Biological Effects of Extremely Low Frequency Magnetic Fields

  • Marko S. Markov

Abstract

Recent studies have demonstrated the great significance of low-intensity, low-frequency electromagnetic fields (EMF) for living systems. It is now well-accepted that EMF may induce changes in living systems on the organism, tissue, cellular, membrane and subcellular levels. Some specific reactions and processes in different biological systems suggest that most of the observed bioeffects strongly depend on the parameters of applied electromagnetic fields.

Keywords

Magnetic Field Electromagnetic Field Living System Static Magnetic Field Weak Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.T. Barker, R.A. Dixon, W.J.W. Sharrard, and M.L. Sutcliffe, Pulsed magnetic field therapy for tibial non-union, Lancet 994 (1984).Google Scholar
  2. 2.
    C.T. Brighton, Advanced clinical applications of EMF effects: Bone and cartilage, in: “Electromagnetics in Medicine and Biology,” C.T. Brighton and S.R. Pollack, San Francisco Press Inc., 293–308 (1991).Google Scholar
  3. 3.
    C.A.L. Bassett, Physical and biological principles affecting weak ELF electromagnetic bioresponses, in: “Electromagnetics in Medicine and Biology,” C.T. Brighton and S.R. Pollack, San Francisco Press Inc., 1–13 (1991).Google Scholar
  4. 4.
    S.M. Bawin, L.K. Kaczmarek and W.R. Adey, Effects of modulated VHF fields on the central nervous system, Ann NYAcad Sci 247: 74–91 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    C.F. Blackman, S.G. Benane, D.E. House and W.T. Joines, Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro, Bioelectromagnetics 6: 111 (1985).CrossRefGoogle Scholar
  6. 6.
    M.S. Markov, Electromagnetic field influence on membranes, in: “Interfacial Phenomena in Biological Systems,” M. Bender, ed., Marcel Dekker, 171–192 (1991).Google Scholar
  7. 7.
    M.S. Markov, Electromagnetic fields–new ecological factor, in: “Electromagnetic Fields and Biomembranes,” M.Markov and M. Blank, Plenum Press, New York, 135–140 (1988).CrossRefGoogle Scholar
  8. 8.
    M.S. Markov, Effect of radiation on biological systems, in: “Charge and Field Effects in Biosystems,” M.J. Allen, S.F. Cleary and F. Howkridge, Plenum Press, New York, 241–250 (1989).CrossRefGoogle Scholar
  9. 9.
    M.S. Markov, S.P. Ivanov, B.P. Galutzov, L.L. Traikov and M.A. Kuzmanova, Biophysical test for estimating the effects of ionizing and non-ionizing radiation, Medical and Biological Engineering and Computing,(in press).Google Scholar
  10. 10.
    M.S. Markov, Influence of constant magnetic field on biological systems, in: “Charge and Field Effects in Biosystems,” M.J. Allen and P.N.R. Usherwood, Abacus Press, Kent, England, 319329 (1984).Google Scholar
  11. 11.
    J.L. Kirshvink and A. Kobayashi-Kirshvink, Magnetite biomineralization in human tissue: a solution to the thermal noise problem in ELF bioeffects, in: “Proceedings of First World Congress on Electricity and Magnetism,” San Francisco Press Inc. (in press).Google Scholar
  12. 12.
    W.R. Adey and A.S. Sheppard, Cell structure ionic phenomena in transmembrane signaling to intracellular enzyme systems, in: “Mechanistic Approaches to Interactions of Electric and Magnetic Fields with Living Systems,” M. Blank and E. Findl, Plenum Press, New York 365–387 (1987).Google Scholar
  13. 13.
    C.F. Blackman, S.G. Benane, J.R. Rabinowitz, D.E. House, and W.T. Joines, A role for the magnetic field in the radiation-induced efflux of Ca-ions from brain tissue in vitro, Bioelectromagnetics 6: 327–333 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    C.F. Blackman, S.G. Benane, D.E. House and D.J. Elliot, Importance of alignment between local DC magnetic field and an oscillating magnetic field in response of brain tissue in vivo and in vitro, Bioelectromagnetics 11: 159–167 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    M.F. Yost and R.P. Liburdy, Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte, FEBS Letters 296: 117–122 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    A.R. Liboff, R.J. Rozek, M.L. Shermann, B.R. McLeod and S.D. Smith, Ca45 cyclotron resonance in human lymphocytes, J. Bioelectricity 6: 13–22 (1987).Google Scholar
  17. 17.
    A.A. Pilla, P.R. Nassar and J.J. Kaufman, The sensitivity of cells and tissues to weak electromagnetic fields, in: “Charge and Field Effects in Biosystems III,” M.J. Allen, S.F. Cleary, A.E. Sowers and D.D. Shillady, Birkhauser, Boston, 231–241 (1992).CrossRefGoogle Scholar
  18. 18.
    M. Markov and M. Blank, “Electromagnetic Fields and Biomembranes,” Plenum Press, New York (1988).Google Scholar
  19. 19.
    A.A. Pilla, Electrochemical information transfer at cell surfaces and junctions–application to study and manipulation of cell regulation, in: “Bioelectrochemistry,” H.Keyzer and F. Gutmann, Plenum Press, New York, 333–395 (1980).Google Scholar
  20. 20.
    A. Chiabrera, M. Hinsenkamp, A.A. Pilla, J.T. Ryaby, D. Ponta, F. Beltrame, M. Grattarola and C. Nicolini, Cytofluorometry of electromagnetically controlled cell differentiation, J. Histochem and Cytochem 27: 375 (1979).CrossRefGoogle Scholar
  21. 21.
    G. Collaccico and A.A. Pilla, Electromagnetic modulation of biological processes: Chemical, physical and biological correlations in the Ca uptake by embryonal chick tibia in vitro, Bioelectrochemistry and Bioenergetics 10: 119431 (1983).Google Scholar
  22. 22.
    E. Saalman, B. Nordenm, L. Arvidsson, Y. Hamnerius, P. Hojevik, K.E. Connell and T. Kuruscev, Effect of 2.45 GHz microwave radiation on permeability of unilamellar liposomes to 5 (6)-carboxyflourescein, BBA 1064: 124–130 (1991).Google Scholar
  23. 23.
    W.R. Adey, The sequence and energetics of cell membrane transductive coupling to intracellular enzyme systems, Bioelectrochemistry and Bioenergetics 15: 447–456 (1986).CrossRefGoogle Scholar
  24. 24.
    F. Pliquett, Passiv elektrische Untersuchungen biologische Objekte, Wiss. Z. Universitat Leipzig, Mathem. Nat. wiss. Reihe 28: 118–127 (1979).Google Scholar
  25. 25.
    M.S. Markov, F. Pliquett, M.R. Kantcheva and D.L. Abadgieva, Pulse impedance method for investigating electrical properties of cells, International Agrophysics 1: 345–355 (1985).Google Scholar
  26. 26.
    M.S. Markov and N.G. Todorov, Electromagnetic field stimulation of some physiological properties, Studia Biophysica 99: 151–156 (1984).Google Scholar
  27. 27.
    W.R. Adey, Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric field, in: “Functional Linkage in Biomolecular Systems,” F. Schmitt, D.M. Schneider and D.M. Crithers, Raven Press, New York, 325–342 (1975).Google Scholar
  28. 28.
    W.R. Adey, Models of cerebral cells as substrates for informational storage, Biosystems 8: 163–176 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    W.R. Adey, The sequence and energetics of cell membrane transductive coupling to intracellular enzyme systems, Bioelectrochemistry and Bioenergetics 15: 447–456 (1986).CrossRefGoogle Scholar
  30. 30.
    W.R. Adey, The extracellular space and energetic hierarchies in electrochemical signalling between cells, in: “Charge and Field Effects in Biosystems,” M.J. Allen, S.F. Cleary and D. Howkridge, Plenum Press 263–290 (1989).CrossRefGoogle Scholar
  31. 31.
    M.S. Markov, Informational character of magnetic field action on biological systems, in: “Biophysical and Biochemical Information Transfer in Recognition,” K. Jensen and Yu.Vassileva, Plenum Press, New York 496–500 (1979).Google Scholar
  32. 32.
    M.S. Markov, Biological mechanisms of the magnetic field action, IEEE Transaction of magnetics -v.Mag-17, N. 5, 2334–2337 (1981).Google Scholar
  33. 33.
    M.S. Markov, Direct and indirect action of constant magnetic field, “Proceedings of 6th International Conference on Magnet Technology,” Bratislava, 384–389 (1978).Google Scholar
  34. 34.
    A.R. Liboff, B.R. McLeod and S. Smith, Resonance transport in membranes, in: “Electromagnetics in Biology and Medicine,” C.T. Brighton and S.R. Pollack, San Francisco Press Inc., 67–77 (1991).Google Scholar
  35. 35.
    V.V. Lednev, Possible mechanism for the influence of weak magnetic fields on biological systems, Bioelectromagnetics 12: 71–74 (1991).PubMedCrossRefGoogle Scholar
  36. 36.
    L.A. Shuvalova, M.V. Ostrovskaja, E.A. Sosunov and V.V. Lednev, Weak magnetic field influence on the speed of calmodulin dependent phosphorylation of myosin in solution, Dokladi Academy of Sciences USSR 217: 227–231, (1991), in Russian.Google Scholar
  37. 37.
    M.S. Markov, J.T. Ryaby, J.J. Kaufman and A.A. Pilla, Extremely weak AC and DC magnetic fields significantly affect myosin phosphorylation, in: “Charge and Field Effects in Biosystems 3,” M.J. Allen, S.F. Cleary, A.E. Sowers and D.D. Shillady, Burkhauser, Boston 225–230 (1992).Google Scholar
  38. 38.
    C.V. Byus, R.L. Lundak, R.M. Fletcher and W.R. Adey, Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields, Bioelectromagnetics 5: 34 (1984).CrossRefGoogle Scholar
  39. 39.
    R.A. Luben, C.D. Cain, M.C.Y. Chen, D.M. Rosen and W.R. Adey, Effects of electromagnetic stimuli on bone and bone cells in vitro; inhibition of responses to parathyroid hormone by low energy, low frequency fields, Proc. Nat’l. Acad. Sci. USA 79: 4180–4184 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    R.A. Luben, C. Cain, Use of bone cell hormone responses to investigate bioelectromagnetic effects on membranes in vitro, in: “Nonlinear Electrodynamics in Biological Systems, W.R. Adey and A.F. Lawrence, Plenum Press, New York, 23–33 (1984).CrossRefGoogle Scholar
  41. 41.
    C.V. Byus, R.L. Lundak, R.M. Fletcher and W.R. Adey, Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields, Bioelectromagnetics 5: 34–51 (1984).CrossRefGoogle Scholar
  42. 42.
    W.R. Adey, Cell membranes: The electrochemical environment and cancer promotion, Neurochemical Research 13: 671–677 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    M.S. Markov, J.T. Ryaby, S. Wang and A.A. Pilla, Modulation of myosin phosphorylation rates by weak (near ambient) DC magnetic fields, in: “Proceedings of 1992 IEEE 18th Annual Northeast Bioengineering Conference,” Kingston RI, p. 63–64 (March 1992).Google Scholar
  44. 44.
    A.R. Liboff, Cyclotron resonance in membrane transport, in: “Interactions Between Electromagnetic Fields and Cells,” A. Chiabrera, C. Nicolini and H.P. Schwan, Plenum Press, New York, 281 (1985).Google Scholar
  45. 45.
    M.S. Markov, S. Wang and A.A. Pilla, Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation, Bioelectrochemistry and Bioenergetics,(in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Marko S. Markov
    • 1
  1. 1.Department of BiophysicsSofia UniversitySofiaBulgaria

Personalised recommendations