Metalloprotein Engineering for New Materials, Drugs and Nanodevices

  • Claudio Nicolini
Part of the Electronics and Biotechnology Advanced (EL.B.A.) Forum Series book series (ELBA, volume 3)


The purpose of this chapter is to provide an overview of present efforts on the engineering thin films of of various metalloproteins, likewise P450 and C cytochromes and Photosynthetic Reaction Center (RC), from ab initio considerations on the individual proteins in solution up to the assembly and characterization of monolayers and multilayers. Over the years metalloproteins, namely P450, C and Photosynthetic Reaction Centers, have become the proteins of choice among the many currently under study in my laboratories towards the implementation of drugs, materials and devices for numerous industrial applications. It should be noted that several molecular manipulation techniques have been recently introduced which could be utilized in order to optimize the properties of the above cytochromes in a wide range of applications, namely:
  • self-assembly (Morgan et al., 1992; Hoffmann et al., 1992; Nicolini et al, 1995);

  • Langmuir-Blodgett/Langmuir-Shaeffer techniques and their modifications (Nicolini et al., 1993; Antolini et al 1995; Nicolini, 1996b, 1997), including utilisation of reverse lipid micelles (Erokhin et al., 1994) and derivatization (Riccio et al, 1996) to form ordered thin protein films;

  • site-directed chemical modifications complementing the above two techniques (Bernhardt et al, this volume; Paskievitch et al., 1996).


Electron Transfer Thin Solid Film Cellular Automaton Circular Dichroism Spectrum Heme Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alegria, G., Dutton, P.L., 199la, I. Langmuir-Blodgett monolayer films of bacterial photosynthetic membranes and isolated reaction centers: preparation spetrophotometric and electrochemical characterization, Biochim. Biophys. Acta 1057: 239–257.Google Scholar
  2. Alegria, G., Dutton, P.L., 1991b, II Langmuir-Blodgett monolayer films of the rhodopseudomonas viridis reaction center: determination of the order of the hemes in the cytochrome c, Biochim. Biophys. Acta 1057: 258–272.CrossRefGoogle Scholar
  3. Allen, J.P., Feher, G., Yeates, T.O., Komiya, H., Rees, D.C., 1987, Structure of the reaction center from rhodobacter sphaeroides r-26: the cofactors, Proc. Natl. Acad. Sci. USA 84: 5730–5734.ADSCrossRefGoogle Scholar
  4. Antolini, F., Paddeu, S., Nicolini, C., 1995, Heat stable langmuirblodgett film of glutathione-s-transferase, Langmuir 11:2719–2725.Google Scholar
  5. Archakov, A.I., and Bachmanova G.I. 1990, Cytochrome P-450 and Active Oxygen, Suppl. Taylor and Francis, London-New York-Philadelphia, 339.Google Scholar
  6. Bechtold, R., Kuehn, C., Lepre, C., Isied, S.S., 1986, Directional electron transfer in ruthenium-modified horse heart cytochrome c, Nature 322: 286–288.ADSCrossRefGoogle Scholar
  7. Beratan, D.N., Betts, J.N., Onuchic, J.N., 1991, Protein electron transfer rates set by the bridging secondary and tertiary structure, Science 252: 1285–1288.ADSCrossRefGoogle Scholar
  8. Beratan, D.N., Betts, J.N., Onuchic, J.N., 1992, Tunneling pathway and redox-state-dependent electronic couplings at nearly fixed distance in electron-transfer proteins, J. Phys. Chem. 96: 2852.CrossRefGoogle Scholar
  9. Bianco, B, Bonfiglio, A, Cambiaso, A, Cavalleri, O, Cincotti, S, Dizitti, E, Elementi, L, Ricci, D, Rolandi, R, 1993, Molecular monolayer structure investigations by scanning-tunneling-microscopy, Molecular Crystals and Liquid Crystals Science and Technology Section A-Molecular Crystals and Liquid Crystals 234: 391–396.Google Scholar
  10. Black, S.D., and Coon, M.J., 1987, P-450 cytochromes: structure and function, Adv. Enzymol. Relat. Areas Mol. Biol., 60, 35–87.Google Scholar
  11. Bramanti, E., Benedetti E., 1996, Determination of the secondary structure of isomeric forms of human serum albumin by a particular frequency deconvolution procedure applied to Fourier transform IR analysis, Biopolymers 38: 639–653.CrossRefGoogle Scholar
  12. Bramanti e al in preparation, 1998.Google Scholar
  13. Branden, C., Tooze, J., 1991, Introduction to Protein Structure,Garland Publishing Inc.Google Scholar
  14. Cheddar, G., Meyer, T.E., Cusanovich, M.A., Stout, C.D., Tollin, G., 1989, Redox protein electron-transfer mechanisms: electrostatic interactions as a determinant of reaction site in c-type cytochromes, Biochemistry 28: 6318–22.CrossRefGoogle Scholar
  15. Child, P., Kuksis, A.J., 1983, Uptake of 7-dehydro derivatives of cholesterol, campesterol, and beta-sitosterol by rat erythrocytes, jejunal villus cells, and brush border membranes, Lipid Res. 24: 1196–1209.Google Scholar
  16. Degtyarenko, K.N., Archakov, A.I. 1993, Molecular evolution of P450 superfamily and P450-containing monooxygenase systems, FEBS Lett. 332: 1–8.CrossRefGoogle Scholar
  17. Dyson, F.J., Happer, W., and Stoller, S.D., 1991, Transverse spin relaxation in inhomogeneous magnetic fields, Phys. Rev. A 44: 7459.ADSCrossRefGoogle Scholar
  18. Eldarov, M., Skryabin, K., Nicolini, C.,1996, in preparation.Google Scholar
  19. Erokhin, V., Facci, P., Carrara, S., Nicolini, C., 1997, Fatty acid-based monoelectron device Biosensors and Bioelectronics 12: 601–606.CrossRefGoogle Scholar
  20. Erokhin, V., Facci, P., Nicolini, C., 1995, Two-Dimensional Order and Protein Thermal Stability: HighGoogle Scholar
  21. Temperature Preservation of Structure and Function, Biosensors and Bioelectronics 10:25–34.Google Scholar
  22. Erokhin, V., Feigin L., 1991, Formation and x-ray and electron-diffraction study of cds and pbs particles inside fatty-acid matrix, Prog. colloid Polym. Sci. 85: 47–51.CrossRefGoogle Scholar
  23. Erokhin, V., Kayushina, R., Dembo, A., Sabo, J., Knox, P., and Kononenko, A., 1992, Structural study of the cytochrome containing reaction centre complex of the bacteria chromatium minutissimum in solution and Langmuir-Blodgett films, Mol. Cryst. Liq. Cryst. 221: 1–6.CrossRefGoogle Scholar
  24. Erokhin, V., Kayushina, R., Lvov, Yu., Feigin, L., 1990, Langmuir-Blodgett films of immunoglobulines as sensing elements, Il Nuovo Cimento 12D: 1253–1258.CrossRefGoogle Scholar
  25. Erokhin, V., Vakula, S., Nicolini, C., 1994, Reversed micellar approach as a new tool for the formation and structural studies of protein Langmuir-Blodgett films, Thin Solid Films 238: 88.ADSCrossRefGoogle Scholar
  26. Facci, P., Erokhin, V., Nicolini, C., 1993, Nanogravimetric gauge for surface density measurements and deposition analysis of Langmuir-Blodgett films, Thin Solid Films 230: 86–89.ADSCrossRefGoogle Scholar
  27. Facci, P., Erokhin, V., Nicolini, C., 1994, Scanning tunnelling microscopy of a monolayer of reaction centres, Thin Solid Films 243: 403–406.ADSCrossRefGoogle Scholar
  28. Facci, P., Erokhin, V., Nicolini, C., 1997, Formation and characterization of an ultrathin semiconductor polycrystal layer for transducer applications, Biosensors and Bioelectronics 12: 607–611.CrossRefGoogle Scholar
  29. Facci, P., Radicchi, G., Erokhin, V., Nicolini, C., 1995, On the mobility of immunoglobuline G in Langmuir-Blodgett films, Thin Solid Films 269: 85–89.ADSCrossRefGoogle Scholar
  30. Fromhertz, P., Marcheva, D., 1975, Enzyme kinetics at a lipid protein monolayers, inhibition of trypsin, FEBS Lett. 49: 329–333CrossRefGoogle Scholar
  31. Fujiwara, I., Ohnishi, M., Seto, J., 1992, Atomic force microscopy study of protein-incorporating Langmuir-Blodgett films, Langmuir 8: 2219–2222.CrossRefGoogle Scholar
  32. Gilles-Gonzalez, M.A., Gonzalez, G., Perutz, M.F., Kiger, L., Marden, M.C., Poyart, C., 1994, Heure-based sensors, exemplified by the kinase FixL, are a new class of heure protein with distinctive ligand binding and autoxidation, Biochemistry 33: 8067–8073.CrossRefGoogle Scholar
  33. Gonzales, R. A., 1990, NMDA receptors excite alcohol research, TrendsPharmacol. Sci. 11: 137–139.CrossRefGoogle Scholar
  34. Gouriev, O., Erokhin, V., Usanov, V., Nicolini, C., 1996, Cytochrome P450scc spin state transitions in ther thin solid films, Biochem. and Molec. Biol. Int. 39: 205–214.Google Scholar
  35. Guengerich, F.P., 1991, Reactions and significance of cytochrome P-450 enzymes, J. Biol. Chem. 266: 10019–10022.Google Scholar
  36. Hanukoglu, I., and Hanukoglu, Z., 1986, Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation, Eur. J. Biochem. 157: 27–31.CrossRefGoogle Scholar
  37. Heyl, B.L., Tyrrell, D.J., Lambeth, J.D., 1986, Cytochrome P-450scc-substrate interactions. Role of the 3 beta-and side chain hydroxyls in binding to oxidized and reduced forms of the enzyme, J. Biol. Chem. 261: 2743–2749.Google Scholar
  38. Hoffmann, H., Müller, W., Ringsdorf, H., Rourke, A.M., Rump, E., Suci, P.A., 1992, Molecular recognition in biotin-streptavidin systems and analogs at the air-water-interface, Thin Solid Films 210–211: 780–783.CrossRefGoogle Scholar
  39. Hwang, S.B., Korenbrot, J.I., Stoeckenius, W., 1977, Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films, J. Membr. Biol. 36: 115–136.CrossRefGoogle Scholar
  40. Kalb, V. F., Loper, J. C. 1988, Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarity, Proc. Natl. Acad. Sci. USA 85: 7221–7225.ADSCrossRefGoogle Scholar
  41. Kastner, M., Neubert, D., 1991, High-performance metal chelate affinity chromatography of cytochromes P-450 using Chelating Superose, J. Chromatography 587: 43–54.CrossRefGoogle Scholar
  42. Kido, T., Kimura, T., 1981, Stimulation of cholesterol binding to steroid-free cytochrome P-450scc by poly(Llysine). The implication in functions of labile protein factor for adrenocortical steroidogenesis, J. Biol. Chem. 256, 8561–8568.Google Scholar
  43. Koga, N., Sameshima, K., and Morokuma, K., 1993, Ab-initio mo calculations of electronic coupling matrix-elements on model systems for intramolecular electron-transfer, hole transfer, and triplet energy-transfer–distance dependence and pathway in electron-transfer and relationship of triplet energy-transfer with electron and hole transfer, J. Phys. Chem. 97: 13117–13125.CrossRefGoogle Scholar
  44. Kuhn, H.,. 1981, Information, electron and energy-transfer in surface-layers, Pure Appl. Chem. 53: 2105–2122.CrossRefGoogle Scholar
  45. Langmuir, I., Schaefer, V., 1938, Activity of urease and pepsin monolayers, J. Amer. Chem. Soc. 60: 1351–1360.CrossRefGoogle Scholar
  46. Laval, J-M., Chopineau, J., Thomas, D, 1995, Nanotechnology–RandD challenges and opportunities for application in biotechnology, TIBTECH 13: 474–481.Google Scholar
  47. Lee, H., Faraggi, M., Klapper, M.H., 1992, Long range electron transfer along an alpha-helix Biochim. Biophys. Acta 1159: 286–294.CrossRefGoogle Scholar
  48. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H., 1993, Nanotechnology 4: 49.ADSCrossRefGoogle Scholar
  49. Liang, C.X., Newton, M.D., 1992, Ab-initio studies of electron-transfer. 1. pathway analysis of effective transfer integrals, J. Phys. Chem., 96: 2855–2866.CrossRefGoogle Scholar
  50. Liang, C.X., Newton, M.D., 1993, Ab-initio studies of electron-transfer. 2. pathway analysis for homologous organic spacers, J. Phys. Chem. 97: 3199–3211.CrossRefGoogle Scholar
  51. Lvov, Yu., Decher, G., 1994, Assembly of multilayer ordered films by alternating adsorption of oppositely charged macromolecules Crystallography Reports 39: 628–647.ADSGoogle Scholar
  52. Lvov, Yu., Erokhin, V., Zaitsev, S., 1991, Langmuir-Blodgett protein films, Biol. Mem. 4: 1477–1513.Google Scholar
  53. Marcus, R. A., Sutin, N., 1985, Biochim. Biophys. Acta 811: 259.Google Scholar
  54. Mauk, M.R., Mauk, A.G., 1989, Crosslinking of cytochrome c and cytochrome b5 with a water-soluble carbodiimide. Reaction conditions, product analysis and critique of the technique, Eur. J. Biochem. 186: 473–486.CrossRefGoogle Scholar
  55. Maxia, L., Pepe, M., Radicchi, G., Nicolini, C., 1995, Characterization of Langmuir-Blodgett films of rhodopsin: thermal stability studies, Biophis. J. 69: 1440–1446.ADSCrossRefGoogle Scholar
  56. Mogilevski, L.Yu., Dembo, A.T., Svergun, D.I., Feigin, L.A., 1984, Crystallography 587.Google Scholar
  57. Morgan, H., Taylor, D.M., D’Silva, C., Fukushima, H., 1992, Thin Solid Films 210–211: 773–775.CrossRefGoogle Scholar
  58. Morisaki, M., Duque, C., Ikekawa, N.J., 1980, Substrate specificity of adrenocortical cytochrome P-450scc-I. Effect of structural modification of cholesterol side-chain on pregnenolone production, Steroid Biochem. 13: 545–550.CrossRefGoogle Scholar
  59. Nicolini, C., 1995, From neural chip and engineered biomolecules to bioelectronic devices: an overview, Biosensors and Bioelectronics 10: 105–127.CrossRefGoogle Scholar
  60. Nicolini, C., 1996a, From Protein Nanotechnology to Protein Automata: Year Zero, in Molecular Bioelectronics ed. C. Nicolini, EL.B.A. Forum Series Vol. 2, pp. 1–52.Google Scholar
  61. Nicolini, C., 1996b, Supramolecular architecture and molecular bioeletronics, Thin Solid Films 284–285: 1–5.ADSCrossRefGoogle Scholar
  62. Nicolini, C., 1996c, Heat-proof enzymes by Langmuir-Blodgett technique, N.Y. Acad. Sci. 799: 297–311.ADSCrossRefGoogle Scholar
  63. Nicolini, C., 1997, Protein-monolayer engineering: principles and applicationto biocatalysis, Trends in Biotechnology 15: 395–401.CrossRefGoogle Scholar
  64. Nicolini, C., Accossato, P., Fanigliulo, A., Lanzi, M., Mattioli, F., Martelli, A., 1995, A silicon-based biosensor for real-time toxicity testing in normal versus cancer liver cells, Biosensors and Bioelectronics 10: 723–733.CrossRefGoogle Scholar
  65. Nicolini, C., Erokhin, V., Antolini, F., Catasti, P., Facci, P., 1993, Thermal stability of protein secondary structure in Langmuir-Blodgett films, Biochim. Biophys. Acta 1158: 273–278.CrossRefGoogle Scholar
  66. Nocera, D.G., Winkler, J.R., Yokom, K.M., Bordignon, E., Gray, H.B., 1984, Kinetics of intramolecular electron-transfer from ru-ii to fe-iii in ruthenium-modified cytochrome-c, J. Am. Chem. Soc. 106: 5145–5150.CrossRefGoogle Scholar
  67. Onuchic, J.N., Beratan, D.N., Winkler, J.R., Gray, H.B., 1992, Pathway analysis of protein electron-transfer reactions, Annu. Rev. Biophys. Biomol. Struct. 21: 349–377.CrossRefGoogle Scholar
  68. Paddeu, S., Ram, M.K., Nicolini, C., 1997, Investigation of ultrathin films of processable poly(o-anisidine) conducting polymer obtained by the Langmuir-Blodgett technique, J. Phys. Chem. 101: 4759–4766.Google Scholar
  69. Paskievitch, P., Sivozhelezov, V., Vakula, S., Sidorovich, V., Eldarov, M., Nozza, F., Nicolini, C., 1996, High-yield recombinant cytochrome P450scc and its optimization for bioelectronics from ab initio considerations, in Molecular Manifacturing, ed. C. Nicolini, EL.B.A. Forum Series, Vol. 2, pp. 145156.Google Scholar
  70. Pompon, D., Coon, M.J., 1984, On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5, J. Biol. Chem., 259: 15377–15385.Google Scholar
  71. Porter, T., and Coon, M., 1991, Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms, J. Biol. Chem. 266: 13469–13472.Google Scholar
  72. Porter, T.D., Larson, J.R., 1991, Expression of mammalian P450s in Escherichia coli, Methods in Enzymology 206: 108–116.CrossRefGoogle Scholar
  73. Poulos, T.L., Finzel, B.C., Gunsalus, I.C., Wagner, G.C., Kraunt, J., 1985, The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450, J. Biol. Chem. 260: 16122–16130.Google Scholar
  74. Riccio, A., Lanzi, M., Antolini, F., De Nitti, C., Tavani, C., Nicolini, C., 1996, Ordered monolayer of cytochrome c via chemical derivatization of its outer arginine, Langmuir 12: 1545–1549.CrossRefGoogle Scholar
  75. Roberts, G., 1990, Langmuir-Blodgett Films, Plenum Press, N.Y..Google Scholar
  76. Sambrook, J., Fritsch, E., Maniatis T., 1989, Molecular Cloning,Cold Spring Harbor Laboratory Press. Sivozhelezov e al in preparation.Google Scholar
  77. Stresser, D.M., Kupfer, D., 1997, Catalytic characteristics of CYP3A4: requirement for a phenolic function in ortho hydroxylation of estradiol and mono-O-demethylated methoxychlor, Biochemistry 36: 2203–2210.CrossRefGoogle Scholar
  78. Sugano, S., Morishima, N., Sone, Y., Horie, S., 1995, Cytochrome P-450scc-catalyzed production of progesterone from cholestenone, Biochem. Mol. Biol. Int. 35: 31–36.Google Scholar
  79. Sukhorukov, G., Lobyshev, V., and Erokhin, V., 1992, Preparation and X-ray study of bacteriorhodopsin Langmuir Films, Mol. Mat. 1: 91–95.Google Scholar
  80. Tamura, T., Sato, A., Ajiki, S., Sugino, H., Hara, M., Miyake, J., 1991, A photocell based on a high concentration of chromatophore, Biochemistry and Bioenergetics 26: 117–122.CrossRefGoogle Scholar
  81. Tang, J., 1994, Tunneling mechanism in electron-transfer–a view from the feynmans path-integral approach, Chem. Phys. Lett., 227: 170–179.ADSCrossRefGoogle Scholar
  82. Tazi, A., Hotchandani, S., Munger, G., Leblanc, R.M., 1994. Study of the conformational stability of cytochrome C at the air-water interface, Thin Solid Films 247: 240–243.ADSCrossRefGoogle Scholar
  83. Toffoli, T., Margoulos, N., 1987, Cellular automata machines, MIT Press, Cambridge (Mass. USA).Google Scholar
  84. Toffoli, T., Margoulus, N., 1990, Physica D 45: 229.MathSciNetADSzbMATHCrossRefGoogle Scholar
  85. Tronin, A., Dubrovsky, T., Nicolini, C., 1995, Comparative study of Langmuir monolayers of immunoglobulines g formed at the air-water interface and covalently immobilized on solid supports, Langmuir 11: 385–389.CrossRefGoogle Scholar
  86. Tronin, A., Dubrovsky, T., De Nitti, C., Gussoni, A., Erokhin, V., Nicolini, C., 1994, Langmuir-Blodgett films of immunoglobulines igg. Ellipsometric study of the deposition process and of immunological activity, Thin Solid Films, 238: 127–132.ADSCrossRefGoogle Scholar
  87. Turko, I., A., Krivosheev, V.L., Chaschin. 1992, Preparation of Langmuir-Blodgett films of cytochrome P450scc. Biol. Mem. 9: 529–532.Google Scholar
  88. Turko, I., Pikuleva, I., Erokhin., V., 1991, Selective hydrophobization of fab fragments of immunoglobuline g and preparation of Langmuir films,.Biol. Mem. 4: 1745–1752.Google Scholar
  89. Vijayakumar, S., Salerno, J.C., 1992, Predicted 3 dimensional structure of cytochrome P450scc, Biophys. J. 61: 2.Google Scholar
  90. Waterman, M.R., 1994, Heterologous expression of mammalian P450 enzymes, Advances Enzymol. Relat. Areas Mol.Biol. 68: 37–66.Google Scholar
  91. Wheeler, R.A., 1990, Chem. Phys. Lett., 174: 369.ADSCrossRefGoogle Scholar
  92. White, R.E., Coon, M.J., 1980, Oxygen activation by cytochrome P-450, Ann. Rev. Biochem. 49: 315–356.CrossRefGoogle Scholar
  93. Willie, A., Stayton, P.S., Sligar, S.G., Durham, B., Millett, F., 1992, Genetic engineering of redox donor sites: measurement of intracomplex electron transfer between ruthenium-65-cytochrome b5 and cytochrome c, Biochemistry 31: 7237–7242.CrossRefGoogle Scholar
  94. Yasuda, Y., Sugino, H., Toyotama, H., Hirata, Y., Hara, M., Miyake, J., 1994, Control of protein orientation in molecular photoelectric devices using Langmuir-Blodgett films of photosynthetic reaction centers from rhodopseudomonas viridis. Bioelectrochemistry and Bioenergetics, 34: 135.CrossRefGoogle Scholar
  95. Yeates, T.O., H., Komiya, D.C., Rees, J.P., Allen, G., Feher., 1987, Structure of reaction center from rhodobacter shaeroides r-26: membrane-protein interaction, Proc. Natl. Acad. Sci. USA 84: 6438–6442.ADSCrossRefGoogle Scholar
  96. Zhu, D.G., M.C., Petty, H., Ancelin, J., Yarwood. 1989, On the formation of Langmuir-Blodgett films containing enzymes, Thin Solid Films 176: 151–156.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Claudio Nicolini
    • 1
    • 2
    • 3
  1. 1.Istituto di BiofisicaUniversità di GenovaGenovaItaly
  2. 2.Polo Nazionale BioelettronicaMarciana Marina (LI)Italy
  3. 3.Fondazione ElbaRomaItaly

Personalised recommendations