The Molecular Role of the PufX Protein in Bacterial Photosynthetic Electron Transfer

  • Francesco Francia
  • Paola Turina
  • B. Andrea Melandri
  • Giovanni Venturoli
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 3)


The occurrence of photosynthetic activity in bacteria offers an excellent opportunity for studying the primary events of photosynthesis at the molecular level, due to the greater simplicity of these organisms with respect to eukaryots. In both classes of organisms the light reactions of photosynthesis are carried out by a series of multiproteic complexes embedded in specialized membranes. The general strategy for transducing light energy into a chemical potential consists in a sequence of electron transfer reactions: shuttling of electrons involving different membrane complexes results in an electrochemical potential difference for protons across the photosynthetic membrane. This electrochemical gradient is used primarily by the ATP-synthase to produce ATP from ADP and Pi, thus satisfying the metabolic energy request of the bacteria.


Rhodobacter Sphaeroides Suppressor Mutant Photosynthetic Unit Quinone Pool Cyclic Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barz, W.P., and Oesterhelt, D., 1994, Photosynthetic deficiency of a pufX deletion mutant of Rhodobacter sphaeroides is suppressed by point mutations in the light-harvesting complex genes pufB or pufA, Biochemistry 33: 9741–9752.CrossRefGoogle Scholar
  2. Barz, W.P., Francia, F., Venturoli, G., Melandri, B.A., Vermeglio, A., and Oesterhelt, D., 1995a, Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions, Biochemistry 34: 15235–15247.CrossRefGoogle Scholar
  3. Barz, W.P., Vermeglio, A., Francia, F., Venturoli, G., Melandri, B.A., and Oesterhelt, D., 1995b, Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc complex, Biochemistry 34: 15248–15258.CrossRefGoogle Scholar
  4. Bauer, C.E., and Marrs, B.L., 1988, Rhodobacter capsulatus puf operon encodes a regulatory protein (Putt) for bacteriochlorophyll biosynthesis, Proc. Natl. Acad. Sci. USA 85: 7074–7078.ADSCrossRefGoogle Scholar
  5. Belasco, J.G., Beatty, J.T., Adams, C.W., Von Gabain, A., and Cohen, S.N., 1985, Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript, Cell 40: 171–181.CrossRefGoogle Scholar
  6. Cogdell, R.J., Fyfe, P.K., Barrett, Si., Prince, S.M., Freer, A.A., Isaacs, N.W., McGlynn, P., and Hunter, C.N., 1996, The purple bacterial photosynthetic unit, Photosynth. Res. 48: 55–63.CrossRefGoogle Scholar
  7. Crofts, A.R., and Wraight, C.A., 1983, The electrochemical domain of photosynthesis, Biochim. Biophys. Acta 726: 149–185.CrossRefGoogle Scholar
  8. Crofts, A.R., Meinhardt, S.W., Jones, K.R., and Snozzi, M., 1983, The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 723: 202–218.CrossRefGoogle Scholar
  9. DeHoff, B.S., Lee, J.K., Donohue, T.J., Gumport, R.I., and Kaplan, S., 1988, In vivo analysis of the puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator, J. Bacteriol. 170: 4681–4692.Google Scholar
  10. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1985, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution, Nature 318: 618–624.ADSCrossRefGoogle Scholar
  11. Farchaus, J.W., Barz, W.P., Grunberg, H., and Oesterhelt, D., 1992, Studies on the expression of the PufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides, EMBO J. 11: 2779–2788.Google Scholar
  12. Feher, G., Allen, J.P., Okamura, M.Y., and Rees, D.C., 1989, Structure and function of bacterial photosynthetic reaction centers, Nature 339: 111–116.ADSCrossRefGoogle Scholar
  13. Freer, A., Prince, S., Sauer, K., Papiz, M., Hawthornthwaite-Lawless, A., McDermott, G., Cogdell, R., and Isaacs, N.W., 1996, Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila, Structure 4: 449–462.CrossRefGoogle Scholar
  14. Gong, L., and Kaplan, S., 1996, Translational control of puf operon expression in Rhodobacter sphaeroides 2.4.1., Microbiology 142: 2057–2069.CrossRefGoogle Scholar
  15. Hu, X., Ritz, T., Damjanovic, A., and Schulten, K., 1997, Pigment organization and transfer of electronic excitation in the photosynthetic unit of purple bacteria. J. Phys. Chem. B 101: 3854–3871.CrossRefGoogle Scholar
  16. Hu, X., and Schulten, K., 1997, How nature harvests sunlight, Physics Today 50: 28–34.CrossRefGoogle Scholar
  17. Jones, M.R., Fowler, G.J.S., Gibson, L.C.G., Grief, G.G., Olsen, J.D., Crielaard, W., and Hunter, C.N., 1992, Mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction centre, LH1, and LH2 genes, Mol. Microbiol. 6: 1173–1184.CrossRefGoogle Scholar
  18. Karrasch, S., Bullough, P.A., and Ghosh, R., 1995, The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits, EMBO J. 14: 631–638.Google Scholar
  19. Koepke, J., Hu, X., Muenke, C., Schulten, K., and Michel, H., 1996, The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum, Structure 4: 581–597.CrossRefGoogle Scholar
  20. Lancaster, C.R.D., Emler, U., and Michel, H., 1995, The structures of photosynthetic reaction centers from purple bacteria as revealed by X-ray crystallography, in: Anoxygenic Photosynthetic Bacteria, Blankenship et al, eds., Kluwer Academic Publishers, pp.503–526.Google Scholar
  21. Lilburn, T.G., and Beatty, J.T., 1992, Suppressor mutants of the photosynthetically incompetent pufX deletion mutant Rhodobacter capsulatus DRC6(pTL2), FEMS Micr. Lett. 100: 155–160.Google Scholar
  22. Lilburn, T.G., Haith, C.E., Prince, R.C., and Beatty, J.T., 1992, Pleiotropic effects of puJX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus, Biochim. Biophys. Acta. 1100: 160–170.CrossRefGoogle Scholar
  23. Lilburn, T.G., Prince, R.C., and Beatty, J.T., 1995, Mutation of the Ser2 codon of the light-harvesting B870 a polypeptide of Rhodobacter capsulatus partially suppresses the pufX phenotype, J. Bacteriol. 177: 4593–4600.Google Scholar
  24. McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawless, A.M., Papiz, M.Z., Cogdell, R.J., and Isaacs N.W., 1995, Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria, Nature 374: 517–521.ADSCrossRefGoogle Scholar
  25. McGlynn, P., Hunter, C.N., and Jones, M.R., 1994, The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system, FEBS Lett. 349: 349–353.CrossRefGoogle Scholar
  26. McGlynn, P., Westerhuis, W.H.J., Jones, M.R., and Hunter, C.N., 1996, Consequences for the organization of reaction center-light harvesting antenna 1 (LH1) core complexes of Rhodobacter sphaeroides arising from deletion of amino acid residues from the C terminus of the LH1 a polypeptides, J. Biol. Chem. 271: 3285–3292.CrossRefGoogle Scholar
  27. McPherson, P.H., Okamura, M.Y., and Feher, G., 1990, Electron transfer from the reaction center of Rb. sphaeroides to the quinone pool: doubly reduced Qu leaves the reaction center, Biochim. Biophys. Acta 1016: 289–292.CrossRefGoogle Scholar
  28. Meckenstock, R.U., Krusche, K., Staehelin, L.A., Cyrklaff, M., and Zuber, H., 1994, The six fold symmetry of the B880 light-harvesting complex and the structure of the photosynthetic membranes of Rhodopseudomonas marina, Biol. Chem. Hoppe-Seyler 375: 429–438.CrossRefGoogle Scholar
  29. Nunn, R.S., Artymiuk, P.J., Baker, P.J., Rice, D.W., and Hunter, C.N., 1992, Purification and crystallization of the light harvesting LH1 complex from Rhodobacter sphaeroides, J Mol. Biol. 228: 1259–1262.CrossRefGoogle Scholar
  30. Papiz, M.Z., Prince, S.M., Hawthornthwaite-Lawless, A.M., McDermott, G., Freer, A.A., Isaacs, N.W., and Cogdell, R.J., 1996, A model for the photosynthetic apparatus of purple bacteria, Trends Plant Sci. 1: 198–206.CrossRefGoogle Scholar
  31. Rost, B., and Sander, C., 1993, Prediction of protein secondary structure at better than 70% accuracy, J. Mol. Biol. 232: 584–599.CrossRefGoogle Scholar
  32. Rost, B., and Sander, C., 1994, Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19: 55–72.CrossRefGoogle Scholar
  33. Rost, B., Sander, C., and Schneider, R., 1994, PHD–an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 10: 53–60.Google Scholar
  34. Rost, B., Casadio R., Fariselli, P., and Sander, C., 1995, Transmembrane helices predicted at 95% accuracy. Protein Sci. 4: 521–533.CrossRefGoogle Scholar
  35. Takamiya, K.I., and Dutton, P.L., 1979, Ubiquinone in Rhodopseudomonas sphaeroides. Some thermodynamic properties, Biochim. Biophys. Acta 546: 1–16.CrossRefGoogle Scholar
  36. Venturoli, G., Fernandez-Velasco, J.G., Crofts, A.R., and Melandri, B.A., 1986, Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome c2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides, Biochim. Biophys. Acta 851: 340–352.CrossRefGoogle Scholar
  37. Walz, T., and Ghosh, R., 1997, Two-dimensional crystallization of the light-harvesting 1-reaction center photounit from Rhodospirillum rubrum, J. Mol. Biol. 265: 107–111.CrossRefGoogle Scholar
  38. Woodbury, N.W. and Allen, J.P., 1995, The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria, in: Anoxygenic Photosynthetic Bacteria, Blankenship et al, eds., Kluwer Academic Publishers, pp.527–557.Google Scholar
  39. Xia, D., Yu, C.A., Kim, H., Xia, J.Z., Kachurin, A.M., Zhang, L., Yu, L., and Deisenhofer, J., 1997, Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria, Science 277: 60–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Francesco Francia
    • 1
  • Paola Turina
    • 2
  • B. Andrea Melandri
    • 2
  • Giovanni Venturoli
    • 2
  1. 1.Department of Membrane BiochemistryMax-Planck-Institute for BiochemistryMartinsriedGermany
  2. 2.Department of Biology, Laboratory of Biochemistry and BiophysicsUniversity of BolognaBolognaItaly

Personalised recommendations