Receptors for Erythropoietin Distribution, Structure, and Role in Receptor-Mediated Endocytosis in Erythroid Cells

  • Stephen T. Sawyer
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


Erythropoietin (EP) is the glycoprotein hormone that is the primary regulator of red cell development. It is synthesized and released from the kidneys and livers of animals and man in response to a deficit of oxygen. Erythroid precursor cells respond to the hormone through surface receptors by maturing to functional erythrocytes. Increased erythrocytes in turn result in an increased availability of oxygen. The increased oxygen in the tissues leads to a decrease in synthesis and release of EP. These events comprise the elements of the reflex pathway that is the primary if not exclusive control of normal erythropoiesis. Normally the need for new erythrocytes is small and the circulating levels of the hormone are quite low; however, a decreased delivery of oxygen through hemorrhage, high-altitude hypoxia, red cell disorders, and other causes results in up to 1000-fold induction of the mRNA encoding EP in the kidney and a corresponding increase in the circulating levels of the hormone.


Erythroid Cell Erythroid Progenitor Erythroid Differentiation Erythroleukemia Cell Erythropoietin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrad, A. A., McLeod, D. L., Shreeve, M. M., and Heath, D. S., 1974, Properties of cells that produce erythrocytic colonies in vitro, in: Hemopoiesis in Culture ( W. A. Robinson, ed.), pp. 226–234, U.S. Government Printing Office, Washington, D.C.Google Scholar
  2. Berridge, M. V., Fraser, J. K., Carter, J. M., and Lin, F. K., 1988, Effects of recombinant human erythropoietin on megakaryocytes and on platelet production in the rat, Blood 72: 970–977.PubMedGoogle Scholar
  3. Beni, N., McDonald, J., Lacombe, C., and Goldwasser, E., 1986, Expression of the erythropoietin gene, Mol. Cell. Biol. 6: 2571–2575.Google Scholar
  4. Bonanou-Tzedaki, S. A., Setchenska, M. S., Setchenska, M. A., and Arnstein, H. R. V., 1986, Stimulation of adenylate cyclase activity of rabbit bone marrow immature erythroblasts by erythropoietin and haemin, Eur. J. Biochem. 155: 363–370.PubMedGoogle Scholar
  5. Bondurant, M. C., and Koury, M. J., 1986, Anemia induces accumulation of erythropoietin mRNA in the kidney and liver, Mol. Cell. Biol. 6: 2731–2732.PubMedGoogle Scholar
  6. Bondurant, M., Koury, M., Krantz, S., Blevins, T., and Duncan, D., 1983, Isolation of erythropoietin-sensitive cells from Friend virus-infected marrow cultures: Characterization of the erythropoietin response, Blood 61: 751–758.PubMedGoogle Scholar
  7. Bondurant, M. C., Lind, R. L., Koury, M. J., and Ferguson, M. E., 1985, Control of globin gene transcription by erythropoietin in erythroblasts from Friend virus-infected mice, Mol. Cell. Biol. 5: 675–683.PubMedGoogle Scholar
  8. Branch, D. R., Turc, J. M., and Guilbert, L. J., 1987, Identification of an erythropoietin-sensitive cell line, Blood 69: 1782–1785.PubMedGoogle Scholar
  9. Bridges, K., Levenson, R., Housman, D., and Cantley, L., 1981, Calcium regulates the commitment of MEL cells to terminal erythroid, J. Cell Biol. 90: 542–544.PubMedGoogle Scholar
  10. Broudy, V. C., Lin, N., Egrie, J., DeHaen, C., Weiss, T., Papayannopoulo, T., and Adamson, J. W., 1988, Identification of the receptor for erythropoietin on human and murine erythroleukemia cells and modulation by phorbol ester and dimethyl sulfoxide, Proc. Natl. Acad. Sci. USA 85: 6513–6517.PubMedGoogle Scholar
  11. Browne, J. K., Cohen, A. M., Egrie, J. C., Lai, P. H., Lin, F. K., Strickland, T., Watson, E., and Stebbins, N., 1986, Erythropoietin: Gene cloning, protein structure, and biological properties, Cold Spring Harbor Symp. Quant. Biol. 51: 693–699.PubMedGoogle Scholar
  12. Carnot, P., and Deflandré, C., 1906, Sur l’activite hemopoietique des differents organes au cours de la regeneration du sang, C.R. Acad. Sci. 143: 432–435.Google Scholar
  13. Carpenter, G., and Cohen, S., 1979, Epidermal growth factor, Annu. Rev. Biochem. 48: 193–216.PubMedGoogle Scholar
  14. Chang, C.-S., and Goldwasser, E., 1973, On the mechanism of erythropoietin-induced differentiation. XII. A cytoplasmatic protein mediating induced nuclear RNA synthesis, Dev. Biol. 34: 246–254.PubMedGoogle Scholar
  15. Chang, S. C.-S., Sikkema, D., and Goldwasser, E., 1974, Evidence for an erythropoietin receptor protein on rat bone marrow cells, Biochem. Biophys. Res. Commun. 57: 399–405.PubMedGoogle Scholar
  16. Choi, H. S., Wojchowski, D. M., and Sytkowski, A. J., 1987, Erythropoietin rapidly alters phosphorylation of pp43, an erythroid membrane protein, J. Biol. Chem. 262: 2933–2936.PubMedGoogle Scholar
  17. D’Andrea, A. D., Lodish, H. F., and Wong, G., 1989, Expression cloning of the murine erythropoietin receptor, Cell 57: 277–285.PubMedGoogle Scholar
  18. Dautry-Varsat, A., Ciechanover, A., and Lodish, H. F., 1983, pH and the recycling of transferrin during receptor-mediated endocytosis, Proc. Natl. Acad. Sci. USA 80: 2258–2262.PubMedGoogle Scholar
  19. Davis, J. M., Arakawa, T., Strickland, T. W., and Yphantis, D. A., 1987, Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells, Biochemistry 26: 2633–2638.PubMedGoogle Scholar
  20. Dawson, P. J., Dresler, S. L., and Fieldsteel, A. H., 1979, Erythroid leukemia induced by Friend lymphatic leukemia virus in T-cell-depleted mice, Cancer Res. 39: 1611–1615.PubMedGoogle Scholar
  21. DeBoth, N. J., Vermey, M., Van’t Hull, E., Klootwijk-van-Dijke, E., van Griensven, L. J. L. D., Mol, J. N. M., and Stoof, T. J., 1978, A new erythroid cell line induced by Rauscher murine leukaemia virus, Nature 272: 626–628.Google Scholar
  22. Dessypris, E. N., and Krantz, S. B., 1984, Effect of pure erythropoietin on DNA-synthesis by human marrow day 15 erythroid burst forming units in short-term liquid culture, Br. J. Haematol. 56: 295–306.PubMedGoogle Scholar
  23. Dessypris, E. N., Gleaton, J. H., and Armstrong, O. L., 1987, Effect of human recombinant erythropoietin on human marrow megakaryocyte colony formation in vitro, Br. J. Haematol. 65: 265.PubMedGoogle Scholar
  24. Dessypris, E. N., Graber, S. E., and Krantz, S. B., 1988, Effects of recombinant erythropoietin on the concentration and cycling status of human marrow hematopoietic progenitor cells in vivo, Blood 72: 2060–2062.PubMedGoogle Scholar
  25. Dukes, P. P., and Einbinder, M., 1975, Response to marrow cell cultures to glass bound erythropoietin, Blood 45: 1024A.Google Scholar
  26. Fraser, J. K., Lin, F. K., and Berridge, M. V., 1988a, Expression of high affinity receptors on human bone marrow and HEL cells, Exp. Hematol. 16: 836–842.PubMedGoogle Scholar
  27. Fraser, J. K., Lin, F. K., and Berridge, M. V., 1988b, Expression and modulation of specific, high affinity binding sites for erythropoietin on the human erythroleukemia cell line, K562, Blood 71: 104–109.PubMedGoogle Scholar
  28. Fraser, J. K., Nicholls, J., Coffey, C., Lin, F. K., and Berridge, M. V., 1988c, Down-modulation of high-affinity receptors for erythropoietin on murine erythroblasts by IL-3, Exp. Hematol. 16: 769–773.PubMedGoogle Scholar
  29. Fraser, J. K., Tan, A. S., Lin, F. K., and Berridge, M. V., 1989, Expression of specific high affinity binding sites for erythropoietin on rat and mouse megakaryocytes, Exp. Hematol. 17: 10–16.PubMedGoogle Scholar
  30. Fried, W., 1972, The liver as a source of extrarenal erythropoietin production, Blood 40: 671–677.PubMedGoogle Scholar
  31. Friend, C., 1957, Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia, J. Exp. Med. 105: 307–318.PubMedGoogle Scholar
  32. Friend, C., Scher, W., Holland, J. G., and Sato, T., 1971, Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethyl sulfoxide, Proc. Natl. Acad. Sci. USA 68: 378–382.PubMedGoogle Scholar
  33. Fukamachi, H., Saito, T., Tojo, A., Kitamura, T., Urabe, A., and Takaku, F., 1987a, Binding of erythropoietin to CFU-E derived from fetal mouse liver cells, Exp. Hematol. 15: 833–837.PubMedGoogle Scholar
  34. Fukamachi, H., Tojo, A., Saito, T., Kitamura, T., Nakata, M., Urabe, A. O., and Takaku, F., 1987b, Internalization of radioiodinated erythropoietin and the ligand-induced modulation of its receptor in murine erythroleukemia cells, Int. J. Cell Cloning 5: 209–219.PubMedGoogle Scholar
  35. Fukumoto, H., Matsui, Y., and Obinata, M., 1989, Mechanism of erythropoietin action on the erythroid progenitor cells induced from murine erythroleukemia cells (TSAR), Development 105: 109–114.PubMedGoogle Scholar
  36. Goldberg, M. A., Glass, G. A., Cunningham, J. M., and Bunn, H. F., 1987, The regulated expression of erythropoietin by two hepatoma cell lines, Proc. Natl. Acad. Sci. USA 84: 7972–7977.PubMedGoogle Scholar
  37. Goldberg, M. A., Dunning, S. P., and Bunn, H. F., 1988, Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein, Blood 72: 118a.Google Scholar
  38. Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russell, D. W., and Schneider, W. J., 1985, Receptor-mediated endocytosis, Annu. Rev. Cell Biol. 1: 1–39.PubMedGoogle Scholar
  39. Goldwasser, E., 1975, Erythropoietin and the differentiation of red blood cells, Fed. Proc. 34: 2285–2292.PubMedGoogle Scholar
  40. Goldwasser, E., 1981, Erythropoietin and red cell differentiation, in: Control of Cellular Division and Development, Part A ( D. Cunningham, E. Goldwasser, J. Watson, and D. F. Fox, eds.), pp. 487–494, Liss, New York.Google Scholar
  41. Graber, S. E., Carrillo, M., and Krantz, S. B., 1974, Lack of effect of erythropoietin on cyclic adenosine 3’,5’monophosphate levels in rat fetal liver cells, J. Lab. Clin. Med 83: 288–295.PubMedGoogle Scholar
  42. Graber, S. E., Bomboy, J. D., and Salmon, W. D., 1977, Effect of erythropoietin preparations on cyclic AMP and cyclic GMP levels in rat fetal liver cell cultures, J. Lab. Clin. Med. 90: 162–169.PubMedGoogle Scholar
  43. Graber, S., Bomboy, J. D., and Salmon, W.. D., 1979, Evidence that endotoxin is the cyclic 3’: 5’-GMPpromoting factor in erythropoietin preparations, J. Lab. Clin. Med. 93: 25–31.PubMedGoogle Scholar
  44. Gregory, C. J., and Evans, A. C., 1977, Human marrow cells capable of erythropoietic differentiation in vitro: Definition of three erythroid colony responses, Blood 49: 855–864.PubMedGoogle Scholar
  45. Hankins, W. D., and Troxler, D., 1980, Polycythemia-and anemia-inducing erythroleukemia viruses exhibit differential erythroid transforming effects in vitro, Cell 22: 693–699.PubMedGoogle Scholar
  46. Hankins, W. D., Kost, T. A., Koury, M. J., and Krantz, S. B., 1978, Erythroid bursts produced by Friend leukemia virus in vitro, Nature 276: 506–508.PubMedGoogle Scholar
  47. Hankins, W. D., Chin, K., Dons, R., and Szabo, J., 1982, Isolation of erythropoietin-dependent cell lines suggest viability role for developmental hormones, Blood 70: 173a.Google Scholar
  48. Hara, K., Suda, T., Suda, J., Ihle, J. N., Equachi, M., Nagata, S., Miura, Y., and Saito, M., 1988, Biopotential murine hemopoietic cell line (NFS-60) that is responsive to IL-3, GM-CSF and erythropoietin, Exp. Hematol. 16: 256–261.PubMedGoogle Scholar
  49. Heath, D. S., Axelrad, A. A., McLeod, D. L., and Shreeve, M. M., 1976, Separation of the erythropoietinresponsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation, Blood 47: 777–792.PubMedGoogle Scholar
  50. Hitomi, K., Fujita, K., Sasaki, R., Chiba, H., Okuno, Y., Ichiba, S., Takanashi, T., and Imura, H., 1988, Erythropoietin receptor of a human leukemic cell line with erythroid characteristics, Biochem. Biophys. Res. Commun. 154: 902–909.PubMedGoogle Scholar
  51. Hitomi, K., Masuda, S., Ito, K., Ueda, M., and Sasaki, R., 1989, Solubilization and characterization of erythropoietin receptor from transplantable mouse erythroblastic leukemic cells, Biochem. Biophys. Res. Commun. 160: 1140–1148.PubMedGoogle Scholar
  52. Hofer, E., Hofer-Warbinek, R., and Darnell, J. E., 1982, Globin RNA transcription: A possible termination site and demonstration of transcriptional control correlated with altered chromatin structure, Cell 29: 887–893.PubMedGoogle Scholar
  53. Hosoi, T., Sawyer, S. T., and Krantz, S. B., 1988, The receptor for erythropoietin lacks detectable glycosylation, Exp. Hematol. 16: 118.Google Scholar
  54. Hosoi, T., Sawyer, S. T., and Krantz, S. B., 1989, Identification of erythropoietin receptor in a ligand-free form with 125I-labeled, photoreactive, cleavable cross-linker (Denny-Jaffe Reagent), Exp. Hematol. 17: 224a.Google Scholar
  55. Imagawa, S., Smith, B. R., Palmer-Crocker, R., and Bunn, H. F., 1989, The effect of recombinant erythro-poietin on intracellular calcium in erythropoietin-responsive cells, Blood 73: 1452–1457.PubMedGoogle Scholar
  56. Iscove, N. N., 1977, The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow, Cell Tissue Kinet. 10: 323–334.PubMedGoogle Scholar
  57. Iscove, N. N., and Guilbert, L. J., 1978, Erythropoietin-independence of early erythropoiesis and a two-regulator model of proliferative control in the hematopoietic system, in: In Vitro Aspects of Erythropoiesis ( M. J. Murphy, ed.), pp. 3–7, Springer, Berlin.Google Scholar
  58. Iscove, N. N., and Sieber, F., 1975, Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture, Exp. Hematol. 3: 32–43.PubMedGoogle Scholar
  59. Jacobs, K., Shoemaker, C., Rudersdorf, R., Neill, S. D., Kaufman, R. J., Mufson, A., Seehra, J., Jones, S. S., Hewick, R., Fritsch, E. F., Kawakita, M., Shimizu, T., and Miyake, T., 1985, Isolation and characterization of genomic and cDNA clones of human erythropoietin, Nature 313: 806–810.PubMedGoogle Scholar
  60. Jacobson, L. O., Goldwasser, E., Fried, W., and Plzak, L., 1957, Role of the kidney in erythropoiesis, Nature 179: 633–634.PubMedGoogle Scholar
  61. Jacobson, L. O., Marks, E. K., Gaston, E. O., and Goldwasser, E., 1959, Studies on erythropoiesis. XI. Reticulocyte response of transfusion-induced polycythemic mice to anemic plasma from nephrectomized mice and to plasma from nephrectomized rats exposed to low oxygen, Blood 14: 635–643.PubMedGoogle Scholar
  62. Keppel, F., Allet, B., and Eisen, H., 1977, Appearance of a chromatin protein during the erythroid differentiation of Friend virus-transformed cell, Proc. Natl. Acad. Sci. USA 74: 653–657.PubMedGoogle Scholar
  63. Klausner, R. D., Ashwell, G., Van Renswoude, J., Harford, J. B., and Bridges, K. R., 1983, Binding of apotransferrin to K562 cells: Explanation of the transferrin cycle, Proc. Natl. Acad. Sci. USA 80: 2263–2266.PubMedGoogle Scholar
  64. Koury, M. J., and Bondurant, M. C., 1988, Maintenance by erythropoietin on viability and maturation of murine erythroid precursor cells, J. Cell. Physiol. 137: 65–74.PubMedGoogle Scholar
  65. Koury, M. J., Bondurant, M. C., Duncan, D. T., Krantz, S. B., and Hankins, W. D., 1982, Specific differentiation events induced by erythropoietin in cells infected in vitro with the anemia strain of Friend virus, Proc. Natl. Acad. Sci. USA 79: 635–639.PubMedGoogle Scholar
  66. Koury, M. J., Sawyer, S. T., and Bondurant, M. C., 1984, Splenic erythroblasts in anemia-inducing Friend disease: A source of cells for studies of erythropoietin-mediated differentiation, J. Cell. Physiol. 121: 526–532.PubMedGoogle Scholar
  67. Koury, M. J., Bondurant, M. C., and Mueller, T. J., 1986, The role of erythropoietin in the production of principal erythrocyte proteins other than hemoglobin during terminal erythroid differentiation, J. Cell. Physiol. 126: 259–265.PubMedGoogle Scholar
  68. Koury, M. J., Bondurant, M. C., and Rana, S. S., 1987a, Changes in erythroid membrane proteins during erythropoienin-mediated terminal differentiation, J. Cell. Physiol. 133: 438–448.PubMedGoogle Scholar
  69. Koury, M. J., Bondurant, M. C., and Atkinson, J. B., 1987b, Erythropoietin control of terminal erythroid differentiation: Maintenance of cell viability, production of hemoglobin, and development of the erythrocyte membrane, Blood Cells 13: 217–226.PubMedGoogle Scholar
  70. Koury, M. J., Bondurant, M. C., Graber, S. E., and Sawyer, S. T., 1988, Erythropoietin messenger RNA levels in developing mice and transfer of 1251-erythropoietin by the placenta, J. Clin. Invest. 82: 154–159.PubMedGoogle Scholar
  71. Koury, S. T., Bondurant, M. C., and Koury, M. J., 1988a, Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization, Blood 71: 524–528.PubMedGoogle Scholar
  72. Koury, S. T., Koury, M. J., and Bondurant, M. C., 1988b, Morphological changes in erythroblasts during erythropoietin-induced terminal differentiation in vitro, Exp. Hematol. 16: 758–763.PubMedGoogle Scholar
  73. Koury, S. T., Koury, M. J., and Bondurant, M. C., 1988c, Distribution and function of cytoskeletal elements during enucleation of mammalian erythroblasts, J. Cell Biol. 107: 63a.Google Scholar
  74. Koury, S. T., Koury, M. J., Bondurant, M. C., Caro, J., and Graber, S. E., 1989, Quantitation of erythropoietinproducing cells in kidneys of mice by in situ hybridization: Correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration, Blood 74: 645–651.PubMedGoogle Scholar
  75. Krantz, S. B., and Goldwasser, E., 1965, On the mechanism of erythropoietin-induced differentiation. II. The effect on RNA synthesis, Biochim. Biophys. Acta 103: 325–333.PubMedGoogle Scholar
  76. Krantz, S. B., and Goldwasser, E., 1984, Specific binding of erythropoietin to spleen cells infected with the anemia strain of Friend virus, Proc. Natl. Acad. Sci. USA 81: 7574–7578.PubMedGoogle Scholar
  77. Krantz, S. B., and Jacobson, L. O., 1970, Erythropoietin and the Regulation of Erythropoiesis, University of Chicago Press, Chicago.Google Scholar
  78. Krantz, S. B., Gallien-Lartigue, O., and Goldwasser, E., 1963, The effect of erythropoietin upon heme synthesis by marrow cells in vitro, J. Biol. Chem. 238: 4085.PubMedGoogle Scholar
  79. Krantz, S. B., Sawyer, S. T., and Sawada, K.-I., 1988, The role of erythropoietin in erythroid cell differentiation, Contrib. Nephrol. 66: 25–37.PubMedGoogle Scholar
  80. Krystal, G., 1983, A simple microassay for erythropoietin based on 3H-thymidine incorporation into spleen cells from phenylhydrazine treated mice, Exp. Hematol. 11: 649–660.PubMedGoogle Scholar
  81. LaCombe, C., DaSilva, J. L., Bruneval, P., Fournier, J. G., Wendling, F., Casadevall, N., Camilleri, J. P., Bariety, J., Varet, B., and Tambourin, P., 1988, Peritbular cells are the site of erythropoietin synthesis in the murine hypoxic kidney, J. Clin. Invest. 81: 620–623.PubMedGoogle Scholar
  82. Landschulz, K. T., Noyes, A. V., Rodgers, D., and Boyer, S., 1989, Erythropoietin receptors on murine colony-forming units; natural history, Blood 72: 92a.Google Scholar
  83. Levenson, R., Housman, D., and Cantley, L., 1980, Amiloride inhibits MEL cell differentiation: Evidence for Ca+2 requirement for commitment, Proc. Natl. Acad. Sci. USA 77: 5948–5952.PubMedGoogle Scholar
  84. Levenson, R., Macara, I. G., Smith, R. L., Cantley, L., and Housman, D., 1982, Role of mitochondrial membrane potential in the regulation of murine erythroleukemia cell differentiation, Cell 28: 855–863.PubMedGoogle Scholar
  85. Lin, F.-K., Suggs, S., Lin, C.-H., Browne, J. K., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. M., Martin, F., Stabinsky, Z., Badrawi, S. M., Lai, P.-H., and Goldwasser, E., 1985, Cloning and expression of the human erythropoietin gene, Proc. Natl. Acad. Sci. USA 82: 7580–7584.PubMedGoogle Scholar
  86. Linch, D. C., Jones, H. M., Tidman, N., and Roberts, P. J., 1987, The effects of erythropoietin on primitive human erythroid cells, Blood 70: 177a.Google Scholar
  87. McDonald, J. D., Lin, F.-K., and Goldwasser, E., 1986, Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene, Mol. Cell. Biol. 6: 842–848.Google Scholar
  88. McDonald, T. P., Cottrell, M. B., Clift, R. E., Cullen, C. W., and Lin, F. K., 1987, High doses of recombinant erythropoietin stimulate platelet production in mice, Exp. Hematol. 15: 719–724.PubMedGoogle Scholar
  89. Marks, P. A., and Rifkind, R. A., 1978, Erythroleukemic differentiation, Annu. Rev. Biochem. 47: 419–448.PubMedGoogle Scholar
  90. Marks, P. A., Sheffery, M., and Rifkind, R. A., 1987, Induction of transformed cells to terminal differentiation and the modulation of gene expression, Cancer Res. 47: 659–666.PubMedGoogle Scholar
  91. Mayeux, P., Billat, C., and Jacquot, R., 1987a, Murine erythroleukemia cells (Friend cells) possess high-affinity binding sites for erythropoietin, FEBS Lett. 211: 229–233.PubMedGoogle Scholar
  92. Mayeux, P., Billat, C., and Jacquot, R., 1987b, The erythropoietin receptor of rat erythroid progenitor cells, J. Biol. Chem. 262: 13985–13990.PubMedGoogle Scholar
  93. Means, R. T., Krantz, S. B., Sawyer, S. T., and Gilbert, H. S., 1989, Erythropoietin receptors in polycythemia vera, J. Clin. Invest. 84: 1340–1344.PubMedGoogle Scholar
  94. Melloni, E., Pontremoli, S., Michetti, M., Sacco, O., Cakiroglu, A. G., Jackson, J. F., Rifkind, R. A., and Marks, P. A., 1987, Protein kinase C activity and hexamethyl bisacetamide induced erythroleukemia cell differentiation, Proc. Natl. Acad. Sci. USA 84: 5282–5286.PubMedGoogle Scholar
  95. Miller, B. A., Scaduto, R. C., Jr., Tillotson, D. L., Botti, J. L., and Cheung, J. Y., 1988, Erythropoietin stimulates a rise in intracellular free calcium concentration in single early human erythroid precursors, J. Clin. Invest. 82: 309–315.PubMedGoogle Scholar
  96. Mirand, E. A., Steeves, R. A., Lange, R. D., and Grace, J. T., 1968, Virus-induced polycythemia in mice: Erythropoiesis without erythropoietin, Proc. Soc. Exp. Biol. Med. 128: 844–849.PubMedGoogle Scholar
  97. Mishina, Y., and Obinata, M., 1985, Induction of commitment of murine erythroleukemia cell (TSAR) to CFUE with DMSO, Exp. Cell Res. 162: 319–325.Google Scholar
  98. Misti, J., and Spivak, J. L., 1979, Erythropoiesis in vitro. Role of calcium, J. Clin. Invest. 64: 1573–1579.Google Scholar
  99. Miyake, T., Kung, C. K. H., and Goldwasser, E., 1977, Purification of human erythropoietin, J. Biol. Chem. 252: 5558–5564.PubMedGoogle Scholar
  100. Mladenovic, J., and Kay, N. E., 1988, Erythropoietin induces rapid increases in intracellular free calcium in human bone marrow cells, J. Lab. Clin. Med. 112: 23–27.PubMedGoogle Scholar
  101. Mufson, R. A., and Gesner, T. G., 1987, Binding and internalization of recombinant human erythropoietin in murine erythroid precursor cells, Blood 69: 1485–1490.PubMedGoogle Scholar
  102. Nijhof, W., and Wierenga, P. K., 1983, Isolation’and characterization of the erythroid progenitor cell: CFU-E, J. Cell Biol. 96: 386–392.PubMedGoogle Scholar
  103. Nijhof, W., Wierenga, P. K., Pietens, J., and Bloem, R., 1984, Cell kinetic behavior of a synchronized population of erythroid precursor cells in vitro, Cell Tissue Kinet. 17: 629–639.PubMedGoogle Scholar
  104. Ogawa, M., Porter, P. N., and Nakahata, T., 1983, Renewal and commitment to differentiation of hematopoietic stem cells (an interpretive review), Blood 61: 823–829.PubMedGoogle Scholar
  105. Orkin, S. H., Swan, D., and Leder, P., 1975, Differential expression of a-and 3-globin genes during differentiation of cultured erythroleukemia cells, J. Biol. Chem. 250: 8753–8759.PubMedGoogle Scholar
  106. Patel, V. P., and Lodish, H. F., 1987, A fibronectin matrix is required for differentiation of murine erythroleukemia cells into reticulocytes, J. Cell Biol. 105: 3105–3118.PubMedGoogle Scholar
  107. Pekonen, F., Rosenlof, K., Rutanen, E.-M., and Fyhrquist, F., 1987, Erythropoietin binding sites in human foetal tissues, Acta Endocriniol. (Copenhagen) 116: 561–567.Google Scholar
  108. Peschle, C., and Condorelli, M., 1975, Biogenesis of erythropoietin: Evidence for pro-erythropoietin in a subcellular fraction of kidney, Science 190: 910–912.PubMedGoogle Scholar
  109. Pfeffer, S. R., Huima, T., and Redman, C. M., 1986, Biosynthesis of spectrin and its assembly into the cytoskeletal system of Friend erythroleukemic cells, J. Cell Biol. 103: 103–113.PubMedGoogle Scholar
  110. Recny, M. A., Scoble, H. A., and Kim, Y., 1987, Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin, J. Biol. Chem. 262: 17156–17161.PubMedGoogle Scholar
  111. Reissman, K. R., 1950, Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia, Blood 5: 372–377.Google Scholar
  112. Rich, I. N., Heit, W., and Kubanek, B., 1982, Extrarenal erythropoietin production by macrophages, Blood 60: 1007–1018.PubMedGoogle Scholar
  113. Rodgers, G. M., Fisher, J. W., and George, W. J., 1976, Elevated cyclic GMP concentration in rabbit bone marrow culture and mouse spleen following erythropoietin stimulation, Biochem. Biophys. Res. Commun. 70: 287–291.PubMedGoogle Scholar
  114. Roodman, G. D., Spivak, J. L., and Zanjani, E. D., 1981, Stimulation of erythroid colony formation in vitro by erythropoietin immobilized on agarose-bound lectins, J. Lab. Clin. Med. 98: 684–690.PubMedGoogle Scholar
  115. Ruscetti, S., and Wolff, L., 1984, Spleen focus-forming virus: Relationship of an altered envelope gene to the development of a rapid erythroleukemia, Curr. Top. Microbiol. Immunol. 112: 21–44.PubMedGoogle Scholar
  116. Sakaguchi, M., Koishihara, Y., Tsuda, H., Fujimoto, K., Shibuya, K., Kawakita, M., and Takatsuki, K., 1987, The expression of functional erythropoietin receptors on an interleukin-3 dependent cell line, Biochem. Biophys. Res. Commun. 146: 7–12.PubMedGoogle Scholar
  117. Sasaki, R., Bothner, B., and Dell, A., 1987a, Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA, J. Biol. Chem. 262: 12059–12064.PubMedGoogle Scholar
  118. Sasaki, R., Yanagawa, S., Hitomi, K., and Chiba, H., 1987b, Characterization of erythropoietin receptor of murine erythroid cells, Eur. J. Biochem. 168: 43–48.PubMedGoogle Scholar
  119. Sassa, S., Takaku, F., and Nakao, K., 1968, Regulation of erythropoiesis in the Friend leukemia mouse, Blood 31: 758–765.PubMedGoogle Scholar
  120. Sawada, K., Krantz, S. B., Kans, J. S., Dessypris, E. N., Sawyer, S. T., Glick, A. D., and Civin, C. I., 1987, Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin, J. Clin. Invest. 80: 357–366.PubMedGoogle Scholar
  121. Sawada, K., Dessypris, E. N., and Krantz, S. B., 1988a, CFU-E do not require accessory cells and hormones other than insulin (I) and erythropoietin (EP) for erythroid development, J. Clin. Invest. 83: 1701–1709.Google Scholar
  122. Sawada, K., Krantz, S. B., Sawyer, S. T., and Civin, C. I., 1988b, Quantitation of specific binding of erythropoietin to human erythroid colony-forming cells, J. Cell. Physiol. 137: 337–345.PubMedGoogle Scholar
  123. Sawada, K., Krantz, S. B., Dai, C.-H., Koury, S. T., Horn, S. T., Glick, A. D., and Civin, C. I., 1990, Purification of human blood burst-forming units-erythroid and demonstration of the evolution of erythropoietin receptors, J. Cell. Physiol.,in press.Google Scholar
  124. Sawyer, S. T., 1989, The two proteins of the erythropoietin receptor are structurally similar, J. Biol. Chem. 264: 13343–13347.PubMedGoogle Scholar
  125. Sawyer, S. T., and Hankins, W. D., 1988, Metabolism of erythropoietin in erythropoietin-dependent cell lines, Blood 72: 440.Google Scholar
  126. Sawyer, S. T., and Koury, M. J., 1987, Erythropoietin requirements during terminal erythroid differentiation: The role of surface receptors for erythropoietin, J. Cell Biol. 105: 1077.Google Scholar
  127. Sawyer, S. T., and Krantz, S. B., 1984, Erythropoietin stimulates 45Ca2 ± uptake in Friend virus-infected erythroid cells, J. Biol. Chem. 259: 2769–2774.PubMedGoogle Scholar
  128. Sawyer, S. T., and Krantz, S. B., 1986a, Transferrin receptor number, synthesis and endocytosis during erythropoietin-induced maturation of Friend virus-infected erythroid cells, J. Biol. Chem. 261: 9187–9195.PubMedGoogle Scholar
  129. Sawyer, S. T., and Krantz, S. B., 1986b, Identification of the receptor of erythropoietin on mouse erythroid cells by cross-linking, J. Cell Biol. 103 (Nov. 5, Part 2): 213a.Google Scholar
  130. Sawyer, S. T., Koury, M. J., and Bondurant, M. C., 1987a, Large-scale procurement of erythropoietin-responsive erythroid cells: Assay for biological activity of erythropoietin, Methods Enzymol. 147: 340–352.PubMedGoogle Scholar
  131. Sawyer, S. T., Krantz, S. B., and Goldwasser, E., 1987b, Binding and receptor-mediated endocytosis of erythropoietin in Friend virus infected erythroid cells, J. Biol. Chem. 262: 5554–5562.PubMedGoogle Scholar
  132. Sawyer, S. T., Sawada, K.-I., and Krantz, S. B., and Luna, J., 1987c, Identification of the receptor for erythropoietin by cross-linking to Friend-virus-infected erythroid cells, Proc. Natl. Acad. Sci. USA 84: 3690–3694.PubMedGoogle Scholar
  133. Sawyer, S. T., Hosoi, T., and Krantz, S. B., 1988, Structure of the erythropoietin receptor, Blood 72: 441.Google Scholar
  134. Sawyer, S. T., Krantz, S. B., and Sawada, K.-I., 1989, Receptors for erythropoietin in mouse and human erythroid cells and placenta, Blood 74: 103–109.PubMedGoogle Scholar
  135. Schuster, S. J., Badiavas, E. V., Costa-Giorni, P., Weinmann, R., Erslev, A. J., and Caro, J., 1989, Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure, Blood 73: 13–16.PubMedGoogle Scholar
  136. Semenza, G. L., Traystamn, M. D., Gearhart, J. D., and Antonarakis, S. E., 1989, Polycythemia in transgeneic mice expressing the human erythropoietin gene, Proc. Natl. Acad. Sci. USA 86: 2301–2305.PubMedGoogle Scholar
  137. Shibuya, T., and Mak, T. W., 1983, Isolation and induction of erythroleukemia cell lines with properties of erythroid progenitor burst-forming cells (BFU-E) and erythroid precursor cells (CFU-E), Proc. Natl. Acad. Sci. USA 80: 3721–3725.PubMedGoogle Scholar
  138. Shoemaker, C. B., and Mistock, L. D., 1986, Murine erythropoietin gene: Cloning, expression, and human gene homology, Mol. Cell. Biol. 6: 849–858.PubMedGoogle Scholar
  139. Smith, R. L., Macara, I. G., Leveson, R., Housman, D., and Cantley, L., 1982, Evidence that a Na+/Ca++ antiport system regulates MEL cell differentiation, J. Biol. Chem. 257: 773–780.PubMedGoogle Scholar
  140. Sytkowski, A. J., Salvado, A. J., Smith, G. M., and McIntyre, C. J., 1980, Erythroid differentiation of cloned Rauscher erythroleukemia cells in response to dimethyl sulfoxide, erythropoietin, Science 210: 74–76.PubMedGoogle Scholar
  141. Tambourin, P. E., 1978, Haemopoietic stem cells and murine viral leukaemogenesis in: Stem Cells and Tissue Homeostasis (B. I. Lord et al.,eds.), pp. 259–316, Cambridge University Press, London.Google Scholar
  142. Tambourin, P., Casadevall, N., Choppin, J., Lacombe, C., Heard, J. M., Fichelson, S., Wendling, F., Hankins, W. D., and Varet, B., 1983, Production of erythropoietin-like activity by a murine erythroleukemia cell line, Proc. Natl. Acad. Sci. USA 80: 6269–6273.PubMedGoogle Scholar
  143. Tepperman, A. D., Curtis, J. E., and McCulloch, E. A., 1974, Erythropoietic colonies in cultures of human marrow, Blood 44: 659–669.PubMedGoogle Scholar
  144. Thompson, L. P., Sawyer, S. T., Blackmore, P. F., and Krantz, S. B., 1987, A search for the second messenger of erythropoietin, FASEB J. 2: A813.Google Scholar
  145. Till, J. E., and McCulloch, E. A., 1961, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res. 14: 213–222.PubMedGoogle Scholar
  146. Till, J. E., McCulloch, E. A., and Siminovitch, L., 1964, A stochastic model of stem cell proliferation, based on the growth of spleen-colony forming cells, Proc. Natl. Acad. Sci. USA 51: 29–36.PubMedGoogle Scholar
  147. Todokoro, K., Kanazawa, S., Amanuma, H., and Ikawa, Y., 1987, Specific binding of erythropoietin to its receptor on responsive mouse erythroleukemia cells, Proc. Natl. Acad. Sci. USA 84: 4126–4130.PubMedGoogle Scholar
  148. Todokoro, K., Kanazawa, S., Amanuma, H., and Ikawa, Y., 1988, Characterization of erythropoietin receptor on erythropoietin-unresponsive mouse erythroleukemia cells, Biochem. Biophys. Acta 943: 326–330.PubMedGoogle Scholar
  149. Tojo, A., Fukamachi, H., Kasuga, M., Urabe, A., and Takaku, F., 1987, Identification of erythropoietin receptors on fetal liver erythroid cells, Biochem. Biophys. Res. Commun. 148: 443–448.PubMedGoogle Scholar
  150. Tojo, A., Kukamachi, H., Saito, T., Kasuga, M., Urabe, A., and Takaku, F., 1988, Induction of the receptor for erythropoietin in MEL cells after DMSO treatment, Cancer Res. 48: 1818–1822.PubMedGoogle Scholar
  151. Troxler, D. H., and Scolnick, E. M., 1978, Rapid leukemia induced by cloned Friend strain of replicating murine type-C virus. Association with induction of xenotropic-related RNA sequences contained in spleen focus-forming virus, Virology 85: 17–27.PubMedGoogle Scholar
  152. Tsao, C. J., Tojo, A., Fukamachi, H., Kitamura, T., Saito, T., and Urabe, A., 1988, Expression of the functional erythropoietin receptors on interleukin 3-dependent murine cell lines, J. Immunol. 140: 89–93.PubMedGoogle Scholar
  153. Tsuda, H., Sawada, T., Sakaguchi, M., Kawakita, M., and Takatsuki, K., 1989, Mode of action of erythropoietin in Epo dependent murine cell line. I. Involvement of adenosine 3’: 5’-cyclic monophosphate not as a second messenger but as a regulator of cell growth, Exp. Hematol. 17: 211–217.PubMedGoogle Scholar
  154. Volloch, V., and Housman, D., 1982, Terminal differentiation of murine erythroleukemia cells: Physical stabilization of end-stage cells, J. Cell Biol. 93: 390–394.PubMedGoogle Scholar
  155. Weiss, T. L., Kung, C. K. H., and Goldwasser, E., 1985, Quantitation of erythropoietin binding to bone marrow cells, J. Cell. Biochem. 27: 57–65.PubMedGoogle Scholar
  156. Weiss, T. L., Barker, M. E., Selleck, S. E., and Wintroub, B. U., 1989, Erythropoietin binding and induced differentiation of Rauscher erythroleukemia cell line red 5–1.5, J. Biol. Chem. 264: 1804–1810.PubMedGoogle Scholar
  157. Yarden, Y., and Ullrich, A., 1988, Growth factor receptor tyrosine kinases, Annu. Rev. Biochem. 57: 443–478.PubMedGoogle Scholar
  158. Zanjani, E. D., Mclaurin, W. D., and Gordon, A. S., 1971, Biogenesis of erythropoietin: Role of the substrate for erythrogenin, J. Lab. Clin. Med. 77: 751–756.PubMedGoogle Scholar
  159. Zanjani, E. D., Poster, J., and Burlington, H., 1977, Liver as the primary site of erythropoietin formation in the fetus, J. Lab. Clin. Med. 89: 640–644.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Stephen T. Sawyer
    • 1
  1. 1.Division of Hematology, Department of MedicineVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations