The Biochemical Properties of Carrier-Bound Methotrexate

  • John M. Whiteley
  • Barbara C. F. Chu
  • John Galivan
Part of the Polymer Science and Technology book series (POLS, volume 14)


From antiquity mankind has attempted to soothe ailments and control bodity functions with palliatives which usually on closer examination have contained some form of chemical compound. Examples include the use of laudanum and opiates for upset stomachs, the somewhat gross medieval use of leeches, which secrete fluids now known to contain heparin, to alleviate bloodflow problems, the discovery during the past century of the anesthetic properties of halogenated hydrocarbons, and the bacteriocidal properties of phenols, the more current usage of sulfonamides, tetracyclines, penicillins and other antibiotics, and presently the use of specific antimetabolites to control or quell aberrant enzymatic activity. Throughout this long period of development one can perceive the achievement of greater purity of the particular chemical compound or drug, greater understanding of its specific action, and a clearer delineation of the function it is being asked to perform.


Lewis Lung Carcinoma Tumor Transplant BDF1 Mouse Halogenated Hydrocarbon L12l0 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Trouet, D. Deprex-de Campeneere and C. De Duve, Nature New Biology, 239 110 (1972)Google Scholar
  2. 2.
    G. Gregoriadis and E. D. Neerunjun, Res. Commun. in Chem. Pathol. and Pharmacol., 10, 351 (1975)Google Scholar
  3. 3.
    G. F. Rowland, G. J. O’Neill and D. A. L. Davies, Nature 255, 487 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    B. C. F. Chu and J. M. Whiteley, Mol. Pharmacol., 13, 80 (1977)Google Scholar
  5. 5.
    G. P. Mell, J. M. Whiteley and F. M. Huennekens, J. Biol. Chem., 243, 6074 (1968)Google Scholar
  6. 6.
    P. J. McConahey and F. J. Dixon, Int. Arch. Allergy 29, 185 (1966)Google Scholar
  7. 7.
    R. I. Geran, N. H. Greenberg, M. M. MacDonald, A. M. Schumacher and B. J. Abbott, Cancer Chemother. Rep., Part 3, 3, 7 (1972)Google Scholar
  8. 8.
    J. G. Mayo, Cancer Chemother. Rep., 3, 325 (1972)Google Scholar
  9. 9.
    H. Wexler, J. Nat. Cancer Inst., 36, 641 (1966)Google Scholar
  10. 10.
    K. Weber and M. Osborn, J. Biol. Chem., 244 4406 (1969)Google Scholar
  11. 11.
    R. C. Jackson, D. Niethammer and F. M. Huennekens, Cancer Biochem. Biophys., 1, 151 (1975)Google Scholar
  12. 12.
    C. Fan, G. Henderson, K. Vitols and F. M. Huennekens, “Antimetabolites in Biochemistry, Biology and Medicine (Eds. J. Skoda and P. Langen) Pergamon Press, Oxford and New York (1979) p. 315Google Scholar
  13. 13.
    H. Pitot, C. Periano, P. Morse and V. R. Potter, Natl. Cancer Inst. Monogr., 13, 229 (1964Google Scholar
  14. 14.
    M. D. Reuber, J. Natl. Cancer Inst., 26, 891 (1961)Google Scholar
  15. 15.
    E. M. Levene, Exp. Cell Res., 74, 99 (1972)CrossRefGoogle Scholar
  16. 16.
    D. R. Seeger, D. B. Cosulich, J. M. Smith, Jr. and M. E. Hultquist, J. Amer. Chem. Soc., 71, 1753 (1949)Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • John M. Whiteley
    • 1
  • Barbara C. F. Chu
    • 2
  • John Galivan
    • 3
  1. 1.Scripps Clinic and Research FoundationLa JollaUSA
  2. 2.Department of Medicine T-006University of CaliforniaSan DiegoUSA
  3. 3.Division of Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations