Biological Transformations

  • Giancarlo Lancini
  • Rolando Lorenzetti


Modifications of an antibiotic structure that do not interfere with its intrinsic activity, i.e., with the ability to interact with its target molecule in susceptible microorganisms, can be of fundamental importance with regard to in vivo biological activity and the practical usefulness of the antibiotic. Properties such as the membrane transport (and hence the penetration into bacterial cells), absorption and distribution throughout the body, and susceptibility to the action of inactivating enzymes can be drastically influenced by modifications of the original molecule.


Microbial Transformation Penicillin Versus Penicillin Acylases Biological Transformation Streptomyces Aureofaciens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Demain, A. L., 1981, Production of new antibiotics by directed biosynthesis and by the use of mutants, in The Future ofAntibiotherapy and Antibiotic Research ( L. Ninet, P. E. Bost, D. H. Bouanchaud, and J. Florent, eds.), pp. 417–435, Academic Press, New York.Google Scholar
  2. Hutchinson, C. R., 1988, Prospects for the discovery of new (hybrid) antibiotics by genetic engineering of antibiotic-producing bacteria, Med. Res. Rev. 8: 557.PubMedCrossRefGoogle Scholar
  3. Marshall, V. P., and Wiley, P. F., 1982, Microbial transformation of antibiotics, in Microbial Transformations of Bioactive Compounds ( J. R. Rosazza, ed.), pp. 45–80, CRC Press, Boca Raton, Fla.Google Scholar
  4. Marshall, V. P., and Wiley, P. F., 1986, Biomodification of antibiotics by Streptomyces, in The Bacteria, Vol. IX (J. W. Queener and L. E. Day, eds.), pp. 323–353, Academic Press, New York.Google Scholar
  5. Sebek, O. K., 1986, Antibiotics, in Biotechnology, Vol. 6a (K. Kieslich, ed.), pp. 239276, VHC Verlag, Weinheim.Google Scholar

Precursor-Directed Biosynthesis

  1. Borghi, A., Edwards, D., Zerilli, L. F., and Lancini, G. C., 1991, Factors affecting the normal and branched-chain acyl moieties of teicoplanin components produced by Actinoplanes teichomyceticus, J. Gen. Microbiol. 137: 587.PubMedCrossRefGoogle Scholar
  2. Cole, M., 1966, Microbial synthesis of penicillins, Process Biochem. 1: 334.Google Scholar
  3. Daum, S. J., and Lemke, J. R., 1979, Mutational biosynthesis of new antibiotics, Annu. Rev. Microbiol. 33: 241.PubMedCrossRefGoogle Scholar
  4. Dutton, C. J., Gibson, S. P., Goudie, A. C., Holdom, K. S., Pacey, M. S., Ruddock, J. C., Bu’Lock, J. D., and Richards, M. K., 1991, Novel avermectins produced by mutational biosynthesis, J. Antibiot. 44: 357.PubMedCrossRefGoogle Scholar
  5. Houck, D. R., Ondeyka, J., Zink, D., Inamine, E., Goetz, M. A., and Hensens, O. D., 1988, On the biosynthesis of asperlicin and the directed biosynthesis of analogs in Aspergillus alliaceus, J. Antibiot. 41: 882.PubMedCrossRefGoogle Scholar
  6. Kobel, M., and Traber, S., 1982, Directed biosynthesis of cyclosporins A BCD and G by the external supply of the corresponding position 2 amino acids to Tolypocladium inflatum, Eur. J. Appl. Microbiol. Biotechnol. 14: 237.CrossRefGoogle Scholar
  7. Lancini, G. C., Lazzari, E., and Sartori G., 1968, Microbial oxidation of aminoimidazoles to nitroimidazoles, J Antibiot. 21: 387.PubMedCrossRefGoogle Scholar
  8. Okuda, T., and Ito, Y., 1982, Biosynthesis and mutasynthesis of aminoglycoside antibiotics, in Aminoglycoside Antibiotics ( M. Umazawa and I. R. Hooper, eds.), pp. 111–203, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Omura, S., Sadakane, M., Tanaka, Y., and Matsubara, H., 1983, Chimeramycins: New macrolide antibiotics produced by hybrid biosynthesis, J. Antibiot. 36: 927.PubMedCrossRefGoogle Scholar
  10. Takita, T., and Maeda, K., 1980, Chemical and biological modification of bleomycin, an antitumor antibiotic, J. Heterocycl. Chem. 17: 1799.CrossRefGoogle Scholar
  11. Toscano, L., Fiorello, G., Spagnoli, R., Cappelletti, L., and Zanuso, G., 1983, New fluorinated erythromycins obtained by mutasynthesis, J. Antibiot. 36: 1439.PubMedCrossRefGoogle Scholar

Genetic and Molecular Biology Methods

  1. Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C., and Spalla, C., 1969, Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius, Biotechnol. Bioeng. 11: 1101.PubMedCrossRefGoogle Scholar
  2. Donadio, S., Stayer, M. J., McAlpine, J. B., Swanson, S. J., and Katz, L., 1991, Modular organization of genes required for complex polyketide biosynthesis, Science 252: 675.PubMedCrossRefGoogle Scholar
  3. Epp, J. K., Huber, M. L., Turner, J. R., and Schoner, B. E., 1989, Molecular cloning and expression of carbomycin biosynthetic and resistance genes from Streptomyces thermotolerans, in Genetics and Molecular Biology of Industrial Microorganisms ( C. L. Hershberger, C. L. Qeener, and S. W. Hegeman, eds.), pp. 35–39, American Society for Microbiology, Washington, D.C.Google Scholar
  4. Hutchinson, C. R., Borell, L. W., Otten, S. L., Stutzman-Engwall, K. J., and Wang, Y., 1989, Drug discovery and development through the genetic engineering of antibiotic producing microorganisms, J. Med. Chem. 32: 929.PubMedCrossRefGoogle Scholar
  5. Lancini, G. C., and Hengheller, C., 1969, Isolation of rifamycin SV from a mutant Streptomyces mediterranei strain, J. Antibiot. 22: 637.PubMedCrossRefGoogle Scholar
  6. McCormick, J. R. D., Sjolander, N. O., Hirsch, U., Jensen, E. R., and Doerschuk, A. P., 1957, A new family of antibiotics: The demethyltetracyclines, J. Am. Chem. Soc. 79: 4561.CrossRefGoogle Scholar
  7. Schupp, T., Traxler, P., and Auden, J. A. L., 1981, New rifamycins produced by a recombinant strain of Nocardia mediterranei, J. Antibiot. 34: 965.PubMedCrossRefGoogle Scholar
  8. Strohl, W. R., Bartel, P. L., Li, Y., Connors, N. C., and Woodman, R. H., 1991, Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes, J. Ind. Microbiol. 7: 163.PubMedCrossRefGoogle Scholar

Specific Reactions

  1. Boeck, L. D., Fukuda, D. S., Abbott, B. J., and Debono, M., 1989, Deacylation of echinocandin B by Actinoplanes utahensis, J. Antibiot. 42: 382.PubMedCrossRefGoogle Scholar
  2. Chen, T. S., Arison, B. H., Wicker, L. S., Inamine, E. S., and Monagham, R. L., 1992, Microbial transformation of immunosuppressive compounds. I. Desmethylation of FK 506 and immunomycin (FR 900520), J. Antibiot. 45: 118.PubMedCrossRefGoogle Scholar
  3. Debono, M., Abbott, B. J., Molloy, R. M., Fukuda, D. S., Hunt, A. M., Daupert, V. M., Counter, F. T., Ott, J. L., Carrell, L. B., Howard, L. C., Boeck, L. D., and Hamill, R. L., 1988, Enzymatic and chemical modifications of lipopeptide antibiotic A 21978C: The synthesis and evaluation of daptomycin (LY 146032), J. Antibiot. 41: 1093.PubMedCrossRefGoogle Scholar
  4. Lowe, D. A., 1985, Industrial importance of biotransformations of ß-lactam antibiotics, Dev. Ind. Microbiol. 26: 143.Google Scholar
  5. Lowe, D. A., Romancick, G., and Elander, R. P., 1981, Penicillin acylases: A review of the existing enzymes and the isolation of a new bacterial penicillin acylase, Dev. Ind. Microbiol. 22: 163.Google Scholar
  6. Nakagawa, K., Sato, K., Tsukamoto, Y., and Torikata, A. 1992, Microbial conversion of milbemycins: 29-hydroxylation of milbemycins by genus Syncephalastrum, J. Antibiot. 45: 802.PubMedCrossRefGoogle Scholar
  7. Vandamme, F. J., and Voetz, J. P., 1974, Microbial penicillin acylases, Adv. Appl. Microbiol. 17: 311.PubMedCrossRefGoogle Scholar
  8. Zmijeswski, M. J., Logan, R. M., Marconi, G., Debono, M., Molloy, R. M., Chadwell, F., and Briggs, B., 1989, Biotransformation of vancomycin B to vancomycin hexapeptide by a soil microorganism, J. Nat. Prod. 52: 203.CrossRefGoogle Scholar

Cell-Free Synthesis

  1. Baldwin, J. E., Coates, J. B., Moloney, M. G., Shuttleworth, W. A., and Pratt, A. J., 1989, Advances in molecular understanding of ß lactam biosynthesis, in Genetics and Molecular Biology of Industrial Microorganisms ( C. L. Hershberger, C. L. Qeener, and S. W. Hegeman, eds.), pp. 270–278, American Society for Microbiology, Washington, D.C.Google Scholar
  2. Ferrero, M. A., Reglero, A., Martinez-Blanco, H., Fernandez-Valverde, M., and Luengo, J. M., 1991, In vitro enzymatic synthesis of new penicillins containing keto acids as side chains, Antimicrob. Agents Chemother. 35: 1931.PubMedCrossRefGoogle Scholar
  3. Luengo, J. M., 1989, Recent advances in the enzymatic synthesis of penicillins, Prog. Ind. Microbiol. 27: 315.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Giancarlo Lancini
    • 1
  • Rolando Lorenzetti
    • 1
  1. 1.MMDRI-Lepetit Research CenterGerenzano (Varese)Italy

Personalised recommendations