Expression of a Synthetic Mussel Adhesive Protein in Escherichia Coli

  • Anthony J. Salerno
  • Ina Goldberg


Repetitious gene cassettes that encode the consensus decapeptide repeat of Mytilus edulis bioadhesive protein were designed, constructed, and expressed in Escherichia coli. The bioadhesive precursor (BP) with a MW of 25,000 was expressed from one 600-bp gene comprised of a 30-bp unit repeat that accounts for E. coli codon bias. In strains employing T7 RNA polymerase for induction, BP was produced at levels approaching 60% of total cell protein. BP forms intracellular inclusions and yet methionine was processed from the N-terminus of the purified protein as shown by amino acid composition and N-terminal sequencing to give an authentic consensus precursor protein. Although the repetitious gene containing 30-bp repeat units appeared stable in T7-based host/vector systems, it was less stable in a λPL promoter-based host/vector system. Codon diversification was examined as a potential method to alleviate the problems by constructing a repetitious gene comprised of 120-bp repeats. This longer repeat unit failed to confer additional stability upon the repetitious gene.


Repeat Unit Cetyl Trimethyl Ammonium Bromide Mytilus Edulis Gene Cassette Total Cell Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Waite, Biol. Rev., 58, 209 (1983).CrossRefGoogle Scholar
  2. 2.
    J. H. Waite, Comp. Biochem. Physiol., 97B, 19 (1990).Google Scholar
  3. 3.
    J. H. Waite, J. Biol. Chem., 258, 2911 (1983).PubMedGoogle Scholar
  4. 4.
    J. H. Waite, Chemtech, 17, 692 (1987).Google Scholar
  5. 5.
    J. B. Robin, P. Picciano, R. S. Kusleika, J. Salazar and C. Benedict, Arch. Ophthalmol., 106, 973 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    D. R. Filpula, S. M. Lee, R. P. Link, S. L. Strausberg and R. L. Strausberg, Biotechnol. Prog., 6, 171 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    D. K. Willis, B. E. Uhlin, K. S. Amini and A. Clark, Mol. Gen. Genet., 183, 497 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    F. W. Studier, A. H. Rosenberg, J. J. Dunn and J. W. Dubendorff, Meth. Emzymol., 185, 60 (1990).CrossRefGoogle Scholar
  9. 9. “Experiments in Molecular Genetics, J. H. Miller, Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, 1972.Google Scholar
  10. 10.
    J. A. Lautenberger, D. Court and T. S. Papas, Gene, 23, 75 (1983).PubMedCrossRefGoogle Scholar
  11. 11. “Current Protocols in Molecular Biology,”F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. J. Seidman, J. A. Smith and K. StruhlGoogle Scholar
  12. Eds., Greene Publishing Associates and Wiley-Interscience, New York, 1987.Google Scholar
  13. 12.
    M. D. Swerdloff, S. B. Anderson, R. D. Sedwick, M. K. Gabriel, R. J. Brambilla, D. M. Hindenlang and J. I. Williams, Int. J. Peptide Protein Res., 33, 318 (1989).CrossRefGoogle Scholar
  14. 13.
    T. Shioiri, K. Ninomiya and S, Yamada, J. Amer. Chem. Soc., 94, 6203 (1972).CrossRefGoogle Scholar
  15. 14. “Antibodies: A Laboratory Manual, E. Harlow and D. Lane, Eds., Cold Spring Harbor Laboratory, Cold Harbor, 1988.Google Scholar
  16. 15.
    G. N. Godson and P. Vapnek, Biochim. Biophys. Acta, 229, 516 (1973).Google Scholar
  17. 16.
    J. I. Williams, A. J. Salerno, I. Goldberg and W. T. McAllister, US Patent 5, 089, 406, 1992.Google Scholar
  18. 17.
    I. Goldberg, A. J. Salerno, T. Patterson and J. I. Williams, Gene 80, 305 (1989).PubMedCrossRefGoogle Scholar
  19. 18.
    S. Panyim and R. Chalkey, Arch. Biochem. Biophys., 130, 337 (1969).PubMedCrossRefGoogle Scholar
  20. 19.
    V. V. Shmatchenko and A. J. Varshaysky, Anal. Biochem., 85, 42 (1978).PubMedCrossRefGoogle Scholar
  21. 20.
    L. A. Marjanen and I. J. Ryrie, Biochim. Biophys. Acta, 371, 442 (1974).CrossRefGoogle Scholar
  22. 21.
    C. M. Willson, Anal. Biochem., 96, 263 (1979).CrossRefGoogle Scholar
  23. 22. “Physical Biochemistry, D. Freifelder, Ed., W. H. Freeman and Co., San Francisco, 1976.Google Scholar
  24. 23.
    M. W. Hunkapiller and L. E. Hood, Meth. Enzymol., 91, 486 (1983).PubMedCrossRefGoogle Scholar
  25. 24.
    N. M. Meltzer, G. I. Tous, S. Gruber and S. Stein, Anal. Biochem., 160, 356 (1987).PubMedCrossRefGoogle Scholar
  26. 25.
    H. A. de Boer and R. A. Kastelein in: “Maximizing Gene Expression,” W. S. Reznikoff and L. Gold, Eds., Butterworth, Boston, 1986, Chapter 8, p. 225.Google Scholar
  27. 26.
    K. J. Maugh, D. M. Anderson, R. L. Strausberg, S. L. Strausberg, R. McCandliss, T. Wei and D. Filpula, US Patent 5, 049, 504, 1991.Google Scholar
  28. 27.
    P. G. Debenham, Trends Biotechnol., 10, 96 (1992).PubMedCrossRefGoogle Scholar
  29. 28.
    Y. Suzuki and Y. Ohshima, Cold Spring Harbor Symp. Quant. Biol., 42, 947 (1978).CrossRefGoogle Scholar
  30. 29.
    M. T. Doel, M. Eaton, E. A. Cook, H. Lewis, T. Patel and N. H. Carey, Nucleic Acids Res., 8, 4575 (1980).PubMedCrossRefGoogle Scholar
  31. 30.
    S. T. Case, Gene, 20, 169 (1982).PubMedCrossRefGoogle Scholar
  32. 31.
    R. M. Schaaper, B. N. Danforth and B, W, Glickman, J. Mol. Biol., 189, 273 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Anthony J. Salerno
    • 1
  • Ina Goldberg
    • 1
  1. 1.Allied-Signal IncMorristownUSA

Personalised recommendations