Single Electron and Quantum Phenomena in Ultra Small Particles

  • Victor Erokhin
  • Sandro Carrara
  • Claudio Nicolini
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 3)


Principles, responsible for the single-electron phenomena, are considered. Different ways of the junction formation are discussed, emphasising that, based on the utilization of nanometer size granules. Model, describing the single electron properties as well as the appearance of the differential negative resistance regions, is proposed. It is also discussed the technical approaches for the formation of ultrathin semiconductor layers and superlattices based on the aggregation of ultrasmall semiconductor particles.


Bias Voltage Single Electron Scan Tunnelling Microscope Image Differential Negative Resistance Coulomb Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Averim, D.A., and Likharev, K.K., 1986a, Coulomb Blockade of Single-Electron Tunnelling, and Coherent Oscillations in Small Tunnel Junctions, J. Low Temp. Phys., 62: 345–373.ADSCrossRefGoogle Scholar
  2. Averim, D.A., and Likharev, K.K., 1986b, Coherent oscillation in small tunnel junctions, Soy. Phys. JEPT, 63: 427–432.Google Scholar
  3. Averim, D.A., Korotkov, A. N., and Likharev, K.K., 1991, Theory of single-electron charging of quantum wells and dots, Phys. Rev. B, 44: 6199–6211.ADSCrossRefGoogle Scholar
  4. Barner, J.B., and Ruggiero, S.T., 1987, Observation of the incremental charging of ag particles by single electrons, Phys. Rev. Leu., 59: 807.ADSCrossRefGoogle Scholar
  5. Beenakker, C.W., 1991, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B, 44: 1646–1656.ADSCrossRefGoogle Scholar
  6. Beenakker, C.W., vam Houten, H., and Staring, A.A.M., 1991, Influence of Coulomb repulsion on the Aharonov-Bohm effect in a quantum dot, Phys. Rev. B, 44: 1657–1662.ADSCrossRefGoogle Scholar
  7. Ben-Jacob, E., 1985, New quantum oscillation in current driven small junctions, Phys. Lett., 108A: 289–292.CrossRefGoogle Scholar
  8. Carrara, S., Erokhin, V., Facci, P., and Nicolini, C., 1996, On the role of nanoparticle sizes in monoelectron conductivity, in Nanoparticles in solids and solutions, J.Fendler, I.Décâni (Eds.), Kluwer Accademic Publisher, Netherlands, 497.Google Scholar
  9. Crommie, M.F., Lutz, C.P., and Eigler, D.M., 1993, Confinement of electrons to quantum corrals on a metal surface, Science, 262: 218.ADSCrossRefGoogle Scholar
  10. Dorogi, M., Gomez, J., Osifchin, R., Andres, R.P., and Reifenberger, R., 1995, Room-temperature Coulomb blockade from a self-assembled molecular nanostructure, Phys. Rev. B, 52: 9071.ADSCrossRefGoogle Scholar
  11. Dubois, J.G.A., Gerritsen, J.W., Shafranjuk, S.E., Boon, E.J.G., Schmid, G., and van Kempen, H., 1996, Coulomb staircase and quantum size effects in tunneling spectroscopy on ligand-stabilized metal cluster, Europhys. Lett. 33: 279.ADSCrossRefGoogle Scholar
  12. Erokhin, V., Feigin, L., Ivakin, G., Klechkovskaya, V., Lvov, Yu., and Stiopina, N., 1991, Formation and X-ray and electron diffraction study of CdS and PbS particles insidefatty acid matrix, Makromol. Chem., Macromol. Symp. 46: 359.CrossRefGoogle Scholar
  13. Erokhin, V., Facci, P., Carrara, S. and Nicolini, C., 1995, Observation of room temperature mono-electron phenomena on nanomete-sized cds particles, J. Phys. D: Appl. Phys. 28: 2534–2538.ADSCrossRefGoogle Scholar
  14. Erokhin, V., Facci, P., Carrara S., and Nicolini, C., 1996, Monoelectron phenomena in nanometer scale particles formed in LB films, Thin Solid Films in press.Google Scholar
  15. Erokhin, V., Facci, P., Carrara, S., and Nicolini, C., 1997a, Fatty acid-based monoelectron device, Biosensors and Bioelectronics 7: 601–606.CrossRefGoogle Scholar
  16. Erokhin, V., Facci, P., Gobbi, L., Dante, S., Rustichelli, F., and Nicolini, C., 1997b, Superlattices formed from LB precursor studied by scanning electron microscopy, Thin Solid Films,in press.Google Scholar
  17. Facci, P., Erokhin, V., and Nicolini, C., 1993, Thin Solid Films, 230: 86.ADSCrossRefGoogle Scholar
  18. Facci, P., Erokhin, V., Tronin, A., and Nicolini, C., 1994, Formation of ultrathin semiconductor films by CdS nanostructure aggregation, J. Phys. Chem. 98: 13323–13327.CrossRefGoogle Scholar
  19. Facci, P., Erokhin, V., Carrara, S., and Nicolini, C., 1996, Room-temperature single-electron junction, Proc. Natl. Acad. Sci. USA, 93: 10556–10559.Google Scholar
  20. Fulton, T.A., and Dolan, G.J., 1987, Observation of single-charging effects in small tunnel junctions, Phys.Rev.Lett., 59: 109.ADSCrossRefGoogle Scholar
  21. Giaevcr, I., and Zeller, H.R., 1968, Superconductivity of small tin particles measured by tunneling, Phvs. Rev. Lett. 20: 1504.ADSCrossRefGoogle Scholar
  22. Glazmann, L.I., and Shechter, R.I., 1989, Coulomb oscillations of the conductance in a laterally confined heterostructure, J. Phys. Condens. Matter., 1: 5811–5815.ADSCrossRefGoogle Scholar
  23. Gritsenko, O.V., and Lazarev, P.I., 1989, On the volt-ampere characteristic of molecular monoelectronic elements, in Molecular Electronics (F.T.Hong, Ed.), Plenum Press, New York, 277–288.Google Scholar
  24. Groshev, A., Ivanov, T., and Valtchinov, V., 1991, Charging effects of a single quantum level in a box, Phvs. Rev. Lett., 66: 1082–1085.ADSCrossRefGoogle Scholar
  25. Guinea, F., and Garcia, N., 1990, Scanning tunnelling microscopy, resonant tunnelling and counting electrons: a quantum standard of current, Phys. Rev. Lett., 65: 281–284.ADSCrossRefGoogle Scholar
  26. Hasmonay, H., Vincent, M., and Dupeyrat, M., 1980, Composition and transfer mechanism of Langmuir-Blodgett multilayers of stearates, Thin Solid Films 68: 21–31.ADSCrossRefGoogle Scholar
  27. He, S., and Das Sarma, S., 1993, Quantum electron transport through narrow constrictions in semiconductor nanostructures, Phys. Rev. B, 48: 4629–4635.ADSCrossRefGoogle Scholar
  28. Kouwenhoven, L.P., van der Vaart, N.C., Johnson, A.T., Kool, W., 1991, Single electron charging effects in semiconductor quantum dots, Z. Phys.B, Condensed Matter., 85: 367.CrossRefGoogle Scholar
  29. Kuz’min, L.S., and Likharev, K.K., Direct experimental observation of discrete correlated single-electron tunneling, 1987, JEPT Lett., 45: 495–501.ADSGoogle Scholar
  30. Lafarge, P., Pothier, H., Williams, E.R., Esteve, D., 1991, Direct observation of macroscopic charge quantisation, Z. Phys. B, Condensed Matter. 85: 327.CrossRefGoogle Scholar
  31. Lafarge, P., Joyez, P., Esteve, D., Urbina, C., and Devoret M.H., 1993, Two-electron quantisation of the charge on a superconductor, Nature, 365: 422.ADSCrossRefGoogle Scholar
  32. Likharev, K.K., and Zorin, A.B., 1985, Theory of the bloch-waver oscillation in small Josephson junctions, J. Low Temp. 59: 347–382.ADSCrossRefGoogle Scholar
  33. Mullen, K., Ben- Jacob, E., Jaklevic, R.C., and Shuss, Z., 1988, 1-V characteristics of coupled ultrasmallcapacitance normal tunnel junctions, Phys. Rev. B37: 98–105.Google Scholar
  34. Nejoh, H., 1991, Incremental charging of a molecule at room temperature using the scanning tunneling microscope, Nature 353: 640.ADSCrossRefGoogle Scholar
  35. Prigodin, V.N., Efetov, K.B., and Iida, S., 1993, Statistics of conductance fluctuations in quantum dots, Phys. Rev. Lett. 71: 1230–1233.ADSCrossRefGoogle Scholar
  36. Rama Krishna, M.V., and Friesner, R.A., 1991, J. Chem. Phys., 95: 8309.ADSCrossRefGoogle Scholar
  37. Reed, M. A., Randall, J. N., Aggaewal, R.J., Matyi, R.J., 1988, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructures, Phys. Rev. Lett., 60: 535.ADSCrossRefGoogle Scholar
  38. Röder, H., Hahn, E., Brune, H., Bucher, J.P., Kern, K., 1993, Building one-and two-dimentional nanostructures by diffiution-controlled aggragation at surphace, Nature 366: 141.ADSCrossRefGoogle Scholar
  39. Ruggiero, S.T., and Barrier, J.B., 1991, Particles-size effects in single-electron tunnel systems, Z.Phys., Cond.Matt. 85: 333.ADSCrossRefGoogle Scholar
  40. Sauerbrey, G. Z., 1964, Verwendung von schwingquarzen zur wagung dunner schichten and zur microwagung, Z. Phys., 178, 457.ADSCrossRefGoogle Scholar
  41. Shönenberger, C., van Houten, H., and Donkersloot, H.C., 1992a, Single-electron tunneling observed at Room Temperature by scunning tunneling microscopy, Europhys. Lett. 20: 249.ADSCrossRefGoogle Scholar
  42. Shönenberger, C., van Houten, H., Donkersloot, H.C., van der Putten, A.M.T., and Fokkink, L.G.J., 1992b, Single-electron tunneling up to room temperature, Physica Scripta T45: 289–291.MathSciNetCrossRefGoogle Scholar
  43. Smotkin, E. S., Lee, C., Bard, A.J., Campion A., Fox, M.A., Mallouk, T.E., Webber, S.E. and White, J.M., 1988, Size quantization effects in cadmium sulphide layers formed by a Langmuir-Blodgett technique, Chem. Phys. Lett. 152: 265–268.ADSCrossRefGoogle Scholar
  44. Stone, A. D., Jalabert, R.A., and Alhassid, Y., 1992, Statistical theory of Coulomb blockade and resonant tunneling oscillations in quantum dots, in Proceedings of the 14th Taniguchi Symposium, Springer-Verlag, Berlin, 39–52.Google Scholar
  45. Sumetskiî, M., 1993, Resistance resonances for resonant-tunneling structures of quantum dots, Phys. Rev. B 48: 4586–4591.ADSCrossRefGoogle Scholar
  46. Tian, Y., Wu C., Kotov, N., and Fendler, J. H., 1994, Morphology-dependent spectroelettrochemical behaviour of PbS nanoparticulate films grown under surfactant monolayers. Adv. Mater. 12: 959.CrossRefGoogle Scholar
  47. van Bentum, P.J.M., van Kempen, H., van de Leemput, L.E.C., and Teunissen, P.A.A., 1988a, Singleelectron tunnelling observed with point-contact tunnel junctions, Phys. Rev. Lett. 60: 369.ADSCrossRefGoogle Scholar
  48. van Bentum P.J.M., Smokers R. T.M., and van Kempen H. I988b, Incremental charging of single small particles, Phys. Rev. Lett., 60, 2543.Google Scholar
  49. Weiner, J. S., Hess, H. F., Robinson, R. B., Hayes, T.R., 1991, Electron properties of semiconductor nanostructures probed by scanning tunneling microscopy, Appl. Phys. Lett. 58: 2402.ADSCrossRefGoogle Scholar
  50. Wilkins, R., Ben-Jacob, E., and Jaklevic, R.C., 1989, Scanning-tunneling-microscope observations of coulomb blockade and oxide polarization in small metal droplets Phys. Rev. Lett., 63, 801–804.ADSCrossRefGoogle Scholar
  51. Yang J., Meldrum F.C., and Fendler, J.H., 1995, Epitaxial growth of size-quantised cadmium sulfide crystals under arachidic acid monolayers, J.Phys.Chem. 99: 5500.CrossRefGoogle Scholar
  52. Zeller, H.R., and Giaever, I., 1969, Tunneling, zero-bias anomalies, and small superconductors Phys. Rev. 181: 789.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Victor Erokhin
    • 1
  • Sandro Carrara
    • 1
  • Claudio Nicolini
    • 1
    • 2
  1. 1.Fondazione El.B.A.GenovaItaly
  2. 2.Institute of BiophysicsUniversity of GenovaGenovaItaly

Personalised recommendations