Morphology of Block Copolyurethanes. II. FTIR and ESCA Techniques for Studying Surface Morphology

  • K. Knutson
  • D. J. Lyman
Part of the Polymer Science and Technology book series (POLS, volume 14)


Block copolymers form a domain-matrix morphology due to the chemical and steric incompatibilities of the chemically different blocks or segments. The unusual range of the physical and chemical properties associated with block copolyurethanes result from this unique morphological separation. However, multiple (AB)n block copolymers such as block copolyurethanes may or may not have as complete phase separation as the simpler AB block copolymers. Bulk morphologies of block copolyurethanes have been studied by many investigators during the last decade via electron microscopy (1,2), temperature-modulus (3,4,5) and infrared spectroscopy (6–11). More recent studies have shown the bulk and surface chemical and morphological structures of block copolyurethanes may be quite different, and are affected by both synthetic alterations of the polymeric repeat unit and by fabrication variables (12–15). Since several block copolyurethanes have shown both compatibility and mechanical properties needed for vascular implants, it is important to determine the chemical and morphological structures of these materials. A block copolyetherurethane-urea and associated model compounds and homopolymers have been studied by Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spectroscopy for Chemical Analysis (ESCA) in order to determine the chemical and morphological structures of the surface of the block copolyurethane as compared to the bulk.


Urethane Group Polypropylene Glycol Urea Group Urethane Linkage Urethane Carbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. C. Allport and W. H. Janes, eds., “Block Copolymers”, John Wiley & Sons, New York, (1973)Google Scholar
  2. 2.
    J. A. Koutsky, H. U. Hein, and S. L. Cooper, J. Polym. Sci., B-8 353 (1970)Google Scholar
  3. 3.
    S. L. Cooper and A. V. Tobolsky, J. Appl. Polym. Sci., 10, 1837 (1966)CrossRefGoogle Scholar
  4. 4.
    R. L. Bonart, L. Morbitzer, and H. Rinke, Kolloid-Z., 240 807 (1970)Google Scholar
  5. 5.
    D. S. Huh and S. L. Cooper, Polym. Eng. Sci., 11, 369 (1971)CrossRefGoogle Scholar
  6. 6.
    K. Nakayama, T. Ino, and I. Matsubara, J. Macromol. Sci.-Chem., A-3 (5), 1005 (1969)Google Scholar
  7. 7.
    T. Tanaka, T. Yokoyama, and Y. Yamaguchi, J. Polym. Sci., A-1 (6), 2137 (1968)Google Scholar
  8. 8.
    H. Ishihara, I. Kimura, K. Saito, and H. Ono, J. Macromol. Sci.Phys., B-10 (4), 591 (1974)Google Scholar
  9. 9.
    C. S. P. Sung and N. S. Schneider, Macromolecules, 8, 68 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    R. W. Seymour, G. M. Estes, and S. L. Cooper, Macromolecules, 3, 579 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    T. Tanaka, T. Yokoyama, and Y. Yamaguchi, J. Polym. Sci., A-1 (6), 2153 (1968)Google Scholar
  12. 12.
    D. J. Lyman, D. Albo, Jr., R. Jackson, and K. Knutson, Trans. Am. Soc. Artif. Intern. Organs, 23, 253 (1977)CrossRefGoogle Scholar
  13. 13.
    C. S. P. Sung, C. B. Hu, E. W. Merrill, and E. W. Salzman, J. Biomed. Mater. Res., 12, 791 (1978)CrossRefGoogle Scholar
  14. 14.
    C. S. P. Sung, C. B. Hu, and E. W. Merrill, Polym. Preprints, 19, 20 (1978)Google Scholar
  15. 15.
    D. J. Lyman and K. Knutson, “Polymeric Materials and Pharmaceuticals for Biomed. Uses”, E. P. Goldberg and A. Nakajima, eds., Academic Press, New York, (1979), in pressGoogle Scholar
  16. 16.
    D. J. Lyman, C. Kwan-Gett, H. J. Zwart, A. Bland, N. Eastwood, J. Kawai, and W. J. Kolff, Trans. Am. Soc. Artif. Intern. Organs, 17, 456 (1971)Google Scholar
  17. 17.
    D. J. Lyman, J. Polym. Sci., 45, 49 (1960)ADSCrossRefGoogle Scholar
  18. 18.
    K. Shibatani, D. J. Lyman, D. F. Shieh, and K. Knutson, J. Polym. Sci., Polym. Chem., 15, 1655 (1977)Google Scholar
  19. 19.
    R. T. Conley, “Infrared Spectroscopy”, second edition, Allyn and Bacon, Boston, (1972)Google Scholar
  20. 20.
    D. J. Lyman, J. Heller, and M. Barlow, Die Makromolekulare Chem., 84, 64 (1965)CrossRefGoogle Scholar
  21. 21.
    D. J. Lyman, K. Knutson, B. McNeill, and K. Shibatani, Trans. Am. Soc. Artif. Int. Organs, 21, 49 (1975)Google Scholar
  22. 22.
    T. A. Carlson, “Photoelectron and Auger Spectroscopy”, Plenum Press, New York, (1975)CrossRefGoogle Scholar
  23. 23.
    T. H. Schofield, J. Electron Spectrosc. Relat. Phenom., 8, 129 (1976)CrossRefGoogle Scholar
  24. 24.
    K. Siegbahn, et al., “ESCA”, Almquist and Widsells Publishing, Upsala, Sweden, (1967)Google Scholar
  25. 25.
    N. J. Harrick, “Internal Reflection Spectroscopy”, John Wiley Interscience, New York, (1967)Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • K. Knutson
    • 1
  • D. J. Lyman
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations