Cellular Biology of Gangliosides

  • Yoshitaka Nagai
  • Masao Iwamori


Sialic acid-containing glycosphingolipids, or gangliosides, are hybrid molecules composed of a hydrophilic sialyl oligosaccharide and a hydrophobic ceramide moiety, the latter consisting of a sphingoid base linked to a fatty acid. Though molecular species of the fatty acids and sphingosine in the ceramide component of gangliosides are heterogeneous, more significant heterogeneity is observed in the oligosaccharide moiety, which is primarily oriented exofacially in the cell surface, positionally advantaged to interact with neighboring cells and extra-cellular materials. In the animal kingdom, the lowest order in which gangliosides as well as sialic acids generally are detected is the Deuterostomia, in particular those more developed phylogenetically than the Echinodermata, but not those of the Prostomia (Hoshi and Nagai, 1975; Sugita et al., 1982; Wiegandt, 1985; Dennis et al., 1985), although recent subtle analysis has revealed that sialic acids and their polymeric form occur also in the insect Drosophila melanogaster (Roth et al., 1992). Thus, gangliosides seem to be concerned with evolutionarily acquired functions pertinent to higher animals. In vertebrates, they are ubiquitous constituents of all tissues and cells, and their oligosaccharide structures undergo alteration during cellular development, differentiation, ontogenesis, and aging, in keeping with their functional importance (Hakomori, 1990). In fact, by application of the monoclonal antibody technique, several gangliosides were shown to be the tumor-associated antigens, which are utilized as the target molecules for immunotherapy, as well as for the diagnosis of several tumors (Saleh et al., 1992).


Nerve Growth Factor Sialic Acid Sphingoid Base Monocytic Differentiation Brain Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acquotti, D., Fronza, G., Riboni, L., Sonnino, S., and Tettamanti, G., 1987, Ganglioside lactones: H-NMR determination of the inner ester position of GDIb-ganglioside lactone naturally occurring in human brain or produced by chemical synthesis, Glycoconjugate J. 4: 119–127.CrossRefGoogle Scholar
  2. Ando, S., Chang, N. C., and Yu, R. K., 1978, High performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species, Anal. Biochem. 89: 437–450.PubMedCrossRefGoogle Scholar
  3. Ando, S., Yu, R. K., Scarsdale, J. N., Kusunoki, S., and Prestegard, J. H., 1989, High resolution proton NMR studies of gangliosides. Structure of two types of GD3 lactones and their reactivity with monoclonal antibody R24, J. Biol. Chem. 264: 3478–3483.PubMedGoogle Scholar
  4. Ando, S., Hirabayashi, Y., Kon, K., Inagaki, F., Tate, S., and Whittaker, V. P., 1992, A trisialoganglioside containing a sialyla2–6-N-acetylgalactosamine residue is a cholinergic-specific antigen, J. Biochem. 111: 287–290.PubMedGoogle Scholar
  5. Bar-Shavit, Z., Teitelbaum, S. L., Reitsman, P., Hall, A., Pegg, L. E., Trial, J., and Kahn, A., 1983, Induction of monocytic differentiation and bone resorption by la,25-dihydroxyvitamin D3, Proc. Natl. Acad. Sci. USA 80: 5907–5911.PubMedCrossRefGoogle Scholar
  6. Behr, J., and Lehn, J., 1973, The binding of divalent cations by purified gangliosides, FEBS Lett. 31: 297–300.PubMedCrossRefGoogle Scholar
  7. Blum, A. S., and Barnstable, C. J., 1987, O-Acetylation of a surface carbohydrate creates discrete molecular patterns during neural development, Proc. Natl. Acad. Sci. USA 84: 8716–8720.Google Scholar
  8. Bouchon, B., Levery, S. B., Clausen, H., and Hakomori, S.-H., 1992, Production and characterization of a monoclonal antibody (BBH5) directed to ganglioside lactone, Glycoconjugate J. 9: 27–38.CrossRefGoogle Scholar
  9. Bouchours, J., Bouchours, D., and Hansson, G. C., 1987, Developmental changes of gangliosides of the rat stomach. Appearance of a blood group B-active ganglioside, J. Biol. Chem. 262: 16370–16375.Google Scholar
  10. Bradley, W. G., 1990, Critical review of gangliosides and thyrotropin releasing hormone in peripheral neuromuscular diseases, Muscle Nerve 13: 833–842.PubMedCrossRefGoogle Scholar
  11. Braun, P. E., Morel!, P., and Radin, N. S., 1970, Synthesis of C18 and C20-dihydrosphingosine, ketodihydrosphingosine and ceramides by microsomal preparations from mouse brain, J. Biol. Chem. 245: 335–341.PubMedGoogle Scholar
  12. Breitman, T. R., Selonic, S. E., and Collins, S. J., 1980, Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid, Proc. Natl. Acad. Sci. USA 77: 2936–2940.PubMedCrossRefGoogle Scholar
  13. Callies, R., Schwarzmann, G., Radsak, K., Siegert, R., and Wiegandt, H., 1977, Characterization of the cellular binding of exogenous gangliosides, Eur. J. Biochem. 80: 425–432.PubMedCrossRefGoogle Scholar
  14. Ceccarelli, B., Aporti, F., and Finesso, M., 1976, Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation, Adv. Exp. Med. Biol. 71: 275–293.PubMedGoogle Scholar
  15. Chatterjee, H., Chakraborty, M., and Anderson, G. M., 1992, Differentiation of Neuro2a neuroblastoma cells by an antibody to GM3 ganglioside, Brain Res. 583: 31–44.PubMedCrossRefGoogle Scholar
  16. Chege, N. W., and Pfeffer, S. R., 1990, Decompartmentation of the Golgi complex. Brefeldin A distinguishes trans-Golgi cisternae from the trans-Golgi network, J. Cell Biol. 111: 893–899.PubMedCrossRefGoogle Scholar
  17. Chiba, A., Kusunoki, S., Shimizu, T., and Kanazawa, I., 1992, Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome, Ann. Neurol. 31: 677–679.PubMedCrossRefGoogle Scholar
  18. Collins, S. J., Rusetti, F. W., Gallagher, R. E., and Gallo, R. C., 1978, Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds, Proc. Natl. Acad. Sci. USA 75: 2458–2462.PubMedCrossRefGoogle Scholar
  19. Corti, M., DeGiorgio, V., Ghidoni, R., Sonnino, S., and Tettamanti, G., 1980, Laser-light scattering investigation of the micellar properties of gangliosides, Chem. Phys. Lipids 26: 225–238.PubMedCrossRefGoogle Scholar
  20. Cuatrecasas, P., 1973, Gangliosides and membrane receptors for cholera toxin, Biochemistry 12: 3558–3566.PubMedCrossRefGoogle Scholar
  21. Czamiecki, M. F., and Thomton, E. R., 1977, C-NMR chemical shift titration of metal ion—carbohydrate complexes. An unexpected dichotomy for Cat+-binding between anomeric derivatives of N-acetylneuraminic acid, Biochem. Biophys. Res. Commun. 74: 553–558.CrossRefGoogle Scholar
  22. Dennis, R. D., Geyer, R., and Egge, H., 1985, Glycosphingolipids in insects. Chemical structure of ceramide tetra-, penta-, hexa- and heptasaccharides from Calliphora vicina pupae, J. Biol. Chem. 260: 5370–5375.PubMedGoogle Scholar
  23. Doherty, P., Ashton, S. V., Skaper, S. D., Leon, A., and Walsh, F. S., 1992, Ganglioside modulation of neural cell adhesion molecule and N-cadherin-dependent neunte outgrowth, J. Cell Biol. 117: 1093–1099.PubMedCrossRefGoogle Scholar
  24. Feigner, P. L., Freire, E., Barenholz, Y., and Thompson, T. E., 1981, Asymmetric incorporation of trisialoganglioside into dipalmitoylphosphatidyl choline vesicles, Biochemistry 20: 2168–2172.CrossRefGoogle Scholar
  25. Fentie, I. H., and Roisen, F. J., 1993, The effects of cytoskeletal altering agents on the surface topography of GM1 in Neuro2a neuroblastoma cell membranes, J. Neurochem. 22: 498–506.Google Scholar
  26. Ferrari, G., Fabris, M., and Gorio, A., 1983, Gangliosides enhance neurite outgrowth in PC12 cells, Dev. Brain Res. 8: 215–221.CrossRefGoogle Scholar
  27. Ferrari, G., Fabris, M., Fiori, M. G., Gabellini, N., and Volonte, C., 1992, Gangliosides prevent the inhibition by k-252a of NGF responses in PC 12 cells, Deg. Brain Res. 65: 35–42.CrossRefGoogle Scholar
  28. Formisano, S., Lee, G., Aloj, S. M., and Edelhoch, H. H., 1979, Critical micellar concentration of gangliosides, Biochemistry 18: 1119–1124.PubMedCrossRefGoogle Scholar
  29. Fredman, P., Mansson, J. E., Wikstrand, C. J., Vrionis, F. D., Rynmark, B. M., Bigner, D. D., and Svennerholm, L., 1989, A new ganglioside of the lactoseries, GalNAc-3’-isoLM1, detected in human meconium, J. Biol. Chem. 264: 12122–12125.PubMedGoogle Scholar
  30. Furukawa, K., Chait, B. T., and Lloyd, K. O., 1988, Identification of N-glycolylneuraminic acid- containing gangliosides of cat and sheep erythrocytes, J. Biol. Chem. 263: 14939–14947.PubMedGoogle Scholar
  31. Geisler, F. H., Dorsey, F. C., and Coleman, W. P., 1991, Recovery of motor function after spinal cord injury: A randomized, placebo-controlled trial with GM1 ganglioside, N. Engl. J. Med. 324: 1829–1838.PubMedCrossRefGoogle Scholar
  32. Gillard, B. K., Heath, J. P., Thurmon, L. T., and Marcus, D. M., 1991, Association of glycosphingolipids with intermediate filaments of human umbilical vein endothelial cells, Exp. Cell Res. 192: 433–444.PubMedCrossRefGoogle Scholar
  33. Gillard, B. K., Thurmon, L. T., and Marcus, D. M., 1992, Association of glycosphingolipids with intermediate filaments of mesenchymal, epithelial, glial and muscle cells, Cell Motil. Cytoskel. 21: 255–271.CrossRefGoogle Scholar
  34. Gross, S. K., Williams, M. A., and McCluer, R., 1980, Alkali labile, sodium borohydride-reducible ganglioside sialic acid residues in brain, J. Neurochem. 34: 1351–1361.PubMedCrossRefGoogle Scholar
  35. Hakomori, S., 1990, Bifunctional roles of glycosphingolipids. Modulators of transmembrane signalling and mediators for cellular interactions, J. Biol. Chem. 265: 18713–18716.PubMedGoogle Scholar
  36. Haraguchi, M., Yamashiro, S., Yamamoto, A., Furukawa, K., Takamiya, K., Lloyd, K., Shiku, H., and Furukawa, K., 1944, Isolation of G13 synthase gene by expression cloning of GM3 a2,8sialyltransferase cDNA using anti-GD2 monoclonal antibody, Proc. Natl. Acad. Sci. USA 91: 10455–10459.CrossRefGoogle Scholar
  37. Hashimoto, Y., Otsuka, H., Sudo, K., Suzuki, K., Suzuki, A., and Yamakawa, T., 1983, Genetic regulation of GM2 expression in liver of mouse, J. Biochem. 93: 895–901.PubMedCrossRefGoogle Scholar
  38. Hayashi, K., and Katagiri, A., 1974, Studies on the interaction between gangliosides, protein and divalent cations, Biochim. Biophys. Acta 337: 107–117.PubMedCrossRefGoogle Scholar
  39. Hidari, K.I.-P., Irie, F., Suzuki, M., Kon, K., Ando, S., and Hirabayashi, Y., 1993, A novel ganglioside with a free amino group in bovine brain, Biochem. J. 296: 259–263.PubMedGoogle Scholar
  40. Higashi, H., and Yamagata, T., 1992, Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme, J. Biol. Chem. 267: 9839–9843.PubMedGoogle Scholar
  41. Higashi, H., Omori, A., and Yamagata, T., 1992, Calmodulin, a ganglioside-binding protein, J. Biol. Chem. 267: 9831–9838.PubMedGoogle Scholar
  42. Hilbig, R., and Rahmann, H., 1980, Variability in brain gangliosides of fishes, J. Neurochem. 34: 236–240.PubMedCrossRefGoogle Scholar
  43. Hilbush, B. S., and Levine, J. M., 1992, Modulation of a Ca2+-signalling pathway by GM1 ganglioside in PC12 cells, J. Biol. Chem. 267: 24789–24795.PubMedGoogle Scholar
  44. Hirabayashi, Y., Hirota, M., Matsumoto, M., Tanaka, H., Obata, K., and Ando, S., 1988, Developmental changes of C-series polysialogangliosides in chick brains revealed by mouse monoclonal antibodies M6704 and M7163 with different epitope specificities, J. Biochem. 104: 973–979.PubMedGoogle Scholar
  45. Hirabayashi, Y., Hirota, M., Suzuki, Y., Matsumoto, M., Obata, K., and Ando, S., 1989, Developmentally expressed 0-acetylated ganglioside GT3 in fetal rat cerebral cortex, Neurosci. Lett. 106: 193–198.PubMedCrossRefGoogle Scholar
  46. Hirabayashi, Y., Hyogo, A., Nakao, T., Tsuchiya, K., Suzuki, Y., Matsumoto, M., Kon, K., and Ando, S., 1990, Isolation and characterization of extremely minor gangliosides GM 1 b and GD1a in adult bovine brains as developmentally regulated antigens, J. Biol. Chem. 265: 8144–8151.PubMedGoogle Scholar
  47. Hirabayashi, Y., Nakao, T., Irie, F., Whittaker, V. P., Kon, K., and Ando, S., 1992, Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain, J. Biol. Chem. 267: 12973–12978.PubMedGoogle Scholar
  48. Holmgren, J., 1973, Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholerea toxoid, Infect. Immun. 8: 851–859.PubMedGoogle Scholar
  49. Hoshi, M., and Nagai, Y., 1970, Biochemistry of mucolipids of sea urchin gametes and embryos: III. Mucolipids during early development, Jpn. J. Exp. Med. 40: 361–365.PubMedGoogle Scholar
  50. Hoshi, M., and Nagai, Y., 1975, Novel sialosphingolipids from spermatozoa of the sea urchin, Arthocidaris crassispina, Biochim. Biophys. Acta 388: 152–162.PubMedCrossRefGoogle Scholar
  51. Iber, H., Echten, G. V., Klein, R. A., and Sandhoff, K., 1990, pH dependent changes of ganglioside biosynthesis in neuronal cell culture, Eur. J. Cell Biol. 52: 236–240.Google Scholar
  52. Ichikawa, S., Nakajo, N., Sakiyama, H., and Hirabayashi, Y., 1994, A mouse B-16 melanoma mutant deficient in glycolipids, Proc. Natl. Acad. Sci. USA 91: 2703–2707.PubMedCrossRefGoogle Scholar
  53. Igarashi, M., Waki, H., Hirota, M., Hirabayashi, Y., Obata, K., and Ando, S., 1990, Differences in lipid composition between isolated growth cones from the forebrain and those from the brain-stem in the fetal rat, Dey. Brain Res. 51: 1–9.CrossRefGoogle Scholar
  54. Inokuchi, J., and Radin, N., 1987, Preparation of active isomer of 1-phenyl-2-decanoylamino-3morpholino-l-propanol, inhibitor of murine glucoceramide synthetase, J. Lipid Res. 28: 565–571.PubMedGoogle Scholar
  55. Isono, Y., and Nagai, Y., 1966, Biochemistry of glycolipids of sea urchin gametes: I. Separation and characterization of new type of sulfolipid and sialoglycolipid, Jpn. J. Exp. Med. 36: 461–476.PubMedGoogle Scholar
  56. Ito, M., and Yamagata, T., 1990, Endoglycoceramidase from Rhodococcus sp., Methods Enzymol. 179: 488–497.CrossRefGoogle Scholar
  57. Ito, M., Ikegami, Y., and Yamagata, T., 1991, Activator proteins for glycosphingolipid hydrolysis by endoglycoceramidase: Elucidation of biological functions of cell-surface glycosphingolipids in situ by endoglycoceramidase made possible using these activator proteins, J. Biol. Chem. 266: 7919–7926.PubMedGoogle Scholar
  58. Ito, M., Ikegami, Y., Tai, T., and Yamagata, T., 1993a, Specific hydrolysis of intact erythrocyte cell-surface glycosphingolipids by endoglycoceramidase, Eur. J. Biochem. 218: 637–643.PubMedCrossRefGoogle Scholar
  59. Ito, M., Ikegami, Y., and Yamagata, T., 1993b, Kinetics of endoglycoceramidase action toward cell-surface glycosphingolipids of erythrocytes, Eur. J. Biochem. 218: 645–649.PubMedCrossRefGoogle Scholar
  60. Iwamori, M., and Nagai, Y., 1979, Ganglioside composition of brain in Tay—Sachs disease. Increased amounts of GD2 and N-acetylgalactosaminyl GD1a gangliosides, J. Neurochem. 32: 767–777.PubMedCrossRefGoogle Scholar
  61. Iwamori, M., and Nagai, Y., 1981, Comparative study on ganglioside compositions of various rabbit tissues. Tissue-specificity in ganglioside molecular species of rabbit thymus, Biochim. Biophys. Acta 665: 214–220.PubMedCrossRefGoogle Scholar
  62. Iwamori, M., Harpin, M. L., Lachapelle, F., and Baumann, N., 1985, Brain gangliosides of quaking and Shiverer mutants: Qualitative and quantitative changes of monosialogangliosides in quaking brain, J. Neurochem. 45: 73–78.PubMedCrossRefGoogle Scholar
  63. Iwamori, M., Noguchi, M., Yamamoto, T., Yago, M., Nozawa, S., and Nagai, Y., 1988, Selective terminal a2–3 and a2–6 sialylation of glycosphingolipids with lacto-series type 1 and 2 chains in human meconium, FEBS Lett. 233: 134–138.PubMedCrossRefGoogle Scholar
  64. Jacques, L. W., Riesco, B. F., and Weltner, W., 1980, NMR spectroscopy and calcium binding of sialic acids: N-glycolylneuraminic acid and periodate-oxidized N-acetylneuraminic acid, Carbohydr. Res. 83: 21–32.CrossRefGoogle Scholar
  65. Jolivet-Reynaud, C., and Alouf, J. E., 1983, Binding of Clostridium perfringens 125 1-labeled 8-toxin to erythrocytes, J. Biol. Chem. 258: 1871–1877.PubMedGoogle Scholar
  66. Jolivet-Reynaud, C., Estrade, J., West, L. A., Alouf, J. E., and Chedid, L., 1993, Targeting of GM2-bearing tumor cells with the cytolytic Clostridium perfringens 8 toxin, Anticancer Drugs 4: 65–75.PubMedCrossRefGoogle Scholar
  67. Kanda, S., Inoue, K., Nojima, S., Utsumi, H., and Wiegandt, H., 1982, Incorporation of spin labeled ganglioside analogues into cell and liposomal membranes, J. Biochem. 91: 1707–1718.PubMedGoogle Scholar
  68. Kannagi, R., Nudelman, E., and Hakomori, S., 1982, Possible role of ceramide in defining structure and function of membrane glycolipids, Proc. Natl. Acad. Sci. USA 79: 3470–3474.PubMedCrossRefGoogle Scholar
  69. Karlsson, K. A., 1970, Sphingolipid long chain bases, Lipids 5: 878–891.PubMedCrossRefGoogle Scholar
  70. Karlsson, K.-A., 1989, Animal glycosphingolipids as membrane attachment sites for bacteria, Annu. Rev. Biochem. 58: 309–350.PubMedCrossRefGoogle Scholar
  71. Kato, I., and Naiki, M., 1976, Ganglioside and rabbit erythrocyte membrane receptor for Staphylococcal alpha-toxin, Infect. Immun. 13: 289–291.PubMedGoogle Scholar
  72. Kawashima, I., Ozawa, H., Kotani, M., Suzuki, M., Kawano, T., Gomibuchi, M., and Tai, T., 1993, Characterization of ganglioside expression in human melanoma cells: Immunological and biochemical analysis, J. Biochem. 114: 186–193.PubMedGoogle Scholar
  73. Kawashima, I., Kotani, M., Ozawa, H., Suzuki, M., and Tai, T., 1994, Generation of monoclonal antibodies specific for ganglioside lactones: Evidence of the expression of lacatone on human melanoma cells, Int. J. Cancer 58: 263–268.PubMedCrossRefGoogle Scholar
  74. Kiguchi, K., Chubb, C.B.H., and Huberman, E., 1990, Glycosphingolipid patterns of peripheral blood lymphocytes, monocytes and granulocytes are cell specific, J. Biochem. 107: 8–16.PubMedGoogle Scholar
  75. Kimhi, Y., Palfrey, C., Spector, I., Barak, Y., and Littauer, V. Z., 1976, Maturation of neuroblastoma cells in the presence of dimethylsulfoxide, Proc. Natl. Acad. Sci. USA 73: 462–466.PubMedCrossRefGoogle Scholar
  76. Kitagawa, S., Nojiri, H., Nakamura, M., Gallagher, R. E., and Saito, M., 1989, Human myelogenous leukemia cell line HL-60 cells resistant to differentiation induction by retinoic acid, J. Biol. Chem. 264: 16149–16154.PubMedGoogle Scholar
  77. Kitajima, K., Inoue, Y., and Inoue, S., 1986, Polysialoglycoproteins of Salmonidae fish eggs: Complete structure of 200-kDa polysialoglycoprotein from the unfertilized eggs of rainbow trout (Salmo gairdneri), J. Biol. Chem. 261: 5262–5269.PubMedGoogle Scholar
  78. Kochetkov, N. K., and Smirnova, G. P., 1983, A disialoglycolipid with two sialic acid residues located in the inner part of the oligosaccharide chain from hepatopancreas of the starfish Patina pectiria pectinifera, Biochim. Biophys. Acta 759: 192–198.CrossRefGoogle Scholar
  79. Kojima, S., Kurosawa, N., Nishi, T, Hanai, N., and Tsuji, S., 1994, Induction of cholinergic differentiation with neurite sprouting by de novo biosynthesis and expression of GD3 and b-series gangliosides in Neuro 2a cells, J. Biol. Chem. 269: 30451–30456.PubMedGoogle Scholar
  80. Komai, K., Kaplan, M., and Peeples, M. E., 1988, The Vero cell receptor for the hepatitis B virus small S protein is a sialogylcoprotein, Virology 163: 629–634.PubMedCrossRefGoogle Scholar
  81. Korhonen, T. K., Baisanen-Rheu, V., Rhen, M., Pere, A., Parkkinen, A., and Finne, J., 1984, Escherichia coli fimbriae recognizing sialyl galactosides, J. Bacteriol. 159: 762–766.Google Scholar
  82. Kotani, M., Ozawa, H., Kawashima, I., Ando, S., and Tai, T., 1992, Generation of one set of monoclonal antibodies specific for a-pathway ganglio-series gangliosides, Biochim. Biophys. Acta 1117: 97–103.PubMedCrossRefGoogle Scholar
  83. Kotani, M., Kawashima, I., Ozawa, H., Terashima, T., and Tai, T., 1993, Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies, Glycobiology 3: 137–146.PubMedCrossRefGoogle Scholar
  84. Kotani, M., Hosoya, H., Kubo, H., Itoh, K., Sakuraba, H., Kusubata, M., Inagaki, M., Yazaki, K., Suzuki, Y., and Tai, T., 1994, Evidence for direct binding of intracellularly distributed ganglioside GM2 to isolated vimentin intermediate filaments in normal and Tay—Sachs disease human fibroblasts, Cell Struct. Funct. 19: 81–87.PubMedCrossRefGoogle Scholar
  85. Kracun, I., Rosner, H., Cosovic, C., and Stavljenic, A., 1984, Topographical atlas of the gangliosides of the adult human brain, J. Neurochem. 43: 979–989.PubMedCrossRefGoogle Scholar
  86. Kusunoki, S., Chiba, A., Hirabayashi, Y., Irie, F., Kotani, M., Kawashima, I., Tai, T., and Nagai, Y., 1993, Generation of a monoclonal antibody specific for a new class of minor ganglioside antigens, GQlba and GTlaa: its binding to dorsal and lateral horn of human thoracic cord, Brain Research 623: 83–88.PubMedCrossRefGoogle Scholar
  87. Kyogashima, M., Ginsberg, V., and Krivan, H. C., 1989, Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl GM3 found in piglet small intestine, Arch. Biochem. Biophys. 270: 391–397.Google Scholar
  88. Ledeen, R. W., 1984, Biology of gangliosides, neuritogenic and neurotrophic properties, J. Neurosci. Res. 12: 147–159.PubMedCrossRefGoogle Scholar
  89. Levery, S. B., Roberts, C. E., Salyan, M.E.K., Bouchon, B., and Hakomori, S., 1990, Strategies for characterization of ganglioside inner esters. II. Gas chromatography/mass spectrometry, Biomed. Environ. Mass Spectrosc. 19: 311–318.CrossRefGoogle Scholar
  90. Levine, J. M., Beasley, L., and Stallcup, W. B., 1984, The D1.1 antigen: A cell surface marker for germinal cells of the central nervous system, J. Neurosci. 4: 820–831.PubMedGoogle Scholar
  91. Li, S.-C., DeGasperi, R., Muldrey, J. E., and Li, Y.-T., 1986, A unique glycosphingolipid-splitting enzyme (ceramide-glycanase from leech) cleaves the linkage between the oligosaccharide and the ceramide, Biochem. Biophys. Res. Commun. 141: 346–352.PubMedCrossRefGoogle Scholar
  92. Lipsky, N. G., and Pagano, R. E., 1985, Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: Endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi en route to the plasma membrane, J. Cell Biol. 100: 27–34.PubMedCrossRefGoogle Scholar
  93. Mahadik, S. P., and Karpiak, S. K., 1988, Gangliosides in treatment of neural injury and disease, Drug. Dev. Res. 15: 337–360.CrossRefGoogle Scholar
  94. Markwell, M. A., Svennerholm, L., and Paulson, J. C., 1981, Specific gangliosides as host cell receptors for Sendai virus, Proc. Natl. Acad. Sci. USA 78: 5406–5410.PubMedCrossRefGoogle Scholar
  95. Markwell, M. A., Moss, J., Horn, B. E., Fishman, P. H., and Svennerholm, L., 1986, Expression of gangliosides as receptors at the cell surface controls. Infection of NCTC2071 cells by Sendai virus, Virology 155: 356–364.PubMedCrossRefGoogle Scholar
  96. Masserini, M., and Freire, E., 1987, Kinetics of ganglioside transfer between liposomal and synaptosomal membranes, Biochemistry 26: 237–242.PubMedCrossRefGoogle Scholar
  97. Matta, S. G., Yorke, G., and Roisen, F. J., 1986, Neuritogenic and metabolic effects of individual gangliosides and their interaction with nerve growth factor in cultures of neuroblastoma and pheochromocytoma, Dev. Brain Res. 27: 243–252.CrossRefGoogle Scholar
  98. Merrill, A. H., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., and Kinkade, J. M., 1986, Inhibition of phorobol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long chain bases, J. Biol. Chem. 261: 12610–12615.PubMedGoogle Scholar
  99. Merrill, A. H., Wang, E., and Mullins, R. E., 1988, Kinetics of long chain (sphingoid) base biosynthesis in intact LM cells: Effects of varying the extracellular concentration of serine and fatty acid precursors of this pathway, Biochemistry 27: 340–345.PubMedCrossRefGoogle Scholar
  100. Momoi, T., and Yokota, J., 1983, Alterations of glycolipid of human leukemia cell line HL-60 during differentiation, J. Natl. Cancer Inst. 70: 229–236.PubMedGoogle Scholar
  101. Momoi, T., Shinmoto, M., Kasuya, J., Senoo, H., and Suzuki, Y., 1986, Activation of CMPN-acetylneuraminic acid:lactosylceramide sialyltransferase during the differentiation of HL-60 cells induced by 12–0-tetradecanoyl phorbol-13-acetate, J. Biol. Chem. 261: 16270–16273.PubMedGoogle Scholar
  102. Morell, A. G., Gregoriadis, G., and Scheinberg, I. H., 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461–1467.PubMedGoogle Scholar
  103. Morita, A., Tsao, D., and Kim, Y. S., 1980, Identification of cholera toxin binding glycoprotein in rat intestinal microvillus membranes, J. Biol. Chem. 255: 2549–2553.PubMedGoogle Scholar
  104. Mraz, M., Schwarzmann, G., Sattler, J., Seeman, B., Momoi, T., and Wiegandt, H., 1980, Aggregate formation of gangliosides at low concentrations in aqueous media, Hoppe-Seyler’s Z. Physiol. Chem. 361: 177–185.PubMedCrossRefGoogle Scholar
  105. Muramoto, K., Kobayashi, K., Nakanishi, S., Matsuda, Y., and Kuroda, Y., 1988, Functional synapse formation between cultured neurons of rat cerebral cortex: Block by a protein kinase inhibitor which does not permeate the cell membrane, Proc. Jpn. Acad. Ser. B 64: 319–322.CrossRefGoogle Scholar
  106. Muramoto, K., Kawahara, M., Kobayashi, K., Ito, M., Yamagata, T., and Kuroda, Y., 1994, Endoglycoceramidase treatment inhibits synchronous oscillations of intercellular Cat+ in cultured cortical neurons, Biochem. Biophys. Res. Commun. 202: 398–402.PubMedCrossRefGoogle Scholar
  107. Nagai, Y., and Tsuji, S., 1988, Cell biological significance of gangliosides in neural differentiation and development: Critique and proposals, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects, Fidia Research Series, Vol. 14, ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press/Springer-Verlag, Padova/Berlin, pp. 329–350.Google Scholar
  108. Nagai, Y., and Tsuji, S., 1994, Significance of ganglioside-mediated glycosignal transduction in neuronal differentiation and development, Prog. Brain Res. 101: 119–126.PubMedCrossRefGoogle Scholar
  109. Nagai, Y., Momoi, T., Saito, M., Mitsuzawa, E., and Ohtani, S., 1976, Ganglioside syndrome, a new autoimmune neurologic disorder, experimentally induced with brain gangliosides, Neurosci. Lett. 2: 107–111.PubMedCrossRefGoogle Scholar
  110. Nagai, Y., Uchida, T., Takeda, S., and Ikuta, F., 1978, Restoration of activity for induction of experimental allergic peripheral neuritis by a combination of myelin basic protein P2 and gangliosides from peripheral nerve, Neurosci. Lett. 8: 247–254.PubMedCrossRefGoogle Scholar
  111. Nagai, Y., Ikuta, F., and Nagai, Y., 1980a, Neuropathological comparative studies on experimental allergic neuritis (EAN) induced in rabbits by P2 protein—ganglioside complexes, Jpn. J. Exp. Med. 50: 453–462.PubMedGoogle Scholar
  112. Nagai, Y., Sakakibara, K., and Uchida, T., 1980b, Immunomodulatory roles of gangliosides in EAE and EAN, in: Search for the Cancer of Multiple Sclerosis and Other Chronic Diseases of Central Nervous System, ( A. Boese, ed.), Verlag Chemie, Weinheim, pp. 127–138.Google Scholar
  113. Nagashima, K., Nakanishi, S., and Matsuda, Y., 1991, Inhibition of nerve growth factor-induced neurite outgrowth of PC12 cells by a protein kinase inhibitor which does not permeate the cell membrane, FEBS Lett. 293: 119–123.PubMedCrossRefGoogle Scholar
  114. Nakajima, J., Tsuji, S., and Nagai, Y., 1986, Bioactive gangliosides: Analysis of functional structures of the tetrasialoganglioside GQIb which promotes neurite outgrowth, Biochim. Biophys. Acta 876: 65–71.PubMedCrossRefGoogle Scholar
  115. Nakamura, M., Ogino, H., Nojiri, H., Kitagawa, S., and Saito, M., 1989, Characteristic incorporation of ganglioside GM3, which induces monocytic differentiation in human myelogenous leukemia HL-60 cells, Biochem. Biophys. Res. Commun. 161: 782–789.PubMedCrossRefGoogle Scholar
  116. Nakamura, K., Hashimoto, Y., Moriwaki, K., Yamakawa, T., and Suzuki, A., 1990a, Genetic regulation of GM4 (NeuAc) expression in mouse erythrocytes, J. Biochem. 107: 3–7PubMedGoogle Scholar
  117. Nakamura, M., Kirito, K., Yamamori, J., Nojiri, H., and Saito, M., 1990b, Gangliosides GM3 can induce megakaryocytoid differentiation of human leukemia cell, Cancer Res. 51: 1940–1945.Google Scholar
  118. Nakamura, M., Tsunoda, A., Sakoe, K., Gu, J., Nishikawa, A., Taniguchi, N., and Saito, M., 1992, Total metabolic flow of glycosphingolipid biosynthesis is regulated by UDP-G1cNAc: lactosylceramide 01–3N-acetylglucosaminyltransferase in human hematopoietic cell line HL-60 during differentiation, J. Biol. Chem. 267: 23507–23514.PubMedGoogle Scholar
  119. Nara, K., Watanabe, Y., Maruyama, K., Kasahara, K., Nagai, Y., and Sanai, Y., 1994, Expression cloning of a CMP-NeuAc:NeuAca2–3Ga1ß1–4GIcβ1–4Glcβ1-l’Cer a2,8-sialyltransferase (GD3 synthase) from human melanoma cells, Proc. Natl. Acad. Sci. USA 91: 7952–7956.PubMedCrossRefGoogle Scholar
  120. Nohara, K., Suzuki, M., Inagaki, F., Ito, H., and Kaya, K., 1990, Identification of novel gangliosides containing lactosaminyl-GM1 structure from rat spleen, J. Biol. Chem. 265: 14335–14339.PubMedGoogle Scholar
  121. Nohara, K., Suzuki, M., Inagaki, F., Sano, T., and Kaya, K., 1992, A novel disialoganglioside in rat spleen lymphocytes, J. Biol. Chem. 267: 14982–14986.PubMedGoogle Scholar
  122. Nojiri, H., Takaku, H., Tetsuka, T., Motoyoshi, K., Miura, Y., and Saito, M., 1984, Characteristic expression of glycosphingolipid profiles in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60, Blood 64: 534–541.PubMedGoogle Scholar
  123. Nojiri, H., Takaku, F., Ohta, M., Miura, Y., and Saito, M., 1985, Changes in glycosphingolipid composition during differentiation of human leukemic granulocytes in chronic myelogenous leukemia compared with in vitro granulocytic differentiation of human promyelocytic leukemia cell line HL-60, Cancer Res. 45: 6100–6106.PubMedGoogle Scholar
  124. Nojiri, H., Takaku, F., Terui, Y., Miura, Y., and Saito, M., 1986, Ganglioside GM3: An acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937, Proc. Natl. Acad. Sci. USA 83: 782–786.PubMedCrossRefGoogle Scholar
  125. Nojiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y., and Saito, M., 1988, Neolactoseries gangliosides induce granulocytic differentiation of human leukemic cell line HL-60, J. Biol. Chem. 263: 7443–7446.PubMedGoogle Scholar
  126. Nudelman, E. D., Mandel, V., Levery, S. B., Kaizu, T., and Hakomori, S., 1987, A series of disialogangliosides with binary 2–3 sialosyl lactosamine structure defined by monoclonal antibody NVH2 are oncodevelopmentally regulated antigens, J. Biol. Chem. 264: 18719–18725.Google Scholar
  127. Obata, K., and Tanaka, H., 1988, Molecular differentiation of the otic vesicle and neural tube in the chick embryo demonstrated by monoclonal antibodies, Neurosci. Res. 6: 131–142.PubMedCrossRefGoogle Scholar
  128. Obata, K., Oide, M., and Handa, S., 1977, Effects of glycolipids on in vitro development of neuromuscular junction, Nature 266: 369–371.PubMedCrossRefGoogle Scholar
  129. Ochanda, J. O., Syuto, B., Ohishi, I., Naiki, M., and Kubo, S., 1986, Binding of Clostridium botulinum neurotoxin to gangliosides, J. Biochem. 100: 27–33.PubMedGoogle Scholar
  130. Ohsawa, T., and Nagai, Y., 1975, Immunological evidence for the localization of sialoglycosphingo- lipids at the cell surface of sea urchin spermatozoa, Biochim. Biophys. Acta 389: 69–83.CrossRefGoogle Scholar
  131. Okazaki, T., Bielawska, A., Bell, R. M., and Hannun, Y. A., 1990, Role of ceramides as a lipid mediator of 1a,25-dihydroxyvitamin D3-induced HL-60 cell differentiation, J. Biol. Chem. 265: 15823–15831.PubMedGoogle Scholar
  132. Ozawa, H., Kawashima, I., and Tai, T., 1992a, Generation of murine monoclonal antibodies specific for N-glycolylneuraminic acid-containing gangliosides. Arch. Biochem. Biophys. 294: 423–433.CrossRefGoogle Scholar
  133. Ozawa, H., Kotani, M., Kawashima, I., Numata, M., Ogawa, T., Terashima, T., and Tai, T., 1993, Generation of a monoclonal antibody specific for ganglioside GM4: Evidence for GM4 expression on astrocytes in Chicken cerebellum, J. Biochem. 114: 5–8.PubMedGoogle Scholar
  134. Pohlentz, G., Klein, D., Schwarzmann, G., Schmitz, D., and Sandhoff, K., 1988, Both GA2, GM2 and GD2 syntheses and GMIb, GDIa and GTIb syntheses are single enzymes in Golgi vesicles from rat liver, Proc. Natl. Acad. Sci. USA 85: 7044–7048.PubMedCrossRefGoogle Scholar
  135. Polley, M. J., Phillips, M. L., Wayer, E., Nudelman, A., Singhal, K., Hakomori, S., and Paulson, J. C., 1991, CD62 and endothelial cell leukocyte adhesion molecule 1(ELAM-1) recognize the same ligand, sialyl Lewis X, Proc. Natl. Acad. Sci. USA 88: 6224–6228.PubMedCrossRefGoogle Scholar
  136. Ponce, R. H., Yanagimachi, R., Urch, U. A., Yamagata, T., and Ito, M., 1993, Retention of hamster oolema fusibility with spermatozoa after various enzyme treatments: A search for the molecules involved in sperm—egg fusion, Zygotes 1: 163–171.Google Scholar
  137. Prieto, P. A., and Smith, D. F., 1985, A new ganglioside in human meconium detected by antiserum against the human milk sialyl oligosaccharide, LS-tetrasaccharide b, Arch. Biochem. Biophys. 241: 281–289.PubMedCrossRefGoogle Scholar
  138. Purpura, D. P., and Suzuki, K., 1976, Distortion of neuronal geometry and formation of abberant synapses in neuronal storage disease, Brain Res. 116: 1–21.PubMedCrossRefGoogle Scholar
  139. Purpura, D. P., and Baker, H., 1977, Meganeurites and other aberrant processes of human neurons in feline GM1 gangliosidosis, Brain Res. 143: 13–26.CrossRefGoogle Scholar
  140. Radin, N., Shayman, J. E., and Inokuchi, J., 1993, Metabolic effects of inhibiting glycosylceramide synthesis with PDMP and other substances, Adv. Lipid Res. 26: 183–213.PubMedGoogle Scholar
  141. Rahmann, H., 1985, Gedachtnisbilgung durch molekulare Bahnung in Synapsen mit Gangliosiden, Funkt. Biol. Med. 4: 249–261.Google Scholar
  142. Riboni, L., Sonnino, S., Acquotti, D., Malesci, A., Ghidoni, R., Egge, H., Mingrino, S., and Tettamanti, G., 1986, Natural occurrence of gangliosides lactones: Isolation and characterization of GDIb inner ester from adult human brain, J. Biol. Chem. 261, 8514–8519.PubMedGoogle Scholar
  143. Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, H. D., 1986, Influenza C virus uses 9–0acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells, J. Biol. Chem. 261: 5947–5951.PubMedGoogle Scholar
  144. Roisen, F. J., Bartfeld, H., Nagele, R., and Yorke, G., 1981, Ganglioside stimulation of axonal sprouting in vitro, Science 214: 577–578.PubMedCrossRefGoogle Scholar
  145. Rösner, H., Rahmann, H., Reuter, G., Schauer, R., Peter-Katalinic, J., and Egge, H., 1985a, Mass spectrometric identification of the pentasialoganglioside GP1c of embryonic chicken brain, Biol. Chem. Hoppe-Seyler 366: 1177–1181.PubMedCrossRefGoogle Scholar
  146. Rösner, H., Al-Aqtum, M., and Henke-Fahle, S., 19856, Developmental expression of GD3 and polysialogangliosides in embryonic chicken nervous tissue reacting with monoclonal antiganglioside antibodies, Dev. Brain Res. 18: 85–95.Google Scholar
  147. Roth, J., Kempf, A., Reuter, G., Schauer, R., and Gehring, W. J., 1992, Occurrence of sialic acids in Drosophila melanogaster, Science 256: 673–675.PubMedCrossRefGoogle Scholar
  148. Rovera, G., O’Brien, T. G., and Diamond, L., 1979, Induction of differentiation of human promyelocytic leukemia cells by tumor promoters, Science 204: 868–870.PubMedCrossRefGoogle Scholar
  149. Saito, M., Saito, M., and Rosenberg, A., 1984, Action of monensin, a monovalent cationophore, on cultured human fibroblast: Evidence that it induces high cellular accumulation of glucosyl- and lactosylceramide (gluco- and lactocerebroside), Biochemistry 23: 1043–1046.PubMedCrossRefGoogle Scholar
  150. Saito, M., Terui, Y., and Nojiri, H., 1985, An acidic glycosphingolipid, monosialoganglioside GM3 is a potent physiological inducer for monocytic differentiation of human promyelocytic leukemia cell line HL-60 cells, Biochem. Biophys. Res. Commun. 132: 223–231.PubMedCrossRefGoogle Scholar
  151. Saito, M., Nojiri, H., Ogino, H., Tao, A., Ogura, H., Itoh, M., Tomita, K., Ogawa, T., Nagai, Y., and Kitagawa, S., 1990, Synthetic sialyl glycolipids (sialo-cholesterol and sialo-diglyceride) induce granulocytic differentiation of human myelogenous leukemia cell line HL-60, FEBS Lett. 271: 85–88.PubMedCrossRefGoogle Scholar
  152. Saito, T., Natomi, H., Zhao, W., Okuzumi, K., Sugano, K., Iwamori, M., and Nagai, Y., 1991, Identification of glycolipid receptors for Helicobacter pylori by TLC-immunostaining, FEBS Lett. 282: 385–387.CrossRefGoogle Scholar
  153. Sakaizumi, M., Hashimoto, Y., Suzuki, A., Yamakawa, T., Kiuchi, Y., and Moriwaki, K., 1988, The locus controlling liver GM1 (NeuGc) expression is mapped 1 cM centromeric to H-2K, Immunogenetics 27: 57–60.PubMedCrossRefGoogle Scholar
  154. Sakakibara, K., Momoi, T., Uchida, T., and Nagai, Y., 1981a, Evidence for association of glycosphingolipid with a colchicine-sensitive microtubule-like cytoskeletal structure of cultured cells, Nature 239: 76–79.CrossRefGoogle Scholar
  155. Sakakibara, K., Iwamori, M., Uchida, T., and Nagai, Y., 1981b, Immunohistochemical localization of galactocerebroside in kidney, liver and lung of golden hamster, Experientia 37: 712–714.PubMedCrossRefGoogle Scholar
  156. Sakuraba, H., Itoh, K., Kotani, M., Tai, T., Yamada, H., Kurosawa, K., Kuroki, Y., Suzuki, H., Utsunomiya, T., Inoue, H., and Suzuki, Y., 1993, Prenatal diagnosis of GM2-gangliosidosis: Immunofluorescence analysis of GM2 in cultured amniocytes by confocal laser scanning microscopy, Brain Dev. 15: 278–282.PubMedCrossRefGoogle Scholar
  157. Saleh, M. N., Khazaeli, M. B., Wheeler, R. H., Dropcho, E., Liu, T. P., Urist, M., Miller, D. M., Lawson, S., Dixon, P., Russell, C. H., and Lobuglio, C., 1992, Phase 1-trial of the murine monoclonal anti-GD2 antibody 14G2a in metastatic melanoma, Cancer Res. 52: 4342–4347.PubMedGoogle Scholar
  158. Sariola, H., Aufderheide, E., Bernhard, H., Henke-Fahle, S., Dippold, W., and Ekbolm, P., 1988, Antibodies to cell surface ganglioside GD3 perturb inductive epithelial—mesenchymal interactions, Cell 54: 235–245.PubMedCrossRefGoogle Scholar
  159. Sasaki, K., Kurata, K., Kojima, N., Kurosawa, N., Ohta, S., Hanai, N., Tsuji, S., and Nishi, T., 1994, Expression cloning of a GM3-specific a2,8-sialyltransferase (GD3 synthase), J. Biol. Chem. 269 (22): 15950–15956.PubMedGoogle Scholar
  160. Schengrund, C., 1989, The role of gangliosides in neural differentiation and repair: A perspective, Brain Res. Bull. 24: 131–141.CrossRefGoogle Scholar
  161. Schwartz, M., and Spirman, N., 1982, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79: 6080–6083.PubMedCrossRefGoogle Scholar
  162. Seifert, W., 1981, Gangliosides in Nerve Cell Cultures, Raven Press, New York, pp. 99–117.Google Scholar
  163. Sekine, M., Nakamura, K., Suzuki, M., Inagaki, F., Yamakawa, T., and Suzuki, A., 1988, A single autosomal gene controlling the expression of the extended globoglycolipid carrying SSEA-1 determinant is responsible for the expression of two extended globogangliosides, J. Biochem. 103: 722–729.PubMedGoogle Scholar
  164. Sekine, M., Sakaizumi, M., Moriwaki, K., Yamakawa, T., and Suzuki, A., 1989, Two genes controlling the expression of extended globoglycolipids in mouse kidney are closely linked to each other on chromosome 19, J. Biochem. 105: 680–683.PubMedGoogle Scholar
  165. Seybold, U., and Rahmann, H., 1985, Brain gangliosides with different types of postnatal development (nidifugous and nidicolous type), Dev. Brain Res. 17: 201–208.CrossRefGoogle Scholar
  166. Seyfried, T., 1987, Ganglioside abnormalities associated with failed neural differentiation in a T-locus mutant mouse embryo, Dev. Biol. 123: 286–291.PubMedCrossRefGoogle Scholar
  167. Seyfried, T. N., Yu, R. K., and Miyazawa, N., 1982, Differential cellular enrichment of gangliosides in the mouse cerebellum: Analysis using neurological mutants, J. Neurochem. 38: 551–559.PubMedCrossRefGoogle Scholar
  168. Sillerud, L. O., Prestegard, J. H., Yu, R. K., Schafer, D. E., and Konigsberg, W. H., 1978, Assignment of the ‘3C nuclear magnetic resonance spectrum of aqueous ganglioside GM1 micelles, Biochemistry 17: 2619–2628.PubMedCrossRefGoogle Scholar
  169. Sjoberg, E. R., Manzi, A. E., Khoo, K. H., Dell, A., and Varki, A., 1992, Structure that GD2 is an acceptor for ganglioside 0-acetyltransferase in human melanoma cells, J. Biol. Chem. 267: 16200–16211.PubMedGoogle Scholar
  170. Skaper, S. D., Leon, A., and Toffano, G., 1989, Ganglioside function in the development and repair of the nervous system, Mol. Neurobiol. 3: 173–199.PubMedCrossRefGoogle Scholar
  171. Smirnova, G. P., Kochetkov, N. K., and Sadovskaya, V. L., 1989, Gangliosides of the starfish Apelastevias japonica, evidence for a new linkage between two N-glycolylneuraminic acid residues through the hydroxyl group of the glycolic acid residue, Biochim. Biophys. Acta 920: 47–55.Google Scholar
  172. Song, Y., Kitajima, K., Inoue, S., and Inoue, Y., 1991, Isolation and structural elucidation of a novel type of ganglioside. Deaminated neuraminic acid (KDN)-containing glycosphingolipids from rainbow trout sperm, J. Biol. Chem. 266: 21929–21935.PubMedGoogle Scholar
  173. Stallcup, W. B., Beasley, L., and Levine, J., 1983, Cell surface molecules that characterize different stages in the development of cerebellar interneurons, Cold Spring Harbor Symp. Quant. Biol. 48: 761–774.PubMedCrossRefGoogle Scholar
  174. Stevens, A., Weller, M., and Wietholter, H., 1993, A characteristic ganglioside antibody pattern in the CSF of patients with amyotrophic lateral sclerosis, J. Neurol. Neurosurg. Psychiat. 56: 361–364.PubMedCrossRefGoogle Scholar
  175. Stevens, V. L., Winton, E. F., Smith, E. E., Owens, N. E., Kinkade, J. M., and Merrill, A. F., 1989, Differential effects of long chain (sphingoid) bases on the monocytic differentiation of human leukemia (HL-60) cells induced by phorbol esters, la,25-dihydroxyvitamin D3 or ganglioside GM3, Cancer Res. 49: 3229–3234.PubMedGoogle Scholar
  176. Stromberg, N., and Karlsson, K.-A., 1990, Characterization of the binding of Actinomyces naeslundii (ATCC 12104) andActinomyces viscosuo (ATCC 19246) to glycosphingolipids using a solid-phase overlay approach, J. Biol. Chem. 265: 11251–11258.PubMedGoogle Scholar
  177. Stromberg, N., Deal, C., Nyberg, G., Normaek, S., So, M., and Karlsson, K.-A., 1988, Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA 85: 4902–4906.PubMedCrossRefGoogle Scholar
  178. Stults, C. L., Sweeley, C. C., and Macher, B. A., 1989, Glycosphingolipids: Structure, biological source and properties, Methods Enzymol. 179: 167–214.PubMedCrossRefGoogle Scholar
  179. Sugita, M., 1979, Studies on the glycosphingolipids of the starfish, Asternia pectinifera. III. Isolation and structural studies of two novel gangliosides containing internal sialic acid residues, J. Biochem. 86: 765–772.PubMedGoogle Scholar
  180. Sugita, M., Iwasaki, Y., and Hori, T., 1982, Studies on glycosphingolipids of larvae of the green bottle fly, Lusilia caeser. II. Isolation and structural studies on three glycosphingolipids with novel sugar sequences, J. Biochem. 92: 881–887.PubMedGoogle Scholar
  181. Suzuki, Y., Suzuki, T., Matsunaga, M., and Matsumoto, M., 1985, Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for haemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus, J. Biochem. 97: 1189–1199.PubMedGoogle Scholar
  182. Suzuki, Y., Nagao, Y., Kato, H., Matsumoto, M., Nerome, K., Nakajima, K., and Nobusawa, E., 1986, Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection, J. Biol. Chem. 261: 17057–17061.PubMedGoogle Scholar
  183. Suzuki, Y., Nagao, Y., Kato, H., Suzuki, T., Matsumoto, M., and Maruyama, J., 1987, The hemagglutinins of the human influenza viruses A and B recognize different receptor microdomains, Biochim. Biophys. Acta 903: 417–424.PubMedCrossRefGoogle Scholar
  184. Svennerholm, L., Bostrom, K., Fredman, P., Mansson, J. E., Rosengren, B., and Rynmark, B. M., 1989, Human brain gangliosides: Developmental changes from early fetal stage to advanced age, Biochim. Biophys. Acta 1005: 109–117.PubMedCrossRefGoogle Scholar
  185. Tai, T., Kawashima, I., Tada, N., and Ikegami, S., 1988, Different reactivities of monoclonal antibodies to ganglioside lactones, Biochim. Biophys. Acta 958: 134–138.PubMedCrossRefGoogle Scholar
  186. Takamizawa, K., Iwamori, M., Kozaki, S., Sakaguchi, G., Tanaka, R., Takayama, H., and Nagai, Y., 1986, TLC-immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids, FEBS Lett. 201: 229–232.PubMedCrossRefGoogle Scholar
  187. Takeda, Y., Takeda, T., Honda, T., and Miwatani, T., 1976, Inactivation of the biological activities of the thermostable direct hemolysin of Vivrio parahaemolyticus by ganglioside GT1, Infect. Immun. 14: 1–5.PubMedGoogle Scholar
  188. Taki, T., Rokukawa, C., Kasama, T., Kon, K., Ando, S., Abe, T., and Handa, S., 1992a, Human meconium gangliosides. Characterization of a novel 1-type ganglioside with the NeuAca2–6Gal, J. Biol. Chem. 267: 11811–11817.PubMedGoogle Scholar
  189. Taki, T., Rokukawa, C., Kasama, T., and Handa, S., 1992b, Human hepatoma gangliosides. Occurrence of a novel type glycolipid with NeuAca2–6Gal structure, Cancer Res. 52: 4805–4811.PubMedGoogle Scholar
  190. Tettamanti, G., and Riboni, L., 1993, Gangliosides and modulation of the function of neural cells, Adv. Lipid Res. 25: 235–267.PubMedGoogle Scholar
  191. Thorn, J. J., Levery, S. B., Salyan, M.E.K., Stroud, M. R., Cedergren, B., Nilsson, B., Hakomori, S., and Clausen, H., 1992, Structural characterization of X2glycosphingolipid. Its extended form and its sialosyl derivatives—Accumulation associated with the rare blood group phenotype, Biochemistry 31: 6509–6517.PubMedCrossRefGoogle Scholar
  192. Toffano, G., Benvegnu, D., Bonetti, A. C., Facci, L., Leon, A., Orlando, P., Ghidoni, R., and Tettamanti, G., 1980, Interactions of GM1 ganglioside with crude rat brain neuronal membranes, J. Neurochem. 35: 861–866.PubMedCrossRefGoogle Scholar
  193. Trinchera, M., and Ghidoni, R., 1989, Two glycosphingolipid sialyltransferases are localized in different sub-Golgi compartments in rat liver, J. Biol. Chem. 264: 15766–15769.PubMedGoogle Scholar
  194. Tsuji, S., Arita, M., and Nagai, Y., 1983, GQIb. A bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in two neuroblastoma cell lines, J. Biochem. 94: 303–306.PubMedGoogle Scholar
  195. Tsuji, S., Yamashita, T., and Nagai, Y., 1988, A novel, carbohydrate signal-mediated cell surface protein phosphorylation: Ganglioside GQIb stimulates ecto-protein kinase activity on the cell surface of a human neuroblastoma cell line, GOTO, J. Biochem. 104: 498–503.PubMedGoogle Scholar
  196. Tsuji, S., Yamashita, T., Tanaka, M., and Nagai, Y., 1988, Synthetic sialylcompounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro 2a), J. Neurochem. 50: 414–423.PubMedCrossRefGoogle Scholar
  197. Tsuji, S., Yamashita, T., Matsuda, Y., and Nagai, Y., 1992, A novel glycosignaling system: GQ1bdependent neuritogenesis of human neuroblastoma cell line, goto, is closely associated with GQ1b-dependent ecto-type protein phosphorylation, Neurochem. Int. 21 (4): 549–554.PubMedCrossRefGoogle Scholar
  198. Ulrich-Bott, B., and Wiegandt, H., 1984, Micellar properties of glycosphingolipids in aqueous media, J. Lipid Res. 25: 1233–1245.PubMedGoogle Scholar
  199. Van Echten, G., and Sandhoff, K., 1989, Modulation of ganglioside biosynthesis in primary cultured neurons, J. Neurochem. 52: 207–214.PubMedCrossRefGoogle Scholar
  200. Van Echten, G., Iber, H., Stotz, H., Takasuki, A., and Sandhoff, K., 1990, Uncoupling of ganglioside biosynthesis by brefeldin A, Eur. J. Biochem. 51: 135–139.Google Scholar
  201. Van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera and serotonin, Nature 249: 415–417.CrossRefGoogle Scholar
  202. Varki, A., Hooshmand, F., Diaz, S., Varki, N. M., and Hedrick, S. M., 1991, Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9–0-acetyl esterase, Cell 65: 65–74.PubMedCrossRefGoogle Scholar
  203. Weiss, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J., and Wiley, D. C., 1988, Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid, Nature 333: 426431.Google Scholar
  204. Wiegandt, H., 1985, Gangliosides, Elsevier, Amsterdam, pp. 199–260.Google Scholar
  205. Xia, X., Gu, X., Santorelli, A. C., and Yu, R. K., 1989, Effects of inducers of differentiation on protein kinase C and CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase activities of HL-60 leukemia cells, J. Lipid Res. 30: 181–188.PubMedGoogle Scholar
  206. Yamamoto, H., Tsuji, S., and Nagai, Y., 1990, Tetrasialoganglioside GQlb reactive monoclonal antibodies: Their characterization and application of GQlb in some cell lines of neuronal and adrenal origin, J. Neurochem. 54: 513–517.PubMedCrossRefGoogle Scholar
  207. Yamashita, T., Tsuji, S., and Nagai, Y., 1991, Sialyl cholesterol is translocated into cell nuclei and it promotes neurite outgrowth in a mouse neuroblastoma cell line, Glycobiology 1: 149–154.PubMedCrossRefGoogle Scholar
  208. Yamato, K., and Yoshida, A., 1992, Biosynthesis of lactosylceramide and paragloboside by human lactose synthase A protein, J. Biochem. 92: 1123–1127.Google Scholar
  209. Yohe, H. C., Roark, D. E., and Rosenberg, A., 1976, C20-sphingosine as a determining factor in aggregation of gangliosides, J. Biol. Chem. 251: 7083–7087.PubMedGoogle Scholar
  210. Yoshino, H., Miyatani, N., Saito, M., Ariga, T., Lugaresi, A., Latov, N., Kushi, Y., Kasama, T., and Yu, R. K., 1992, Isolated bovine spinal motorneurons have specific ganglioside antigens recognized by sera from patients with motor neuron disease and motor neuropathy, J. Neurochem. 59: 1681–1691.CrossRefGoogle Scholar
  211. Young, W. W., Lutz, M. S., Mills, S. E., and Lechler-Osborn, E., 1990, Use of Brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase in trans to the Brefeldin A block, Proc. Natl. Acad. Sci. USA 87: 6838–6842.PubMedCrossRefGoogle Scholar
  212. Yu, R. K., and Igbal, K., 1979, Sialosylgalactosyl ceramides as a specific marker for human myelin and oligodendroglial perikarya: Gangliosides of human myelin, oligodendroglia and neurons, J. Neurochem. 32: 293–300.PubMedCrossRefGoogle Scholar
  213. Yu, R. K., Macala, L. J., Taki, T., Weinfeld, H., and Yu, F. S., 1988, Developmental changes in ganglioside composition and synthesis in embryonic rat brain, J. Neurochem. 50: 1825–1829.PubMedCrossRefGoogle Scholar
  214. Yuki, N., Handa, S., Taki, T., Kasama, T., Takahashi, M., Saito, K., and Miyatake, T., 1992, Cross-reactive antigen between nervous tissue and a bacterium elicits Guillain—Barré syndrome. Molecular mimicry between ganglioside GM 1 and liposaccharide from Penner’s serotype 19 of Campylobacter jejuni, Biomed. Res. 13: 451–453.Google Scholar
  215. Yuki, N., Taki, T., Kasama, T., Takahashi, M., Saito, K., Handa, S., and Miyatake, T., 1993, A bacterium lipopolysaccharide that elicits Guillain—Barré syndrome has a GMI ganglioside-like structure, J. Exp. Med. 178: 1771–1775.PubMedCrossRefGoogle Scholar
  216. Zheng, M. Z., Fang, H., Tsuruoka, T., Tsuji, T., Sasaki, T., and Hakomori, S., 1993, Regulatory role of GM3 ganglioside in a5131 integrin receptor for fibronectin mediated adhesion of FUA169 cells, J. Biol. Chem. 268: 2217–2222.PubMedGoogle Scholar
  217. Zhou, B., Li, X-C., Laine, R. A., Huang, R.T.C., and Li, Y.-T., 1989, Isolation and characterization of ceramide glycanase from the leech, Macrobdella decora, J. Biol. Chem. 264: 12272–12277.Google Scholar
  218. Zimmer, G., Reuter, G., and Schauer, R., 1992, Use of influenza C-virus for detection of 9–0acetylated sialic acid on immobilized glycoconjugates by esterase activity, Eur. J. Biochem. 204: 209–215.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Yoshitaka Nagai
    • 1
    • 2
  • Masao Iwamori
    • 3
  1. 1.Mitsubishi Kasei Institute of Life SciencesMachida City, TokyoJapan
  2. 2.Glycobiology Research Group, Frontier Research ProgramThe Institute of Physical and Chemical Research (Riken)Wako City, SaitamaJapan
  3. 3.Department of Biochemistry, Faculty of MedicineThe University of TokyoTokyoJapan

Personalised recommendations