Skip to main content

Modulation of the Electron Transport System of Oxygenic Photosynthesis

  • Chapter
Biophysics of Electron Transfer and Molecular Bioelectronics

Part of the book series: Electronics and Biotechnology Advanced (EL.B.A.) Forum Series ((ELBA,volume 3))

  • 170 Accesses

Abstract

Oxygenic photosynthesis of green plants and cyanobacteria is a redox reaction, which converts the energy of electromagnetic radiation (in the visible region of solar spectrum) into chemical bond energy, utilizing water as an electron donor, and CO2 as the acceptor to generate carbohydrates and other organic substances, according to the overall equation:

$${{\text{H}}_2}{\text{O + C}}{{\text{O}}_2} + {\text{light}} \to {\text{1/6}}\;{{\text{C}}_6}{{\text{H}}_{12}}{{\text{O}}_6} + {{\text{O}}_2}$$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.F., 1992, Protein phosphorylation in regulation of photosynthesis, Biochim. Biophys. Acta, 1098: 275–335.

    Article  Google Scholar 

  • Arson, D.I., 1977, Photosynthesis 1950–73: changing concepts and perspectives, in Encyclopedia of Plant Physiology“ New ser. Trebst A. and Avron M. Eds. Vol.5 pp: 7–56.

    Google Scholar 

  • Springer-Verlag, Berlin. Bendall, D., 1982, Photosynthetic cytochromes of oxygenic organisms. Biochim. Biophys. Acta, 683: 119–151.

    Google Scholar 

  • Boekema, E.J., Schmidt, G. and Graber, P., 1988, Structure of the ATP-synthase from chloroplaste and mitochondria studied by electron microscopy, Z. Naturforsch., 430: 219–225.

    Google Scholar 

  • Bonaventura C. and Myers J., 1969, Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim. Biophys. Acta, 189: 366–383.

    Article  Google Scholar 

  • Canaani, O., and Malkin, S., 1984, Distribution of light excitation in an intact leaf between the two photosystems of photosynthesis. Biochim. Biophys. Acta, 766: 513–524.

    Article  Google Scholar 

  • Cramer, W.A., and Knaff, D.B., 1989, Energy Transduction in Biological Membranes. Springer-Verlag New York.

    Google Scholar 

  • Cramer, W.A., Soriano, G.M., Ponomarev, M., Huang, D., Zang, H., Martinez, S.E. and Smith, J.L., 1996, Some new structural aspects and old controversies concerning the cytochrome b6f complex of oxygenic photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 477–508.

    Article  Google Scholar 

  • Crofts, A.R., Meinhardt, S.W., Jones, K.R., and Snozzi, M., 1983, the role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides. A modified Q-cycle mechanism, Biochim. Biophys. Acta, 723: 202–218.

    Google Scholar 

  • Crofts, A.R., and Yerkes, E.T., 1994, A molecular mechanism for qE-quenching. FEBS Letters, 352: 265–270

    Article  Google Scholar 

  • Debus, R.J., 1992, The manganese and calcium ions of photosynthetic oxygen evolution. Biochim. Biophys. Acta, 1102: 269–352.

    Article  Google Scholar 

  • Degli Esposti, M., De Vries, S., Crimi, M., Ghelli, A., Paternello, T., and Meyer, A., 1993, Mitochondrial cytochrome b: evolution and structure of the protein. Biochim. Biophys. Acta, 1143: 243–271.

    Article  Google Scholar 

  • Demmig-Adams, B., 1990, Carotenoids and photoprotection in plants: a role for the xantophyll zeaxantin, Biochim. Biophys Acta, 1020: 1–24.

    Article  Google Scholar 

  • Demmig-Adams, B., 1991, Zeaxanthin-associated energy dissipation and the susceptibility of various organisms to light stress, in Current Research in Photosynthesis, Baltscheffsky, M. ed, vol. II, pp 357–364. Kluwer Acad. Publ. The Netherlands.

    Google Scholar 

  • Duysens, L.N.M., Amesz, J., and Kamp, B.M., 1961, Two photochemical system in photosynthesis, Nature, 190: 510–511.

    Article  ADS  Google Scholar 

  • Emerson, R., and Arnold, W., 1932, Separation of the reactions in photosynthesis by means of intermittent light, J. Gen. Physiol., 15: 391–420.

    Google Scholar 

  • Emerson, R., 1957, Dependence of yield of photosynthesis in long-wave red on wavelength and intensity of supplementary light, Science, 125: 746.

    Article  Google Scholar 

  • Finazzi, G., Ehrenheim, A.M., and Forti, G., 1992, Influence of different uncouplers on photosystem II photochemistry and fluorescence, Biochim. Biophys. Acta, 1142: 123–128.

    Google Scholar 

  • Finazzi, G., Bianchi, R., Vianelli, A., Ehremheim, A.M., and Forti, G., 1995, Inhibition of photosystem 2 primary photochemistry by photogenerated protons, Photosynth. Res., 46: 379–392

    Article  Google Scholar 

  • Finazzi, G:, Büschlen, S., de Vitry, C., Rappaport, F., Joliot, P., and Wolmann, F.-A., 1997, Function-directed mutagenesis of cytochrome brf complex in Chlamydomonas reinhardtii: involvement of the cd loop of cytochrome b6 in quinol binding at the Qo site, Biochemistry, 36: 2867–2874

    Google Scholar 

  • Forti, G., and Jagendorf, A.T., 1961, Photosynthetic phosphorylation in the absence of redox dies: oxygen and ascorbate effects, Biochim. Biophys. Acta, 54: 322–330.

    Article  Google Scholar 

  • Forti, G., and Parisi, B., 1963, Evidence for the occurrence of cyclic photophosphorylation in vivo, Biochim. Biophys. Acta, 71: 1–6.

    Article  Google Scholar 

  • Forti, G., and Grubas, P.M.G., 1985, Two sites of interaction of ferredoxin with thylakoids, FEBS Letters, 186: 149–152.

    Article  Google Scholar 

  • Forti, G., and Fusi, P., 1990, Influence of thylakoids protein phosphorylation on Emerson enhancement and the quantum requirement of photosystem I, Biochim. Biophys. Acta, 1020: 247–252.

    Article  Google Scholar 

  • Forti, G., and Ehrenheim, A.M., 1993, The role of ascorbic acid in photosynthetic electron transport, Biochim. Biophys. Acta, 1183 408–412.

    Article  Google Scholar 

  • Forti, G., and Elli, G., 1995, The function of ascorbic acid in photosynthetic phosphorylation, Plant Physiol, 109: 1207–1211.

    Google Scholar 

  • Förster, T., 1960, Transfer mechanism of electronic excitation energy, Radiat. Res. Suppl., 2: 326–339.

    Article  Google Scholar 

  • Foust, G.P., Mayhew, S.G., and Massey, V., 1969, Complex formation between ferredoxin triphosphopyridine nucleotide reductase and electron transfer proteins, J. Biol. Chem., 244: 964–970.

    Google Scholar 

  • Fromme, P., and Graber, P., 1990, Activation/inactivation and uni-site catalysis by the reconstituted ATPsynthase from chloroplasts, Biochim. Biophys. Acta, 1016: 29–42.

    Article  Google Scholar 

  • Garlaschi, F.M., Zucchelli, G., and Jennings, R.C., 1989, Studies on light absorption and photochemical activity changes in chloroplast suspensions and leaves due to light scattering and light filtration across chloroplast and vegetation layers, Photosynth. Res., 20: 207–220.

    Google Scholar 

  • Genty, B., Briantais, J.M., and Baker, N.R., 1989, The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 990: 87–92.

    Article  Google Scholar 

  • Genty, B., Harbison, J., Briantais, J.M., and Baker, N., 1990, The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves, Photosynt. Res., 25: 249–257.

    Article  Google Scholar 

  • Goldbeck, J.H., and Bryant, D.A., 1991, Photosystem I, In: Current Topic in Bioenergetics, Lee C.P. ed., Vol. 16 pp 83–179 Academic Press, New York.

    Chapter  Google Scholar 

  • Govindjee, R., and Hoch, G., 1964, Emerson enhancement effect in chloroplast reactions, Plant Physiol, 39: 10–14.

    Google Scholar 

  • Hauska, G., Hurt, E., Gibellini, N., and Lockau, W., 1983, Comparative aspects of quinol-cytochrome c/plastocyanin oxidoreductases, Biochim. Biophys. Acta, 726: 97–133.

    Article  Google Scholar 

  • Haenel, W., Pröpper, H., and Krause, H., 1980, Evidence for complexed plastocyanin as the intermediate electron donor to P-700, Biochim. Biophys. Acta, 593: 384–399.

    Article  Google Scholar 

  • Hill, R., and Bendall, F., 1960, unction of the two cytochrome components in chloroplasts: a working hypothesis, Nature, 186: 136–137.

    Google Scholar 

  • Hipkins, M.F., and Baker, N.R., 1991, Photosynthesis energy transduction - a practical approach. I. R.L. Press, Oxford. Washington DC.

    Google Scholar 

  • Horton, P., Ruban, A.V., and Walters, R.G., 1996, Regulation of light harvesting in green plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 655–684.

    Article  Google Scholar 

  • Hope, A.B., 1993, The chloroplast cytochrome bf complex: a critical focus on function. Biochim. Biophys. Acta, 1143: 1–22.

    Article  Google Scholar 

  • Hope, A.B., Matthews, D.B., and Valente, P., 1994, Effects of pH on the kinetics of redox reactions in and the cytochrome b 6 f complex in an isolated system Photosynth. Res., 40: 199–206.

    Article  Google Scholar 

  • Hurt, E.C., and Hauska, G., 1981, A cytochrome f/b 6 of five polypeptides with plastoquinol-plastocyanin-oxidoreducates activity from spinach chloroplasts Eur. J. Biochemistry, 117: 591–599.

    Article  Google Scholar 

  • Jansson, S., 1994, The light-harvesting chlorophyll a/b-binding proteins. Biochim. Biophys. Acta, 1184: 1–19.

    Article  Google Scholar 

  • Jennings, R.C., and Zucchelli, G., 1986, Studies on thylakoid phosphorylation and noncyclic electron transport, Arch. Biochem. Biophys., 246: 108–113.

    Article  Google Scholar 

  • Jennings, R.C., Bassi, R., and Zucchelli, G., 1996, Antenna structure and energy transfer in higher plant photosystems, Topics Curr. Cheng., 177: 147–181.

    Article  Google Scholar 

  • Joliot, P., and Joliot, A., 1964, Etude cinetique de la réaction photochimique libérant l’oxygène au cours de la photosynthèse. C.R. Acad. Sc. Paris, 258: 4622–4625.

    Google Scholar 

  • Joliot, P., and Delosme, R., 1974, Flash-induced 519 nm absorption change in green algae, Biochim. Biophys. Acta, 357: 267–284.

    Article  Google Scholar 

  • Joliot, P., Lavergne, J., and Béal, D., 1992, Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with different rates of photo-reduction, Biochim. Biophys. Acta, 1101: 1–12.

    Article  Google Scholar 

  • Joliot, P., and Joliot, A., 1994, Mechanism of electron transfer in the cytochrome bet complex of algae: evidence for a semiquinone cycle, PNAS, USA, 91: 1034–1041.

    Google Scholar 

  • Junesch, U., and Graber, P., 1985, The rate of ATP synthesis as a function of ApH in normal and dithiothreitol-modified chloroplasts, Biochim. Biophys. Acta, 809: 429–434.

    Article  Google Scholar 

  • Kitajima, M., and Butler, W.L., 1975, Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone, Biochim. Biophys. Acta, 399: 72–85.

    Google Scholar 

  • Klimov, V.V., Ke, B. and Dolan, E., 1980, Effect of photoreduction of the photosystem II intermediary electron acceptor (pheophytin) on triplet state of carotenoids, FEBS Letters, 118: 123–126.

    Article  Google Scholar 

  • Kok, B., Forbush, B., and Mc Gloin, M, 1970, Cooperation of charges in photosynthetic O2 evolution. I. A linear four step mechanism. Photochem. Photobiol., 11:457–475.

    Google Scholar 

  • Krause, G.H., Vernotte, C., and Briantais, J.M., 1982, Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae, Biochim. Biophys. Acta, 679: 116–124.

    Article  Google Scholar 

  • Lavergne, J., Bouchaud, J.-P., and Joilot, P., 1992, Plastoquinone compartmentation in chloroplasts. II. Theoretical aspects, Biochim. Biophys. Acta, 1101: 13–22.

    Article  Google Scholar 

  • Lavergne, J., and Briantais, J.-M., 1996, Photosystem II heterogeneity,In: Oxygenic Photosynthesis: Thelight reaction,Ort, D.R., Yocum C.F. pp: 412–425, Kluwer Academic

    Google Scholar 

  • Publisher, Dordrecht. Malkin, S., and Kok, B., 1966, Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yield, Biochim. Biophys. Acta, 126: 413–432.

    Google Scholar 

  • Mitchell, P., 1975, The protonmotive Q cycle: a general formulation, FEBS Letters, 59: 137–139.

    Article  Google Scholar 

  • Mitchell, P., 1977, A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photosynthetic phosphorylation. FEBS Letters, 78: 1–20.

    Article  Google Scholar 

  • Murata, N., Nishimura, M., Takamiya, A., 1966, Fluorescence of chlorophyll in photosyntetic systems. II. Induction of fluorescence in isolated spinach chloroplasts, Biochim. Biophys. Acta, 126: 23–33.

    Google Scholar 

  • Miyake, C., and Asada, K., 1992, Thylakoid bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids, Plant Cell Physiol, 33: 541–553.

    Google Scholar 

  • Myers, J., and French, C.S., 1960, Evidence from action spectra for a specific participation of chlorophyll b in photosynthesis, J. Gen. Physiol., 43: 723–736.

    Article  Google Scholar 

  • Myers, J., 1987, is there a significant cyclic electron flow around photosysntem 1 in cyanobacteria?, Photosynth. Res., 14: 55–69.

    Google Scholar 

  • Ort, D.R., and Oxborough, K., 1992, In situ regulation of chloroplast coupling factor activity, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43: 269–291.

    Article  Google Scholar 

  • Phillip, D., Ruban, A.V., Horton, P., Asato, Y., and Young, A.J., 1996, Quenching of chlorophyll fluorescence in the major light harvesting complex of photosystem II: a systematic study of the effect of carotenoids structure, PNAS, USA, 93: 1492–1497

    Google Scholar 

  • Renger, G., 1993, water cleavage by solar radiation. An inspiring challenge of photosynthesis research, Photosyntht. Res., 38: 229–247.

    Google Scholar 

  • Rich, P.R., 1984, Electron and proton transfers through quinones and cytochrome be complexes, Biochim. Biophys. Acta, 768: 53–79.

    Article  Google Scholar 

  • Rumberg, B., and Siggel, U., 1969, pH changes in the inner phase of the thylakoids during photosynthesis, Naturwiss, 3: 130–132.

    Google Scholar 

  • Schatz, G.H., Brock, H., and Holzwarth, A.R., 1988, Kinetics and energetic model for the primary processes in photosystem II, Biophys. J., 54: 397–405.

    Article  Google Scholar 

  • Schonknecht, G., Hedrich, R., Junge, W., and Raschke, K., 1988, A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant, Nature, 336: 589–592.

    Article  ADS  Google Scholar 

  • Shuvalov, V.A., Nuijs, A.M., van Gorkom, H.J., Smit, H.,W.J., and Duysens, L.N.M., 1986, Picoseconds absorbance changes upon selective excitatin of the primary electron donor P-700 in photosystem I, Biochim. Biophys. Acta, 850: 319–323.

    Google Scholar 

  • Tanner, W., and Kandler, 0., 1969, The lack of relationship between cyclic photophosphorylation and photosynthetic CO2-fixation, In: Progress in Photosynthesys Research, H. Metzner ed., vol. 3 pp 1217–1223 Laupp, Tubingen.

    Google Scholar 

  • Thornber, J.P., Peter, G.F., and Nechustai, R., 1987, Biochemical composition and structure of photosynthetic pigment proteins from higher plants, Physiol. Plant., 71: 236–240.

    Article  Google Scholar 

  • Witt, H.T., 1979, Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field., Biochim. Biophys. Acta, 505: 355–427.

    Article  Google Scholar 

  • Witt, H.T., 1990, Functional mechanism in reaction center II based on analysis of 7 time resolved difference spectra and hydroxylamine “titration”, In Current Research in Photosynthesis, M. Baltscheffsky ed., vol. I, pp 837–840. Kluwer Acad. Publ., The Netherlands.

    Google Scholar 

  • Witt, H.T., 1996, Primary reactions of oxygenic photosynthesis, Ber. Bunsenges. Phys. Chem., 100: 19231942.

    Google Scholar 

  • Wright, C.A., and Crofts, A.R., 1970, Energy-dependent quenching of chlorophyll alpha fluorescence in isolated chloroplasts, Eur. J. Biochem., 17: 319–327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Forti, G., Finazzi, G. (1998). Modulation of the Electron Transport System of Oxygenic Photosynthesis. In: Nicolini, C. (eds) Biophysics of Electron Transfer and Molecular Bioelectronics. Electronics and Biotechnology Advanced (EL.B.A.) Forum Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9516-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9516-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9518-9

  • Online ISBN: 978-1-4757-9516-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics