khan, M. R., 1988, The release of iron from a subfraction of rat liver highly enriched in endosomal organelles requires both a functional H+-ATPase and NADH, in: Plasmamembrane Oxidoreductase in Control of Animal and Plant Growth ( F. L. Crane, D. J. Morré, and H. Löw, eds.), pp. 117–126, Plenum Press, New York.CrossRefGoogle Scholar
  38. Forsbeck, K., and Nilsson, K., 1983, Iron metabolism of established human hematopoietic cell lines in vitro, Exp. Cell Res. 144: 323–332.PubMedCrossRefGoogle Scholar
  39. Forsbeck, K., and Nilsson, K., 1985, The dynamic morphology of the transferrin—transferrin receptor system in human leukemia/lymphoma cell lines and its relation to iron metabolism and cell proliferation, Scand. J. Haematol. 35: 145–154.PubMedCrossRefGoogle Scholar
  40. Forsbeck, K., Ericsson, J., Birgegârd, G., Malmgren, M., and Nilsson, K., 1986, Subcellular characterization of the transferrin—transferrin receptor and iron accumulating system of established human erythroid and monoblastoid tumour cell lines, Acta Pathol. Microbiol. Immunol. Scand. Sect. A 94: 245–252.Google Scholar
  41. Forsbeck, K., Nilsson, K., and Kontoghiorghes, G. J., 1987, Variation in transferrin membrane binding and DNA synthesis in the K-562 and U-937 cell lines induced by chelators and their iron complexes, Eur. J. Haematol. 39: 318–325.PubMedCrossRefGoogle Scholar
  42. Forth, W., and Rummel, W., 1973, Iron absorption, Physiol. Rev. 53: 724–792.PubMedGoogle Scholar
  43. Galbraith, G. M. P., and Galbraith, R. M., 1980, Metabolic and cytoskeletal modulation of transferrin receptor mobility in mitogen-activated human lymphocytes, Clin. Exp. Immunol. 42: 285–293.PubMedGoogle Scholar
  44. Gardner, L. C., and Cox, T. M., 1988, Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron, J. Biol. Chem. 263: 6676–6682.PubMedGoogle Scholar
  45. Geuze, H. J., Slot, J. W., and Strous, G. J. A. M., 1983, Intracellular site of asialoglycoprotein receptor—ligand uncoupling: Double-label immunoelectron microscopy during receptor-mediated endocytosis, Cell 32: 277–287.PubMedCrossRefGoogle Scholar
  46. Glass, J., Lavidor, L. M., and Robinson, S. H., 1975, Studies of murine erythroid cell development. Synthesis of heme and hemoglobin, J. Cell Biol. 65: 298–308.PubMedCrossRefGoogle Scholar
  47. Goodfellow, P. N., Banting, G., Sutherland, R., Greaves, M., Solomon, E., and Povey, S., 1982, Expression of human transferrin receptor is controlled by a gene on chromosome 3: Assignment using species specificity of a monoclonal antibody, Somat. Cell. Mol. Genet. 8: 197–206.CrossRefGoogle Scholar
  48. Hamilton, T. A., Wada, H. G., and Sussman, H. H., 1979, Identification of transferrin receptors on the surface of human cultured cells, Proc. Natl. Acad. Sci. USA 76: 6406–6410.PubMedCrossRefGoogle Scholar
  49. Hanover, J. A., Willingham, M. C., and Pastan, I., 1984, Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes, Cell 39: 283–293.PubMedCrossRefGoogle Scholar
  50. Harbin, B. M., and Dailey, H. A., 1985, Orientation of ferrochelatase in bovine liver mitochondria, Biochemistry 24: 366–370.PubMedCrossRefGoogle Scholar
  51. Harding, C., Heuser, J., and Stahl, P., 1983, Receptor-mediated endocytosis of transferrin and recycling of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol. 97: 329–339.PubMedCrossRefGoogle Scholar
  52. Harding, C., Levy, M. A., and Stahl, P., 1985, Morphological analysis of ligand uptake and processing: The role of multivesicular endosomes and CURL in receptor—ligand processing, Eur. J. Cell Biol. 36: 230–238.PubMedGoogle Scholar
  53. Helenius, A., Mellman, I., Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem. Sci. 8: 245–250.CrossRefGoogle Scholar
  54. Hemmaplardh, D., Kailis, S. G., and Morgan, E. H., 1974, The effects of inhibitors of microtubule and microfilament function on transferrin and iron uptake by rabbit reticulocytes and bone marrow, Br. J. Haematol. 28: 53–65.CrossRefGoogle Scholar
  55. Hopkins, C. R., 1983, Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells, Cell 35: 321–330.PubMedCrossRefGoogle Scholar
  56. Hopkins, C. R., and Trowbridge, J. S., 1983, Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells, J. Cell Biol. 97: 508–521.PubMedCrossRefGoogle Scholar
  57. Hradilek, A., and Neuwirt, J., 1987, Iron uptake and transferrin endocytosis in undifferentiated and differentiated erythroid cells, Biomed. Biochem. Acta 46: S141 — S145.Google Scholar
  58. Huebers, H. A., and Finch, C. A., 1987, The physiology of transferrin and transferrin receptors, Physiol. Rev. 67: 520–582.PubMedGoogle Scholar
  59. Huebers, H. A., Josephson, B., Huebers, E., Csiba, E., and Finch, C. A., 1981, Uptake and release of iron from human transferrin, Proc. Natl. Acad. Sci. USA 78: 2572–2576.PubMedCrossRefGoogle Scholar
  60. Huebers, H. A., Csiba, E., and Finch, C. A., 1983, Competitive advantage of diferric transferrin in delivering iron to reticulocytes, Proc. Natl. Acad. Sci. USA 80: 300–304.PubMedCrossRefGoogle Scholar
  61. Iacopetta, B. J., and Morgan, E. H., 1983a, Transferrin endocytosis and iron uptake during erythroid cell development, Biomed. Biochem. Acta 42: 5182–S186.Google Scholar
  62. Iacopetta, B. J., and Morgan, E. H., 1983b, The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes, J. Biol. Chem. 258: 9108–9115.PubMedGoogle Scholar
  63. Iacopetta, B. J., Morgan, E. H., and Yeoh, G. C. T., 1982, Transferrin receptors and iron uptake during erythroid cell development, Biochim. Biophys. Acta 687: 204–210.PubMedCrossRefGoogle Scholar
  64. Iacopetta, B. J., Morgan, E. H., and Yeoh, G. C. T., 1983, Receptor-mediated endocytosis of transferrin by developing erythroid cells from the fetal rat liver, J. Histochem. Cytochem. 31: 336–344.PubMedCrossRefGoogle Scholar
  65. Iacopetta, B. J., Carpentier, J. L., Pozzan, T., Lew, D. P., Gorden, P., and Orci, L., 1986, Role of intracellular calcium and protein kinase C in the endocytosis of transferrin and insulin by HL60 cells, J. Cell Biol. 103: 851–856.PubMedCrossRefGoogle Scholar
  66. Idzerda, R. L., Huebers, H., Finch, C. A., and McKnight, G. S., 1986, Rat transferrin gene expression: Tissue-specific regulation by iron deficiency, Proc. Natl. Acad. Sci. USA 83: 3723–3727.PubMedCrossRefGoogle Scholar
  67. Iscove, N. N., and Sieber, F., 1975, Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture, Exp. Hematol. 3: 32–43.PubMedGoogle Scholar
  68. Jacobs, A., 1977, Low molecular weight intracellular iron transport compounds, Blood 50: 433–439.PubMedGoogle Scholar
  69. Jandl, J., and Katz, J. H., 1963, The plasma-to-cell cycle of transferrin, J. Clin. Invest. 42: 314–326.PubMedCrossRefGoogle Scholar
  70. Jing, S., and Trowbridge, I. S., 1987, Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site, EMBO J. 6: 327–331.PubMedGoogle Scholar
  71. Karin, M., and Mintz, B., 1981, Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells, J. Biol. Chem. 256: 3245–3252.PubMedGoogle Scholar
  72. Klausner, R. D., Ashwell, G., van Renswoude, J., Harford, J. B., and Bridges, K. R., 1983a, Binding of apotransferrin to K562 cells: Explanation of the transferrin cycle, Proc. Natl. Acad. Sci. USA 80: 2263–2266.PubMedCrossRefGoogle Scholar
  73. Klausner, R. D., van Renswoude, J., Ashwell, G., Kempf, C., Schechter, A. N., Dean, A., and Bridges, K. R., 1983b, Receptor-mediated endocytosis of transferrin in K562 cells, J. Biol. Chem. 258: 4715–4724.PubMedGoogle Scholar
  74. Kohgo, Y., Niitsu, Y., Kondo, H., Kato, J., Tsushima, N., Sasaki, K., Hirayama, M., Numata, T., Nishisato, T., and Urushizaka, I., 1987, Serum transferrin receptor as a new index of erythropoiesis, Blood 70: 1955–1958.PubMedGoogle Scholar
  75. Kohno, H., Taketani, S., and Tokunaga, R., 1986, Phorbol ester-induced regulation of transferrin receptors in human leukemia K562 cells, Cell. Struct. Funct. 11: 181–190.PubMedCrossRefGoogle Scholar
  76. Kühn, L. C., McClelland, A., and Ruddle, F. H., 1984, Gene transfer, expression, and molecular cloning of the human transferrin receptor gene, Cell 37: 95–103.PubMedCrossRefGoogle Scholar
  77. Lamb, J E, Ray, F., Ward, J. H., Kushner, J. P., and Kaplan, J., 1983, Internalization and subcellular localization of transferrin and transferrin receptors in HeLa cells, J. Biol. Chem. 258: 8751–8758.PubMedGoogle Scholar
  78. Lane, R. S., 1975, Differences between human Fel-transferrin molecules, Br. J. Haematol. 29: 511–520.PubMedCrossRefGoogle Scholar
  79. Lebman, D., Trucco, M., Bottero, L., Lange, B., Pessano, S., and Rovera, G., 1982, A monoclonal antibody that detects expression of transferrin receptor in human erythroid cells, Blood 59: 671–678.PubMedGoogle Scholar
  80. Ledger, P. W., and Tanzer, M. L., 1984, Monensin—A perturbant of cellular physiology, Trends Biochem. Sci. 9: 313–314.CrossRefGoogle Scholar
  81. Lesley, J., Domingo, D. L., Schulte, R., and Trowbridge, I. S., 1984, Effect of an anti-murine transferrin receptor–ricin A conjugate on bone marrow stem and progenitor cells treated in vitro, Exp. Cell Res. 150: 400–407.PubMedCrossRefGoogle Scholar
  82. Löw, H., Sun, I. L., Navas, P., Grebing, C., Crane, F. L., and Morré, D. J., 1986, Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system, Biochem. Biophys. Res. Commun. 139: 1117–1123.PubMedCrossRefGoogle Scholar
  83. Löw, H., Grebing, C., Lindgren, A., Tally, M., Sun, I. L., and Crane, F. L., 1987, Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system, J. Bioenerg. Biomembr. 19: 535–549.PubMedGoogle Scholar
  84. McClelland, A., Kühn, L. C., and Ruddle, F. H., 1984, The human transferrin receptor gene: Genomic organiza- tion, and complete primary structure of the receptor deduced from a cDNA sequence, Cell 39: 267–274.PubMedCrossRefGoogle Scholar
  85. MacGillivray, R. T. A., Mendez, E., Shewale, J. G., Sinha, S. K., Lineback-Zins, J., and Brew, K., 1983, The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure, J. Biol. Chem. 258: 3543–3553.PubMedGoogle Scholar
  86. McGraw, T. E., Dunn, K. W., and Maxfield, F. R., 1988, Phorbol ester treatment increases the exocytic rate of the transferrin receptor recycling pathway independent of serine-24 phosphorylation, J. Cell Biol. 106: 1061–1066.PubMedCrossRefGoogle Scholar
  87. Marks, P. A., and Rifkind, R. A., 1978, Erythroleukemic differentiation, Annu. Rev. Biochem. 47: 419–448.PubMedCrossRefGoogle Scholar
  88. Mattia, E., and van Renswoude, J., 1988, The pivotal role of ferritin in cellular iron homeostasis, Bioessays 8: 107–111.PubMedCrossRefGoogle Scholar
  89. Mattia, E., Rao, K., Shapiro, D. S., Sussman, H. H., and Klausner, R. D., 1984, Biosynthetic regulation of the human transferrin receptor by desferrioxamine in K562 cells, J. Biol. Chem. 259: 2689–2692.PubMedGoogle Scholar
  90. Mattia, E., Josic, D., Ashwell, G., Klausner, R., and van Renswoude, J., 1986, Regulation of intracellular iron distribution in K562 human erythroleukemia cells, J. Biol. Chem. 261: 4587–4593.PubMedGoogle Scholar
  91. Miskimins, W. K., McClelland, A., Roberts, M. P., and Ruddle, F. H., 1986, Cell proliferation and expression of the transferrin receptor gene: Promoter sequence homologies and protein interactions, J. Cell Biol. 103: 1781–1788.PubMedCrossRefGoogle Scholar
  92. Morgan, E. H., 1981, Transferrin: Biochemistry, physiology and clinical significance, Mol. Aspects Med. 4: 1123.CrossRefGoogle Scholar
  93. Morgan, E. H., 1983, Chelator-mediated iron efflux from reticulocytes, Biochim. Biophys. Acta 733:39–50. Morgan, E. H., and Appleton, T. C., 1969, Autoradiographic localization of 125I-labelled transferrin in rabbit reticulocytes, Nature 223: 1371–1372.CrossRefGoogle Scholar
  94. Milliner, E. W., and Kühn, L. C., 1988, A stem-loop in the 3’ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm, Cell 53: 815–825.CrossRefGoogle Scholar
  95. Muta, K., Nishimura, J., Ideguchi, H., Umemura, T., and Ibayashi, H., 1987, Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias, Am. J. Hematol. 25: 155–163.PubMedCrossRefGoogle Scholar
  96. Neefjes, J. J., Verkerk, J. M. H., Broxterman, H. J. G., van der Marel, G. A., van Boom, J. H., and Ploegh, H. L., 1988, Recycling glycoproteins do not return to cis-Golgi, J. Cell Biol. 107: 79–87.PubMedCrossRefGoogle Scholar
  97. Nunez, M. T., Glass, J., Fischer, S., Lavidor, L. M., Lenk, E. M., and Robinson, S. H., 1977, Transferrin receptors in developing murine erythroid cells, Br. J. Haematol. 36: 519–526.PubMedCrossRefGoogle Scholar
  98. Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. USA 75: 3327–3331.PubMedCrossRefGoogle Scholar
  99. O’Keefe, D. O., and Draper, R. K., 1988, Two pathways of transferrin recycling evident in a variant of mouse LMTK-cells, Somat. Cell Mol. Genet. 14: 473–487.PubMedCrossRefGoogle Scholar
  100. Omary, M. B., and Trowbridge, I. S., 1981, Biosynthesis of the human transferrin receptor in cultured cells, J. Biol. Chem. 256: 12888–12892.PubMedGoogle Scholar
  101. Owen, D., and Kühn, L. C., 1987, Noncoding 3’ sequences of the transferrin receptor gene are required for mRNA regulation by iron, EMBO J. 6: 1287–1293.PubMedGoogle Scholar
  102. Pan, B. T., and Johnstone, R. M., 1983, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor, Cell 33: 967–977.PubMedCrossRefGoogle Scholar
  103. Pan, B. T., Teng, K., Wu, C., Adam, M., and Johnstone, R. M., 1985, Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes, J. Cell Biol. 101: 942–948.PubMedCrossRefGoogle Scholar
  104. Papayannopoulou, T., and Finch, C. A., 1975, Radioiron measurements of red cell maturation, Blood Cells 1: 535–546.Google Scholar
  105. Park, I., Schaeffer, E., Sidoli, A., Baralle, F. E., Cohen, G. N., and Zakin, M. M., 1985, Organization of human transferrin gene: Direct evidence that it originated by gene duplication, Proc. Natl. Acad. Sci. USA 82: 3149–3153.PubMedCrossRefGoogle Scholar
  106. Pastan, I., and Willingham, M. C., 1983, Receptor-mediated endocytosis: Coated pits, receptosomes and the Golgi, Trends Biochem. Sci. 8: 250–254.CrossRefGoogle Scholar
  107. Paterson, S., Armstrong, N. J., Iacopetta, B. J., McArdle, H. J., and Morgan, E. H., 1984, Intravesicular pH and iron uptake by immature erythroid cells, J. Cell. Physiol. 120: 225–232.PubMedCrossRefGoogle Scholar
  108. Pearse, B. M. F., 1982, Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G, Proc. Natl. Acad. Sci. USA 79: 451–455.PubMedCrossRefGoogle Scholar
  109. Pelosi, E., Testa, U., Louache, F., Thomopoulos, P., Salvo, G., Samoggia, P., and Peschle, C., 1986, Expression of transferrin receptors in phytohemagglutinin-stimulated human T-lymphocytes, J. Biol. Chem. 261: 3036–3042.PubMedGoogle Scholar
  110. Pelosi-Testa, E., Samoggia, P., Gianella, G., Montesoro, E., Caravita, T., Salvo, G., Camagana, A., Isacchi, G., Testa, U., and Peschle, C., 1988, Mechanisms underlying T-lymphocyte activation: Mitogen initiates and IL-2 amplifies the expression of transferrin receptors via intracellular iron level, Immunology 64: 273–279.PubMedGoogle Scholar
  111. Plowman, G. D., Brown, J. P., Enns, C. A., Schröder, J., Nikinmaa, B., Sussman, H. H., Hellström, K. E., and Hellström, I., 1983, Assignment of the gene for human melanoma-associated antigen p97 to chromosome 3, Nature 303: 70–72.PubMedCrossRefGoogle Scholar
  112. Princiotto, J. V., and Zapolski, E. J., 1976, Functional heterogeneity and pH-dependent dissociation properties of human transferrin, Biochim. Biophys. Acta 428: 766–771.PubMedCrossRefGoogle Scholar
  113. Rao, K., Harford, J. B., Rouault, T., McClelland, A., Ruddle, F. H., and Klausner, R. D., 1986, Transcriptional regulation by iron of the gene for the transferrin receptor, Mol. Cell. Biol. 6: 236–240.PubMedGoogle Scholar
  114. Rogers, J., and Munro, H., 1987, Translation of ferritin light and heavy subunit mRNAs is regulated by intracellular chelatable iron levels in rat hepatoma cells, Proc. Natl. Acad. Sci. USA 84: 2277–2281.PubMedCrossRefGoogle Scholar
  115. Rothenberger, S., Iacopetta, B. J., and Kühn, L. C., 1987, Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site, Cell 49: 423–431.PubMedCrossRefGoogle Scholar
  116. Rouault, T. A., Hentze, M. W., Dancis, A., Caughman, S. W., Harford, J. B., and Klausner, R. D., 1987, Influence of altered transcription on the translational control of human ferritin expression, Proc. Natl. Acad. Sci. USA 84: 6335–6339.PubMedCrossRefGoogle Scholar
  117. Rouault, T. A., Hentze, M. W., Caughman, S. W., Harford, J. B., and Klausner, R. D., 1988, Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA, Science 241: 1207–1210.PubMedCrossRefGoogle Scholar
  118. Rudolph, N. S. Ohlsson-Wilhelm, B. M., Leary, J. F., and Rowley, P. T., 1985, Regulation of K562 cell transferrin receptors by exogenous iron, J. Cell. Physiol. 122: 441–450.PubMedCrossRefGoogle Scholar
  119. Sabatini, D. D., Kreibach, G., Morimoto, T., and Adesnik, M., 1982, Mechanisms for the incorporation of proteins in membranes and organelles, J. Cell Biol. 92: 1–22.PubMedCrossRefGoogle Scholar
  120. Saermark, T., Flint, N., and Evans, W. H., 1985, Hepatic endosome fractions contain an ATP-driven proton pump, Biochem. J. 225: 51–58.PubMedGoogle Scholar
  121. Sager, P. R., Brown, P. A., and Berlin, R. D., 1984, Analysis of transferrin recycling in mitotic and interphase HeLa cells by quantitative fluorescence microscopy, Cell 39: 275–282.PubMedCrossRefGoogle Scholar
  122. Sassa, S., 1983, Heme biosynthesis in erythroid cells: Distinctive aspects of the regulatory mechanism, in: The Regulation of Hemoglobin Biosynthesis ( E. Goldwasser, ed.), pp. 359–383, Elsevier, Amsterdam.Google Scholar
  123. Schneider, C., Sutherland, R., Newman, R., and Greaves, M., 1982, Structural features of the cell surface receptor for transferrin that is recognized by the monoclonal antibody OKT9, J. Biol. Chem. 257: 8516–8522.PubMedGoogle Scholar
  124. Schneider, C., Asser, U., Sutherland, D. R., and Greaves, M. F., 1983, In vitro biosynthesis of human cell surface receptor for transferrin, FEBS Lett. 158: 259–264.PubMedCrossRefGoogle Scholar
  125. Schneider, C., Owen, M. J., Banville, D., and Williams, J. G., 1984, Primary structure of human transferrin receptor deduced from the mRNA sequence, Nature 311: 675–678.PubMedCrossRefGoogle Scholar
  126. Schwartz, A. L., Strous, G. J. A. M., Slot, J. W., and Geuze, H. J., 1985, Immunoelectron microscopic localization of acidic intracellular compartments in hepatoma cells, EMBO J. 4: 899–904.PubMedGoogle Scholar
  127. Sieff, C., Bicknell, D., Caine, G., Robinson, J., Lam, G., and Greaves, M. F., 1982, Changes in cell surface antigen expression during hemopoietic differentiation, Blood 60: 703–713.PubMedGoogle Scholar
  128. Sipe, D. M., and Murphy, R. F., 1987, High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: Exposure to pH 6 followed by temperature-sensitive alkalinization during recycling, Proc. Natl. Acad. Sci. USA 84: 7119–7123.PubMedCrossRefGoogle Scholar
  129. Snider, M. D., and Rogers, O. C., 1985, Intracellular movement of cell surface receptors after endocytosis: Resialylation of asialotransferrin receptor in human erythroleukemia cells, J. Cell Biol. 100: 826–834.PubMedCrossRefGoogle Scholar
  130. Sorkin, A. D., Teslenko, L. V., and Nikolsky, N. N., 1988, The endocytosis of epidermal growth factor in A431 cells: A pH of microenvironment and the dynamics of receptor complex dissociation, Exp. Cell Res. 175: 192–205.PubMedCrossRefGoogle Scholar
  131. Sorokin, L. M., Morgan, E. H., and Yeoh, G. C. T., 1987, Transferrin receptor numbers and transferrin and iron uptake in cultured chick muscle at different stages of development, J. Cell. Physiol. 131: 342–353.PubMedCrossRefGoogle Scholar
  132. Spik, B., Fournet, B., Cheron, A., Strecker, G., Montreuil, J., Dorland, L., and Vliegenthart, J. F. G., 1979, Comparative study of the structure of the glycans isolated from different transferrins, International Symposium on Glycoconjugates 5, Kiel, pp. 21–22.Google Scholar
  133. Stein, B. S., and Sussman, H. H., 1986, Demonstration of two distinct transferrin receptor recycling pathways and transferrin-independent receptor internalization in K562 cells, J. Biol. Chem. 261: 10319–10331.PubMedGoogle Scholar
  134. Stein, B. S., Bensch, K. G., and Sussman, H. H., 1984, Complete inhibition of transferrin recycling by monensin in K562 cells, J. Biol. Chem. 259: 14762–14772.PubMedGoogle Scholar
  135. Stoorvogel, W., Geuze, H. J., and Strous, G. J., 1987, Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells, J. Cell Biol. 104: 1261–1268.PubMedCrossRefGoogle Scholar
  136. Stoorvogel, W., Geuze, H. J., Griffith, J. M., and Strous, G. J., 1988, The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum, J. Cell Biol. 106: 1821–1829.PubMedCrossRefGoogle Scholar
  137. Surgenor, D. M., Koechlin, B. A., and Strong, L. E., 1949, Chemical, clinical and immunological studies on the products of human plasma fractionation. XXXVII. The metal-combining globulin of human plasma, J. Clin. Invest. 28: 73–96.CrossRefGoogle Scholar
  138. Thorstensen, K., and Romslo, I., 1988, Uptake of iron from transferrin by isolated rat hepatocytes, J. Biol. Chem. 263: 8844–8850.PubMedGoogle Scholar
  139. Tycko, B., and Maxfield, F. R., 1982, Rapid acidification of endocytic vesicles containing a2-macroglobulin, Cell 28: 643–651.PubMedCrossRefGoogle Scholar
  140. van Renswoude, J., Bridges, K. R., Harford, J. B., and Klausner, R. D., 1982, Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: Identification of a nonlysosomal acidic compartment, Proc. Natl. Acad. Sci. USA 79: 6186–6190.PubMedCrossRefGoogle Scholar
  141. Veldman, A., Van der Heul, C., Kroos, M. J., and Van Eijk, H. G., 1986, Fluorescence probe measurements of the pH of the transferrin microenvironment during uptake by rat bone marrow erythroid cells, Br. J. Haematol. 62: 155–162.PubMedCrossRefGoogle Scholar
  142. Warren, G., Davoust, J., and Cockcroft, A., 1984, Recycling of transferrin receptors in A431 cells is inhibited during mitosis, EMBO J. 3: 2217–2225.PubMedGoogle Scholar
  143. Watts, C., 1985, Rapid endocytosis of the transferrin receptor in the absence of bound transferrin, J. Cell Biol. 100: 633–637.PubMedCrossRefGoogle Scholar
  144. White, G. P., Bailey-Wood, R., and Jacobs, A., 1976, The effect of chelating agents on cellular iron metabolism, Clin. Sci. 50: 145–152.Google Scholar
  145. Willingham, M. C., Hanover, J. A., Dickson, R. B., and Pastan, I., 1984, Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells, Proc. Natl. Acad. Sci. USA 81: 175–179.PubMedCrossRefGoogle Scholar
  146. Yamashiro, D. J., Fluss, S. R., and Maxfield, F. R., 1983, Acidification of endocytic vesicles by an ATP-dependent proton pump, J. Cell Biol. 97: 929–934.PubMedCrossRefGoogle Scholar
  147. Yamashiro, D. J., Tycko, B., Fluss, S. R., and Maxfield, F. R., 1984, Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway, Cell 37: 789–800.PubMedCrossRefGoogle Scholar
  148. Yang, F., Lum, J. B., McGill, J. R., Moore, C. M., Naylor, S. L., van Bragt, P. H., Baldwin, W. D., and Bowman, B. H., 1984, Human transferrin: cDNA characterization and chromosomal localization, Proc. Natl. Acad. Sci. USA 81: 2752–2756.PubMedCrossRefGoogle Scholar
  149. Young, S. P., Bomford, A., and Williams, R., 1984, The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes, Biochem. J. 219: 505–510.PubMedGoogle Scholar
  150. Young, S. P., Roberts, S., and Bomford, A., 1985, Intracellular processing of transferrin and iron by isolated rat hepatocytes, Biochem. J. 232: 819–823.PubMedGoogle Scholar
  151. Zail, S. S., Charlton, R. W., Torrance, J. D., and Bothwell, T. H., 1964, Studies on the formation of ferritin in red cell precursors, J. Clin. Invest. 43: 670–680.PubMedCrossRefGoogle Scholar
  152. Zerial, M., Suomalainen, M., Zanetti-Schneider, M., Schneider, C., and Garoff, H., 1987, Phosphorylation of the human transferrin receptor by protein kinase C is not required for endocytosis and recycling in mouse 3T3 cells, EMBO J. 6: 2661–2667.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Klas Forsbeck
    • 1
  1. 1.Research and DevelopmentKabiStockholmSweden

Personalised recommendations