The Anion Transport System of Red Blood Cell Membranes

  • Z. Ioav Cabantchik
Part of the Blood Cell Biochemistry book series (BLBI, volume 1)


The Cl-HCO3 exchanger (CBE) is the most prominent transport system of red blood cells (RBC). This system has been widely explored in terms of its physiological role (Cabantchik et al., 1978; Knauf, 1979; Gunn, 1979; Jennings, 1985; Frohlich and Gunn, 1986; Passow, 1987), kinetic mechanisms (Cabantchik et al., 1978; Knauf, 1979; Gunn, 1979; Jennings, 1985; Frohlich and Gunn, 1986; Passow, 1987), chemical architecture (Cabantchik et al., 1978; Jay and Cantley, 1986; Passow, 1987), and encoding gene structure (Kopito and Lodish, 1985; Demuth et al, 1986; Kopito et al., 1987; Cox and Lazarides, 1988; Alper et al., 1988; Tanner et al., 1988), and it has provided one of the best conceptual and methodological models for understanding protein-mediated transport. In RBC, CBE subserves the systemic transport of CO2 from tissues to lungs, while in other cells, CBE activity might be involved directly in regulated cellular pH homeostasis (Reinertsen et al., 1988; Ganz et al., 1989) and in conjunction with other transport systems it might also participate in cell volume regulation (Finn, 1985; Cala, 1985; Hoffman, 1986; Grinstein et al., 1985; Spring and Ericson, 1985) and epithelial salt secretory or absorptive processes (Greger, 1988; Muallem et al., 1988; Tago et al., 1986; Schuster et al., 1986; Wagner et al., 1987; Schwartz et al.,1985). The two other major mammalian cell membrane Cl transporters whose functions have been identified are the Na,K,CI cotransporter (SPCC) and the Cl channel (C1Ch). The relative activities of these systems vary among cells, and in the case of epithelial cells, they vary even between luminal and contraluminal membranes (Figure 1). The SPCC has recently been recognized


Transmembrane Segment Human Erythrocyte Membrane Transport Site Hydropathy Plot Anion Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alper, S. L., Kopito, R., Libresco, S. M., and Lodish, H. F., 1988, Cloning and characterization of murine band 3-related eDNA from kidney and from a lymphoid cell line, J. Biol. Chem. 263: 17902–17909.Google Scholar
  2. Aronson, P. S., 1989, The renal proximal tubule: a model for diversity of anion exchangers and stilbene sensitive anion transporters. Ann. Dey. Physiol. 51: 419–441.Google Scholar
  3. BarNoy, S. and Cabantchik, Z. I., 1990, The transport domain of the erythrocyte anion exchange protein, J. Membr. Biol. in press.Google Scholar
  4. Bartel, D., Lepke, S., Layh-Schmitt, G., Legrum, B., and Passow, H., 1989, Anion transport in oocytes of Xenopus Laevis induced by expressions of mouse erythroid band 3 protein-encoding CDNA and of a cRNA derivative obtained by site-directed mutagenesis at the stilbene disulfonate bonding site EMBO J. 12:36013609.Google Scholar
  5. Barzilay, M., and Cabantchik, Z. I., 1979, Anion transport in red blood cells. Sites and sidedness of inhibition by high-affinity reversible binding probes, Membr. Biochem 2: 297–322.PubMedGoogle Scholar
  6. Barzilay, M., Jones, D., and Cabantchik, Z. I., 1978, Sidedness of inhibitory effects as evidence for asymmetric location of the anion transport system of red blood cell membranes, Fed. Proc. 37: 1295.Google Scholar
  7. Barzilay, M., Ship, S., and Cabantchik, Z. I., 1979, Anion transport in red blood cells. 1. Chemical properties of anion recognition sites as revealed by structure activity relationships of aromatic sulfonic acids, Membr. Biochem. 2: 227–254.PubMedGoogle Scholar
  8. Bennet, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem 54: 273–304.Google Scholar
  9. Bjerrum, P., 1983, Identification and location of amino acid residues essential for anion transport in red cell membranes, in: Structure and Function of Membrane Proteins ( E. Quagliariello and F. Palmieri, eds.), pp. 107–115, Elsevier, Amsterdam.Google Scholar
  10. Blatz, A. E., and Magleby, K. L., 1985, Single chloride-selective channels active at resting membrane potentials in cultured rat skeletal muscle, Biophys. J. 47: 119–123.PubMedGoogle Scholar
  11. Boron, W. F., Hogan, E., and Russell, J. M., 1988, pH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-y-S, Nature 332: 262–265.Google Scholar
  12. Braell, W. A., and Lodish, H. F., 1981, Biosynthesis of the erythroctye anion transport protein, J. Biol. Chem. 256: 11337–11344.PubMedGoogle Scholar
  13. Braell, W. A., and Lodish, H. F., 1982, The erythrocyte anion transport protein is cotranslationally inserted into microsomes, Cell 28: 23–31.PubMedGoogle Scholar
  14. Branton, D., Cohen, C. M., and Tyler, J., 1981, Interactions of cytoskeletal proteins on the human erythrocyte membrane, Cell 24: 24–32.PubMedGoogle Scholar
  15. Brock, C. J. and Tanner, M. J. A., 1986. The human erythrocyte anion-transport protein. Further amino acid sequence from the integral membrane domain homologous with the murine protein, Biochem. J. 235: 899901.Google Scholar
  16. Brunner, J., and Semenza, G., 1981, Selective labeling of the hydrophobic core of membranes with 3-(tri-fluoromethyl)-3-(m[125lliodophenyl) diazirine, a carbene-generating reagent, Biochemistry 20: 7174–7182.PubMedGoogle Scholar
  17. Cabantchik, Z. I., 1983, Structure—function relations in band 3 protein, in Structure and Function of Membrane Proteins ( E. Quagliariello and F. Palmieri, eds.), pp. 271–281, Elsevier, Amsterdam.Google Scholar
  18. Cabantchik, Z. I., and Darmon, A., 1985, Reconstitution of membrane transport systems, in Structure and Properties of Membranes ( G. Benga, eds.), pp. 123–165, CRC Press, Boca Raton.Google Scholar
  19. Cabantchik, Z. I., Balshin, M., Breuer, V. W., and Rothstein, A., 1975, Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells, J. Biol. Chem. 250: 5130–5136.PubMedGoogle Scholar
  20. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978, The anion transport system of the red blood cell. The role of membrane protein evaluated by use of “probes,” Biochim. Biophys. Acta 515: 239–303.PubMedGoogle Scholar
  21. Cabantchik, Z. I., Volsky, D. J., Ginsburg, H., and Loyter, A., 1980, Reconstitution of the erythrocyte anion transport system, Ann. N.Y. Acad. Sci. 34: 444–454.Google Scholar
  22. Cala, P., 1985, Volume regulation by Amphiuma red blood cells: Strategies for identifying alkali metal/H+ transport, Fed Proc. 44: 2500–2507.PubMedGoogle Scholar
  23. Chen, J. H., Schulman, H., and Gardner, P., 1989, c-AMP regulated chloride channel in lymphocytes that is affected in cystic fibrosis, Science 243: 657–660.Google Scholar
  24. Cherry, R. J., Burkli, A., Busslinger, M., Schneider, G., and Parish, R. G., 1976, Rotational diffusion of band 3 proteins in the human erythrocyte membrane, Nature 263: 389–393.PubMedGoogle Scholar
  25. Chiba, T., Sato, Y., and Suzuki, Y., 1986. Characterization of eosin 5-isothiocyanate binding site in band 3 protein of the human erythrocyte, Biochim. Biophys. Acta 858: 107–117.PubMedGoogle Scholar
  26. Childs, R. A., Feizi, T., Fukuda, M., and Hakomori, S., 1978, Blood group-I activity associated with band 3, the major intrinsic membrane protein of human erythrocyte, Biochem. J. 173: 333–336.PubMedGoogle Scholar
  27. Cox, J. K., and Lazarides, E., 1988, Alternative primary structures in the transmembrane domain of the chicken erythroid anion transporter, Mol. Cell. Biol. 8: 1327–1335.PubMedGoogle Scholar
  28. Cox, J. V., Moon, R. T., and Lazarides, E., 1985, Anion transporter: High cell specific expression of distinct polypeptides and transcripts in erythroid and non-erythroid cells, J. Cell Biol. 100: 1548–1557.PubMedGoogle Scholar
  29. Darmon, A., Zangvill, M., and Cabantchik, Z. I., 1983, New approaches for the reconstitution and functional assay of membrane transport proteins. Application to the anion transporter of human erythrocytes, Biochim. Biophys. Acta 727: 77–88.PubMedGoogle Scholar
  30. Demuth, D. R., Showe, L. C., Ballantine, M., Palumbo, A., Fraser, P. J., Cioe, L., Rovera, R., and Curtis, R. J., 1986, Cloning and structural characterization of a human non-erythroid band 3-like protein, EMBO J. 5: 1205–1214.PubMedGoogle Scholar
  31. Eidelman, O., and Cabantchik, Z. I., 1983a, The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: I. Kinetic properties of NBD-taurine transfer in symmetric conditions, J. Membr. Biol. 71: 141–148.PubMedGoogle Scholar
  32. Eidelman, O., and Cabantchik, Z. I., 1983b, The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions, J. Membr. Biol. 71: 149–161.PubMedGoogle Scholar
  33. Eisinger, D., 1984, Three-dimensional structure of membrane and surface proteins, Annu. Rev. Biochem. 53: 595–623.Google Scholar
  34. Falke, F., Pace, R. J., and Chan, S. I., 1984a, Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors. A (35C1] NMR study, J. Biol. Chem. 259: 6481–6491.PubMedGoogle Scholar
  35. Falke, J. F., Pace, R. J., and Chan, I., 1984b, Chloride binding to the anion transport binding sites of band 3. A [35C1] NMR study, J. Biol. Chem. 259: 6472–6480.PubMedGoogle Scholar
  36. Finn, A. L., 1985, Volume-dependent pathways in animal cells, Fed Proc. 44: 25–99.Google Scholar
  37. Foxwell, B. M. J., and Tanner, M. J. A., 1981, Synthesis of the erythrocyte anion exchange protein. Immunochemical study of its incorporation into the plasma membrane of erythroid cells, Biochem. J. 195: 129137.Google Scholar
  38. Frizzell, R. A., Halm, D. R., Rechkemmer, G., and Shoemaker, R. L., 1986, Chloride channel regulation in secretory epithelia, Fed. Proc. 45: 2727–2731.PubMedGoogle Scholar
  39. Frohlich, 0., 1982, The external anion binding site of the human erythrocyte anion transport: DNDS binding and competition with chloride, J. Membr. Biol. 65: 111–123.PubMedGoogle Scholar
  40. Frohlich, 0., 1988, The “tunneling” mode of biological carrier mediated transport, J. Membr. Biol. 101: 189198.Google Scholar
  41. Frohlich, O., and Gunn, R. B., 1986, Erythrocyte anion transport: The kinetics of a single site obligatory exchange system, Biochim. Biophys. Acta 864: 169–194.PubMedGoogle Scholar
  42. Fukuda, M., Dell, A., Oates, J. E., and Fukuda, M. N., 1984, Structure of branched lactoseamino-glycan, the carbohydrate moiety of band 3 isolated from adult erythrocytes, J. Biol. Chem. 259: 8260–8279.PubMedGoogle Scholar
  43. Ganz, M. B., Boyarsky, G., Sterzel, R. B., and Boron, W. F., 1989, Arginine vasopressin enhances pHi regulation in the presence of HCO3— by stimulating three acid—base transport systems, Nature 332: 648–651.Google Scholar
  44. Garcia, A. M. and Lodish, H., 1989, Lysine 539 of human band 3 is not essential for ion transport or inhibition by stilbene disulfonates, J. Biol. Chem. 264: 19607–19613.PubMedGoogle Scholar
  45. Glickman, J., Croen, K., Kelly, S., and Al-Awqati, Q., 1983, Golgi membranes contain an electrogenic H-pump in parallel with a chloride conductance, J. Cell Biol. 97: 1303–1308.PubMedGoogle Scholar
  46. Gogelein, H., 1988, Chloride channels in epithelia, Biochim. Biophys. Acta 947: 521–547.PubMedGoogle Scholar
  47. Greger, R., 1987, Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron, Physiol. Rev. 65: 755–797.Google Scholar
  48. Greger, R., 1988, Chloride transport in thick ascending limb, distal convolution, and collecting duct, Annu. Rev. Physiol. 50: 111–122.PubMedGoogle Scholar
  49. Guidotti, G., 1980, The structure of the band 3 polypeptide, in: Membrane Transport in Erythrocytes, Alfred Benzon Symposium 14 ( U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), pp. 300–308, Munksgaard, Copenhagen.Google Scholar
  50. Gunn, R. B., 1979, Anion transport in red cells: An asymmetric, ping pong mechanism, in Mechanisms of Intestinal Secretion ( H. J. Binder, ed.), pp. 25–43, Liss, New York.Google Scholar
  51. Hamill, O. P., Bormann, J., and Sackmann, 1983, Activation of multiple conductance state chloride channels in spinal neurones by glycine and GABA, Nature 305: 805–808.PubMedGoogle Scholar
  52. Hoffman, E. K., 1986, Anion transport systems in the plasma membrane of vertebrate cells, Biochim. Biophys. Acta 864: 1–32.Google Scholar
  53. Jay, D., and Cantley, L. C., 1986, Structural aspects of the red cell anion exchange protein, Annu. Rev. Biochem. 55: 511–538.PubMedGoogle Scholar
  54. Jennings, M. L., 1982, Reductive methylation of the two H2DIDS-binding lysine residues of band 3, the human erythrocyte anion transport protein, J. Biol. Chem. 257: 7554–7559.PubMedGoogle Scholar
  55. Jennings, M. L., 1984, Oligomeric structure and the anion transport function of human erythrocyte band 3 protein, J. Membr. Biol. 80: 105–117.PubMedGoogle Scholar
  56. Jennings, M. L., 1985, Kinetics and mechanism of anion transport in red blood cells, Annu. Rev. Physiol. 47: 519–533.PubMedGoogle Scholar
  57. Jennings, M. L., and Adams, M. F., 1981, Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein, Biochemistry 20: 7118–7122.PubMedGoogle Scholar
  58. Jennings, M. L., and Al-Rhaiyel, S., 1988, Modification of a carboxyl group that appears to cross the permeability barrier in the red cell anion transporter, J. Gen. Physiol. 92: 161–178.PubMedGoogle Scholar
  59. Jennings, M. L., and Anderson, M. P., 1987, Chemical modification of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein, J. Biol. Chem. 262: 1691–1697.PubMedGoogle Scholar
  60. Jennings, M. L., and Passow, H., 1979, Anion transport across the erythrocyte membrane: In situ proteolysis of band 3 protein and cross linking of proteolytic fragments by 4,4’-diisothiocyano-dihydrostilbene-2,2’disulfonate, Biochim. Biophys. Acta 554: 498–519.PubMedGoogle Scholar
  61. Kanna, K., Labotka, R., and Low, P. S., 1988, Isolation and characterization of hemichrome-stabilized membrane protein aggregates from sickle erythrocytes, J. Biol. Chem. 263: 13766–13773.Google Scholar
  62. Kawano, Y., Okubo, K., Tokunaga, F., Miyata, T., Iwanaga, S., and Hamasaki, N., 1988, Localization of the pyridoxal phosphate binding site at the COOH-terminal region of the erythrocyte band 3 protein, J. Biol. Chem. 263: 8232–8238.PubMedGoogle Scholar
  63. Kay, M. B. B., 1986, Red cell clearance, in Red Cell Antigens and Antibodies ( G. Garratty, eds.), pp. 35–82, American Association of Blood Banks, Arlington, Va.Google Scholar
  64. Kellokumpu, S., Neff, L., Jamsa-Kellokumpu, S., Kopito, R., and Baron, R., 1988, A 115-kD polypeptide immunologically related to erythrocyte band 3 is present in Golgi apparatus, Science 242: 1308–1311.PubMedGoogle Scholar
  65. Kinne, R., and Heinz, E., 1987, Role of potassium in cotransport systems, Curr. Top. Membr. Transp. 28: 73–85.Google Scholar
  66. Klimann, H. J., and Steck, T. L., 1980, Kinetic analysis of the association of glyceraldehyde-3-phosphate dehydrogenase with the human red cell membrane, in: Membrane Transport in Erythrocytes, Alfred Benzon Symposium 14 (U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), pp. 312–322, Munksgaard, Copenhagen.Google Scholar
  67. Klocke, R. A., 1976, Rate of bicarbonate—chloride exchange in human red cells at 37°C, J. Appl. Physiol. 40: 707–714.PubMedGoogle Scholar
  68. Knauf, P. A., 1979, Erythrocyte anion exchange and the band 3 protein; transport kinetics and molecular structure, in: Current Topics in Membrane Transport ( F. Bronner and A. Kleinzeller, eds.), pp. 249–363, Academic Press, New York.Google Scholar
  69. Knauf, P. A., 1986, Anion transport in erythrocytes, in: Membrane Transport Disorders ( T. Andreoli, J. F. Hoffman, S. G. Schultz, and D. D. Fanestil, eds.), pp. 191–220, Plenum Press, New York.Google Scholar
  70. Kohne, W., Haest, C. W. M., and Deuticke, B., 1981, Mediated transport of anions in band 3—phospholipid vesicles, Biochim. Biophys. Acta 229: 547–556.Google Scholar
  71. Kopito, R. R., and Lodish, H. F., 1985, Structure of the marine anion exchange protein, J. Cell. Biochem. 29: 1–17.PubMedGoogle Scholar
  72. Kopito, R. R., Anderson, M., and Lodish, H. V., 1987, Structure and organization of the murine band 3 gene, J. Biol. Chem. 262: 8035–8040.PubMedGoogle Scholar
  73. Kopito, R. R., Andersson, M. A., Herzlinger, D. A., Al-Awqati, Q. and Lodish, H. F., 1988, Structure and tissue-specific expressions of the mouse anion exchanger gene in erythroid and renal cells, in: Cell Physiology of Blood ( R. B. Gunn and J. C. Parker, eds.), pp. 151–161. Rockefeller University Press, New York.Google Scholar
  74. Kopito, R. R., Lee, D. S., Simmons, D. M., Lindsey, A. E., Morgans, C. W., and Schneider, K., 1989, Regulation of intracellular pH by a neuronal homology of the erythrocyte anion exchanger, Cell 59: 927937.Google Scholar
  75. Landry, D. W., Reitman, M., Cragoe, E. J., and Al-Awqati, Q., 1987, Epithelial chloride channel: Development of inhibitory ligand, J. Gen. Physiol. 90: 779–798.PubMedGoogle Scholar
  76. Lazarides, E., 1987, From genes to structural morphogenesis: The genesis and epigenesis of a red blood cell, Cell 51: 345–356.PubMedGoogle Scholar
  77. Lodish, H., 1988, Multispanning membrane proteins: How accurate are the models? Trends Biochem. Sci. 13: 332–335.PubMedGoogle Scholar
  78. Lodish, H. F., Braell, W. A., Schwarz, A. L., Strous, G. J. A. M., and Zilberstein, A., 1981, Synthesis and assembly of membrane and organelle proteins, Int. Rev. Cytol. 12: 247–307.Google Scholar
  79. Low, P. S., 1986, Structure and function of the cytoplasmic domain of band 3: Center of erythrocyte—peripheral protein interactions, Biochim. Biophys. Acta 864: 145–167.PubMedGoogle Scholar
  80. Lukacovic, M. F., Feinstein, M. B., Sha’afi, R. I., and Perrie, S., 1981, Purification of stabilized band 3 protein of the human erythrocyte membrane and its reconstitution into liposomes, Biochemistry 20: 31453151.Google Scholar
  81. Lutz, H. U., 1987, Red cell clearance: A review, Biomed. Biochem. Acta 46: 65–71.Google Scholar
  82. Lutz, H. U., Fasler, S., Stammler, P., Bussolino, F., and Arese, P., 1988, Naturally occurring anti-band-3 antibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells, Blood Cells 14: 175–195.PubMedGoogle Scholar
  83. Lux, S. A., John, K. M., Kopito, R. R., and Lodish, H. F., 1989, Cloning and characterization of band 3, the human erythrocyte anion exchange protein, Proc. Natl. Acad. Sci. 86: 9089–9093.PubMedGoogle Scholar
  84. Macara, I. G., and Cantley, L. C., 1981, Mechanism of anion exchange across the red cell membrane by band 3: Interactions between stilbene-disulfonate and NAP-taurine binding sites, Biochemistry 20: 5695–5701.PubMedGoogle Scholar
  85. McCrea, R., Engelman, D. M., and Popot, J. L., 1988, Topography of membrane proteins: Hydrophobicity analysis versus immunolocalization, Trends Biochem. Sci. 13: 289–291.PubMedGoogle Scholar
  86. Marchesi, V. T., 1985, Stabilizing infrastructures of membranes, Annu. Rev. Cell Biol. 1: 531–561.PubMedGoogle Scholar
  87. Mawby, W. J., and Findlay, J. B. C., 1982, Characterization and partial sequence of di-iodo-sulphenylisothiocyanate binding protein from human erythroctye anion transport protein, Biochem. J. 205: 465–475.PubMedGoogle Scholar
  88. Morgan, M., Hanke, P., Grygorczyk, K. R., Tintschl, A., Fasold, H., and Passow, H., 1985, Mediation of anion transport in oocytes of Xenopus laevis by biosynthetically inserted band 3 protein from mouse spleen erythroid cells, EMBO J. 4: 1927–1931.Google Scholar
  89. Motais, R., and Cousin, J. L., 1978, A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: Influence of ring substituents, in: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Study ( R. W. Straub and L. Bolis, eds.), pp. 219–225, Raven Press, New York.Google Scholar
  90. Muallem, S., Blissard, D., Cragoe, E. J., and Sachs, G., 1988, Activation of Na/H and Cl/HCO3 exchange by stimulation of acid secretion in the parietal cell, J. Biol. Chem. 263: 14703–14711.PubMedGoogle Scholar
  91. O’Grady, Z. M., Palfrey, H. C., and Field, M., 1987, Characteristics and functions of Na-K-CI cotransport in epithelial tissues, Am. J. Physiol. 253: C177 — C192.PubMedGoogle Scholar
  92. Okoye, V. C. N., and Bennet, V., 1985, Plasmodium falciparum: Band 3 as a possible receptor during invasion of human erythrocytes, Science 227: 169–171.PubMedGoogle Scholar
  93. Palek, J., and Lux, S. E., 1983, Red cell membrane skeletal defects in hereditary and acquired hemolytic anemias, Semin. Hematol. 20: 189–224.PubMedGoogle Scholar
  94. Passow, H., 1987, Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane, Rev. Physiol. Biochem. Pharmacol. 103: 62–217.Google Scholar
  95. Passow, H., Fasold, H., Lepke, S., Pring, M., and Schuhmann, B., 1977, Chemical and enzymic modification of membrane proteins and anion transport in human red blood cells, in: Advances in Experimental Medical Biology ( M. W. Miller and A. E. Shamoo, eds.), pp. 353–379, Plenum Press, New York.Google Scholar
  96. Pimplikar, S. W., and Reithmeier, R. A. F., 1988, Identification, purification and characterization of a stilbene disulfonate binding glycoprotein from canine kidney brush border membranes. A candidate for a renal exchanger, J. Biol. Chem. 263: 4485–4493.PubMedGoogle Scholar
  97. Ramjeesingh, M., Gaarn, A., and Rothstein, A., 1981, The amino acid conjugate formed by the interaction of the anion transport inhibitor DIDS with band 3 protein from human red blood cell membranes, Biochim. Biophys. Acta 641: 173–182.PubMedGoogle Scholar
  98. Rao, A., Martin, P., Reitheimer, R. A. F., and Cantley, L. C., 1979, Location of the stilbene disulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer, Biochemistry 18: 4505–4516.PubMedGoogle Scholar
  99. Reinertsen, K. V., Tonnessen, T. I., Jacobsen, J., Sandvig, K., and Olsnes, S., 1988, Role of chloride/ bicarbonate antiport in control of cytosolic pH. Cell-line differences in activity and regulation of antiport, J. Biol. Chem. 263: 11117–11125.PubMedGoogle Scholar
  100. Rothstein, A., Ramjeesingh, M., Grinstein, S., and Knauf, P. A., 1980, Protein structure in relation to anion transport in red cells, Ann. N.Y. Acad. Sci. 34: 433–443.Google Scholar
  101. Sabban, E., Marchesi, V. T., Adesnik, M., and Sabatini, D. D., 1981, Erythrocyte membrane protein band 3: Its biosynthesis and incorporation into membranes, J. Cell Biol. 91: 637–646.PubMedGoogle Scholar
  102. Sabban, E., Sabatini, D. D., Marchesi, V. T., and Adesnik, M., 1982, Biosynthesis of erythrocyte membrane protein band 3 in DMSO-induced Friend erythroleukemia cells, J. Cell Physiol. 104: 261–268.Google Scholar
  103. Sayare, M., and Fikiet, M., 1981, Cross-linking of hemoglobin to the cytoplasmic surface of human erythrocyte membranes, J. Biol. Chem. 256: 13152–13158.PubMedGoogle Scholar
  104. Scheuring, U., Kollewe, K., Haase, W., and Schubert, D., 1986, A new method for the reconstitution of the anion transport system of the human erythrocyte membrane, J. Membr. Biol. 90: 123–135.PubMedGoogle Scholar
  105. Schlatter, E., Greger, R., and Weidtke, C., 1983, Effect of high “ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney: Correlations of chemical structure and inhibitory potency, Pfluegers Arch. 396: 210–217.Google Scholar
  106. Schoumacher, R. A., Shoemaker, R. L., Halm, D. R., Tallant, E. A., Wallace, R. W., and Frizzell, R. A., 1987, Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature 330: 75 2754.Google Scholar
  107. Schuster, V. L., Bonsib, S. M., and Jennings, M. L., 1987, Two types of collecting duct mitochondria-rich (intercalated) cells: Lectin and band 3 cytochemistry, Am. J. Physiol. 251: C347 — C355.Google Scholar
  108. Schwartz, G. J., Barasch, J., and Al-Awqati, Q., 1985, Plasticity of functional epithelial polarity, Nature 318: 368–371.PubMedGoogle Scholar
  109. Spring, K. R., and Ericson, A., 1983, Epithelial cell volume modulation and regulation, J. Membr. Biol. 69: 167–176.Google Scholar
  110. Steck, T. L., 1974, The organization of proteins in the human red cell membrane, J. Cell Biol. 62: 1–19.PubMedGoogle Scholar
  111. Steck, T. L., Koziarz, J. J., Singh, M. K., Reddy, R., and Kohler, H., 1978, Preparation and analysis of seven major, topographically defined fragments of band 3, the predominant transmembrane polypeptide of human erythrocyte membranes, Biochemistry 17: 1216–1222.PubMedGoogle Scholar
  112. Tago, K., Schuster, V. L., and Stokes, J. B., 1986, Regulation of Cl self exchange by cAMP in cortical collecting tubule, Am. J. Physiol. 251: F40 — F48.PubMedGoogle Scholar
  113. Tanner, M. J. A., Williams, D. G., and Jenkins, R. E., 1980, Structure of the erythrocyte anion transport protein, Ann. N.Y. Acad. Sci. 34: 455–464.Google Scholar
  114. Tanner, M. J. A., Marti, P. G., and High, S., 1988, The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J. 256: 703–712.PubMedGoogle Scholar
  115. Terwilliger, T. L., and Clarke, S., 1981, Methylation of membrane proteins in human erythrocytes, J. Biol.Chem. 256: 3067–3076.PubMedGoogle Scholar
  116. Tsuji, T., Irimura, T., and Ozawa, T., 1980, The carbohydrate moiety of band 3 glycoprotein of human erythrocyte membranes, Biochem. J. 187: 677–685.PubMedGoogle Scholar
  117. Wagner, S., Vogel, R., Lietzke, R., Koob, R., and Drenckhahn, D., 1987, Immunochemical characterization of band 3-like anion exchanger in collecting duct of human kidney, Am. J. Physiol. 253: F213 - F221.PubMedGoogle Scholar
  118. Wangemann, P., Wittner, M., DiStefano, A., Englert, H. C., Lang, H. J., Schlatter, E., and Greger, R., 1986, Cl-channel blockers in the thick ascending limb of the loop of Henle: Structure activity relationship, Pfluegers Arch. 407 (Suppl.): S128–5141.Google Scholar
  119. Waxman, L., 1979, The phosphorylation of the major proteins of the human erythrocyte membrane, Arch. Biochem. Biophys. 195: 300–314.PubMedGoogle Scholar
  120. Welsh, M. J., and Liedtke, C. M., 1986, Chloride and potassium channels in cystic fibrosis airway epithelia, Nature 322: 467–470.PubMedGoogle Scholar
  121. Wieth, J. O., Andersen, O. S., Brahm, J., Bjerrum, P. J., and Borders, C. L., 1982, Chloride—bicarbonate exchange in red blood cells, Philos. Trans. Ry. Soc. 299: 383–399.Google Scholar
  122. Xie, X. S., Stone, D. K., and Racker, E., 1983, Determinants of clathrin-coated vesicle acidification, J. Biol. Chem. 258: 14834–14838.PubMedGoogle Scholar
  123. Zaki, L., and Julien, T., 1985, Anion transport in red blood cells and arginine specific reagents. Interaction between the substrate binding site and the binding site of arginine specific reagents, Biochim. Biophys. Acta 818: 325–332.PubMedGoogle Scholar
  124. Zenke, M., Kahn, P., Disela, C., Vennstrom, B., Leutz, A., Keega, K., Hayman, M. J., and Choi, H. R., 1988, v-erbA specifically suppresses transcription of the avian erythrocyte anion transporter (band 3) gene, Cell 52: 107–119.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Z. Ioav Cabantchik
    • 1
    • 2
  1. 1.Department of Biological Chemistry, Institute of Life SciencesHebrew UniversityJerusalemIsrael
  2. 2.Laboratory of Cell Biology and Genetics, National Institute of Diabetes and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations