The Dynamic Parameter

Fluorescence Photobleaching as a Tool to Dissect Space in Biological Systems
  • Melvin Schindler
  • Paramjit K. Gharyal
  • Lian-Wei Jiang


The viability of organisms is dependent on the controlled flow of information and metabolic/synthetic precursors between cellular compartments. Such processes are elaborated upon as a hierarchy of interdependence established between cells and tissues. Through the ebb and flow of signaling and metabolic molecules, dynamic linkages may be maintained between cells for the coordination, synchronization, and initiation of cellular cycles (Fig. 1). In this manner, organismal response to the environment may be viewed as the result of a linked web of dissipative molecular gradients across biological membranes that initiate and transmit environmental information and cellular status. Integration of these gradients over large numbers of cells and tissues collectively leads to spatial and/or temporal responses. The biological structures that serve as controllable elements for transmembrane molecular flow are generally classified as channels or pores that serve either as passive transport routes for low-molecular-weight molecules (Loewenstein, 1979; Nikaido and Nakae, 1979; Gunning and Overall, 1983) or as ion pumps or transporters requiring some type of coupled gradient dissipation or energy
Figure 1

Dynamic linkages between organelles and cells. Chemical gradients are utilized to transmit information between the cell and the environment. The pathways involved in this transmission system are: lateral mobility of membrane receptors (1); transplasma membrane transport through channels, pores, and transporters (2); homotypic intercellular communication through gap junctions or plasmodesmata (3); nucleocytoplasmic transport (4); translysosomal or vacuolar membrane transport of H+ and ions (5); Golgi-mediated processing, secretion, and recycling (6); Golgi transport of newly synthesized proteins (cis-medial-trans) (7); heterotypic intercellular communication (8). R, N, and G represent membrane receptors, the nucleus, and Golgi, respectively.

source for molecular transposition (Mitchell, 1979; Noma, 1983; Reuter et al., 1983). In most instances, the control of these channels is mediated by ligand-specific receptors that couple to the channels under activating conditions, initiating a cascade of enzymatic changes resulting in a modification of channel transport properties (Koshland, 1981; Bean et al., 1983; Hondeghem and Katzung, 1984). In other cases, transport channels and receptors are intimately linked, forming a common structure, as in the case of the nicotinic acid receptor/channel (Conti-Tronconi and Raftery, 1982).


Dynamic Parameter Nuclear Pore Complex Transport Channel Dynamic Linkage Lateral Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altersheim, P., Bauer, W. D., Keegstra, K., and Talmadge, K. W., 1973, in Biogenesis of Plant Cell Wall Polysaccharides (F. Loewus, ed.), Academic Press, New York, pp. 117–147.Google Scholar
  2. Baron-Epel, O., Gharyal, P. K., and Schindler, M., 1988a, Planta, 175:389–395.CrossRefGoogle Scholar
  3. Baron-Epel, O., Hernandez, D., Jiang, L.-W., Meiners, S., and Schindler, M., 1988b, J. Cell Biol. 106:715–721.PubMedCrossRefGoogle Scholar
  4. Bean, B. P., Nowycky, M. C., and Tsien, R. W., 1983, Nature 30:371–375.Google Scholar
  5. Bennett, V., 1985, Annu. Rev. Biochem. 54:273–304.PubMedCrossRefGoogle Scholar
  6. Berke, G., and Fishelson, Z., 1976, Proc. Natl Acad. Sci. USA 73:4580–4583.PubMedCrossRefGoogle Scholar
  7. Carboni, J. M., and Condeelis, J. S., 1985, J. Cell Biol. 100:1884–1893.PubMedCrossRefGoogle Scholar
  8. Carpita, N., 1982, Science 218:813–814.PubMedCrossRefGoogle Scholar
  9. Conti-Tronconi, B. M., and Raftery, M. A., 1982, Annu. Rev. Biochem. 51:491–530.PubMedCrossRefGoogle Scholar
  10. Edelman, G. M., 1976, Science 192:218–226.PubMedCrossRefGoogle Scholar
  11. Franke, W. W., 1974, Philos. Trans. R. Soc. Lond. Ser. B 268:67–93.CrossRefGoogle Scholar
  12. Gerace, L., and Blobel, G., 1982, Cold Spring Harbor Symp. Quant. Biol. 46:967–978.PubMedCrossRefGoogle Scholar
  13. Gunning, B. E. S., and Overall, R. L., 1983, Bioscience 33:260–265.CrossRefGoogle Scholar
  14. Hondeghem, L. M., and Katzung, B. G., 1984, Annu. Rev. Pharmacol. Toxicol. 24:387–423.PubMedCrossRefGoogle Scholar
  15. Jiang, L.-W., and Schindler, M., 1986, J. Cell Biol. 102:853–858.PubMedCrossRefGoogle Scholar
  16. Jiang, L.-W., and Schindler, M., 1987, Biochemistry 26:1546–1551.PubMedCrossRefGoogle Scholar
  17. Kapitza, H.-G., and Jacobson, K. A., 1986, in Techniques for the Analysis of Membrane Proteins (C. I. Ragan and R. J. Cherry, eds.), Chapman & Hall, London, pp. 345–375.CrossRefGoogle Scholar
  18. Kessel, R. G., 1973, Prog. Surf. Membr. Sci. 6:243–329.Google Scholar
  19. Koppel, D. E., 1979, Biophys. J. 28:281–292.PubMedCrossRefGoogle Scholar
  20. Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L., and Webb, W. W., 1976, Biophys. J. 16:1315–1329.PubMedCrossRefGoogle Scholar
  21. Koppel, D. E., Sheetz, M. P., and Schindler, M., 1980, Biophys. J. 30:187–192.PubMedCrossRefGoogle Scholar
  22. Koppel, D. E., Sheetz, M. P., and Schindler, M., 1981, Proc. Natl. Acad. Sci. USA 78:3576–3580.PubMedCrossRefGoogle Scholar
  23. Koshland, D. E., Jr., 1981, Annu. Rev. Biochem. 50:765–782.PubMedCrossRefGoogle Scholar
  24. Landreth, G. E., Williams, L. K., and Rieser, G. D., 1985, J. Cell Biol. 101:1341–1350.PubMedCrossRefGoogle Scholar
  25. Loewenstein, W. R., 1979, Biochim. Biophys. Acta 560:1–65.PubMedGoogle Scholar
  26. Luby-Phelps, K., Taylor, D. L., and Lanni, F., 1986, J. Cell Biol. 102:2015–2022.PubMedCrossRefGoogle Scholar
  27. McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Nature 319:463–468.PubMedCrossRefGoogle Scholar
  28. Metcalf, T. N., III, Wang, J. L., Schubert, K. R., and Schindler, M., 1983, Biochemistry 22:3969–3975.PubMedCrossRefGoogle Scholar
  29. Mitchell, P., 1979, Euro. J. Biochem. 95:1–20.CrossRefGoogle Scholar
  30. Nikaido, H., and Nakae, T., 1979, Adv. Microb. Physiol. 20:163–250.PubMedCrossRefGoogle Scholar
  31. Noma, A., 1983, Nature 305:147–148.PubMedCrossRefGoogle Scholar
  32. Otteskog, P., Ege, T., and Sundquist, K.-G., 1981, Exp. Cell Res. 136:203–213.PubMedCrossRefGoogle Scholar
  33. Paine, P. L., Moore, L. C., and Horowitz, S. B., 1975, Nature 254:109–114.PubMedCrossRefGoogle Scholar
  34. Painter, R. G., and Ginsberg, M., 1982, J. Cell Biol. 92:565–573.PubMedCrossRefGoogle Scholar
  35. Pasternak, C., and Elson, E., 1985, J. Cell Biol. 100:860–872.PubMedCrossRefGoogle Scholar
  36. Peters, R., 1983, J. Biol. Chem. 258:11427–11429.PubMedGoogle Scholar
  37. Reuter, H., Cachelin, A. B., dePeyer, J. E., and Kokubun, S., 1983, Cold Spring Harbor Symp. Quant. Biol. 48:193–200.PubMedCrossRefGoogle Scholar
  38. Roos, E., Spiele, H., Feltkamp, C. A., Huisman, H., Wiegart, F. A. C., Traas, J., and Meland, D. A. M., 1985, J. Cell Biol. 101:1817–1825.PubMedCrossRefGoogle Scholar
  39. Schindler, M., and Jiang, L.-W., 1986, J. Cell Biol. 102:859–862.PubMedCrossRefGoogle Scholar
  40. Schindler, M., Osborn, M. J., and Koppel, D. E., 1980, Nature 283:346–350.PubMedCrossRefGoogle Scholar
  41. Schindler, M., Holland, J. F., and Hogan, M., 1985, J. Cell Biol. 100:1408–1414.PubMedCrossRefGoogle Scholar
  42. Schindler, M., Trosko, J. E., and Wade, M. H., 1987, Methods Enzymol. 141:439–447.PubMedCrossRefGoogle Scholar
  43. Schindler, M., Jiang, L.-W., Swaisgood, M., and Wade, M. H., 1990, Methods Cell Biol. 32:423–445.CrossRefGoogle Scholar
  44. Sheetz, M. P., Schindler, M., and Koppel, D. E., 1980, Nature 285:510–512.PubMedCrossRefGoogle Scholar
  45. Tank, D. W., Wu, E.-S., and Webb, W. W., 1982, J. Cell Biol. 92:218–226.CrossRefGoogle Scholar
  46. Tepfer, M., and Taylor, I. E. P., 1981, Science 213:761–763.PubMedCrossRefGoogle Scholar
  47. Wade, M. H., Trosko, J. E., and Schindler, M., 1986, Science 23:525–528.CrossRefGoogle Scholar
  48. Wojcieszyn, J. W., Schlegel, R. A., Wu, E.-S., and Jacobson, K. A., 1981, Proc. Natl. Acad. Sci. USA 78:4407–4410.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Melvin Schindler
    • 1
  • Paramjit K. Gharyal
    • 1
  • Lian-Wei Jiang
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations