Sialic Acid in Biochemical Pathology

  • Kunihiko Suzuki


Free sialic acid constitutes a relatively small proportion of the total tissue sialic acid pool. The bulk of sialic acid in the body exists in sialoglycoconjugate form bound to either glycoproteins or glycolipids. Many proteins are glycosylated by complex carbohydrate chains terminated by a sialic acid residue (see Chapter 5). Glycosphingolipids are group of complex lipids that contain a long-chain base, sphingosine, as the basic building block (see Chapter 6). In almost all naturally occurring sphingolipids, sphingosine is acylated by a long-chain fatty acid, forming N-acylsphingosine, or ceramide. A complex hydrophilic side chain, consisting of carbohydrate, sialic acid, and other constituents, is attached to the terminal hydroxyl group of sphingosine. Glycoproteins and glycolipids are characteristic integral constituents of the plasma membrane in vertebrates. Their composition varies in different cell types and in different developmental stages. The compositional pattern can be further altered by viral transformation and oncogenesis. No genetic pathological condition related to abnormality in either synthesis or degradation of sialic acid itself is known. However, a series of genetic disorders do exist with the underlying abnormalities affecting either transport of sialic acid across the lysosomal membrane or intralysosomal degradation of sialic acid-containing glycoproteins and glycolipids. The latter category includes disorders in which removal of sialic acid is specifically impaired, and those in which presence of sialic acid in the affected compounds is incidental. The scope of this chapter will be limited to genetically defined conditions in which alterations of sialic acid or sialic acid-containing compounds occur. Other aspects such as differentiation, infections, and oncogenesis are covered elsewhere in this volume. Table I lists the disorders that are included as the subjects of this chapter. For further detailed information on the biochemical aspects of these genetic disorders, the reader is referred to the recently published reference volume edited by Scriver et al. (1995).


Sialic Acid Infantile Form Sandhoff Disease Free Sialic Acid Infantile Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arpaia, E., Dumbrille-Ross, A., Maler, T., Neote, K., Tropak, M., Troxel, C., Stirling, J. S., Pitts, J. S., Bapat, B., Lamhonwah, A. M., Mahuran, D. J., Schuster, S. M., Clarke, J.T.R., Lowden, J. A., and Gravel, R. A., 1988, Identification of an altered splice site in Ashkenazi Tay—Sachs disease, Nature 333: 85–86.PubMedCrossRefGoogle Scholar
  2. Boustany, R.-M., Qian, W.-H., and Suzuki, K., 1993, Mutations in acid 3-galactosidase cause GM1-gangliosidosis in American patients, Am. J. Hum. Genet. 53: 881–888.PubMedGoogle Scholar
  3. Burg, J., Conzelmann, E., Sandhoff, K., Solomon, E., and Swallow, D. M., 1985, Mapping of the gene coding for the human GM2 activator protein to chromosome 5, Ann. Hum. Genet. 49: 41–45.PubMedCrossRefGoogle Scholar
  4. Chakraborty, S., Rafi, M. A., and Wenger, D. A., 1991, A point mutation in the acid beta-galactosidase cDNA sequence of 2 adult patients with GM1 gangliosidosis, Am. J. Hum. Genet. 49 (Suppl.): 95.Google Scholar
  5. Conzelmann, E., and Sandhoff, K., 1978, AB variant of infantile GM2 gangliosidosis: Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2, Proc. Natl. Acad. Sci. USA 75: 3979–3983.PubMedCrossRefGoogle Scholar
  6. d’Azzo, A., Hoogeveen, A., Reuser, A.J.J., Robinson, D., and Galjaard, H., 1982, Molecular defect in combined 3-galactosidase and neuraminidase deficiency in man, Proc. Natl. Acad. Sci. USA 79: 4535–4539.PubMedCrossRefGoogle Scholar
  7. de Baecque, C. M., Suzuki, K., Rapin, I., Johnson, A. B., Wethers, D. L., and Suzuki, K., 1975, GM2 gangliosidosis AB variant: Clinicopathological study of a case, Acta Neuropathol. 33: 207–226.PubMedCrossRefGoogle Scholar
  8. Derry, D. M., Fawcett, J. S., Andermann, F., and Wolfe, L. S., 1968, Late infantile systemic lipidosis: Major monosialo-gangliosidosis: Delineation of two types, Neurology 18: 340–348.PubMedCrossRefGoogle Scholar
  9. Dlott, B., d’Azzo, A., Quon, D.V.K., and Neufeld, E. F., 1990, Two mutations produce intron insertion in mRNA and elongated 3-subunit of human 3-hexosaminidase, J. Biol. Chem. 265: 17921–17927.PubMedGoogle Scholar
  10. Dos Santos, M. R., Tanaka, A., SA Miranda, M. C., Ribeiro, M. G., Maia, M., and Suzuki, K., 1991, GM2-gangliosidosis BI variant: Analysis of 3-hexosaminidase a gene mutations in eleven patients from a defined region in Portugal, Am. J. Hum. Genet. 49: 886–890.PubMedGoogle Scholar
  11. Fürst, W., and Sandhoff, K., 1992, Activator proteins and topology of lysosomal sphingolipid catabolism, Biochim. Biophys. Acta 1126: 1–16.PubMedCrossRefGoogle Scholar
  12. Galjaard, H., Hoogeveen, A., Kleijer, W., de Wit-Verbeek, H. A., Reuser, A.J.J., Ho, M. W., and Robinson, D., 1975, Genetic heterogeneity in GM1-gangliosidosis, Nature 257: 60–62.PubMedCrossRefGoogle Scholar
  13. Galjart, N. J., Gillemans, N., Harris, A., van der Horst, G.T.J., Verheijen, F. W., Galjaard, H., and d’Azzo, A., 1988, Expression of cDNA encoding the human “protective protein” associated with lysosomal beta-galactosidase and neuraminidase: Homology to yeast proteases, Cell 54: 755–764.PubMedCrossRefGoogle Scholar
  14. Galjart, N. J., Gillemans, N., Meijer, D., and d’Azzo, A., 1990, Mouse “protective protein”: cDNA cloning, sequence comparison and expression, J. Biol. Chem. 265: 4678–4684.PubMedGoogle Scholar
  15. Goldman, J. E., Katz, D., Rapin, I., Purpura, D. P., and Suzuki, K., 1981, GM1-gangliosidosis presenting as dystonia. I. Clinical and pathological features, Ann. Neurol. 9: 465–475.PubMedCrossRefGoogle Scholar
  16. Gonatas, N. K., and Gonatas, J., 1965, Ultrastructural and biochemical observation on a case of systemic late infantile lipidosis and its relationship to Tay–Sachs disease and gargoylism, J. Neuropathol. Exp. Neurol. 24: 318–340.PubMedCrossRefGoogle Scholar
  17. Gravel, R. A., Clarke, J.T.R., Kaback, M. M., Mahuran, D., Sandhoff, K., and Suzuki, K., 1995, The GM2 gangliosidosis, in: The Metabolic and Molecular Basis of Inherited Disease, (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), 7th ed., McGraw–Hill, New York, pp. 2839–2879.Google Scholar
  18. Hagberg, B. A., Blennow, G., Kristiansson, B., and Stibler, H., 1993, Carbohydrate-deficient glycoprotein syndrome: Peculiear group of new disorders, Pediatr. Neurol. 9: 255–262.PubMedCrossRefGoogle Scholar
  19. Hara, Y., loannou, P., Drousiotou, A., Stylianidou, G., Anastasiadou, V., and Suzuki, K., 1994, Mutation analysis of a Sandhoff disease patient in the Maronite community in Cyprus, Hum. Genet. 94: 136–140.PubMedCrossRefGoogle Scholar
  20. Heng, H.H.Q., Xie, B., Shi, X.-M., Tsui, L.-C., and Mahuran, D. J., 1993, Refined mapping of the GM2 activator protein (GM2A) locus to 5g31.3–833.1 distal to the spinal muscular atrophy locus, Genomics 18: 429–431.PubMedCrossRefGoogle Scholar
  21. Jaeken, J., and Carchon, H., 1993, The carbohydrate-deficient glycoprotein syndromes: An overview, J. Inherit. Metab. Dis. 16: 813–820.PubMedCrossRefGoogle Scholar
  22. Jaeken, J., Carchon, H., and Stibler, H., 1993, The carbohydrate-deficient glycoprotein syndromes: Pre-Golgi and Golgi disorders? Glycobiology 3: 423–428.PubMedCrossRefGoogle Scholar
  23. Jatzkewitz, H., and Sandhoff, K., 1963, On a biochemically special form of infantile amaurotic idiocy, Biochim. Biophys. Acta 70: 354–356.PubMedCrossRefGoogle Scholar
  24. Kaback, M., Lim-Steele, J., Dabholkar, D., Brown, D., Levy, N., and Zeiger, K., 1993, Tay–Sachs disease Carrier screening, prenatal diagnosis, and the molecular era: An international perspective, J. Am. Med. Assoc. 270: 2307–2315.CrossRefGoogle Scholar
  25. Kase, R., Itoh, K., Takiyama, N., Oshima, A., Sakuraba, H., and Suzuki, Y., 1990, Galactosialidosis: Simultaneous deficiency of esterase, carboxy-terminal deamidase and acid carboxypeptidase activities, Biochem. Biophys. Res. Commun. 172: 1175–1179.PubMedCrossRefGoogle Scholar
  26. Klenk, E., 1939, Beiträge zur Chemie der Lipidosen. 3. Niemann-Picksche Krankheit and amaurotische Idiotie, Z. Physiol. Chem. 262: 128–143.CrossRefGoogle Scholar
  27. Klima, H., Tanaka, A., Schnabel, D., Nakano, T., Schröder, M., Suzuki, K., and Sandhoff, K., 1991, Characterization of full-length cDNAs and the gene coding for the human GM2 activator protein, FEBS Lett. 289: 260–264.PubMedCrossRefGoogle Scholar
  28. Kobayashi, T., and Suzuki, K., 1981, Chronic GNM-1-gangliosidosis presenting as dystonia. II. Biochemistry, Ann. Neurol. 9: 476–483.PubMedCrossRefGoogle Scholar
  29. Korneluk, R. G., Mahuran, D. J., Neote, K., Klavins, M. H., O’Dowd, B. F., Tropack, M., Willard, H. F., Anderson, M.-J., Lowden, J. A., and Gravel, R. A., 1986, Isolation of cDNA clones coding for the a subunit of human 13-hexosaminidase: Extensive homology between the a-and ß-subunits and studies on Tay–Sachs disease, J. Biol. Chem. 261: 8407–8413.PubMedGoogle Scholar
  30. Kytzia, H.-J., and Sandhoff, K., 1985, Evidence for two different active sites on human hexosaminidase A—Interaction of GM2-activator protein with hexosaminidase A, J. Biol. Chem. 260: 7568–7572.PubMedGoogle Scholar
  31. Mitsuo, K., Nakano, T., Kobayashi, T., Goto, I., Taniike, M., and Suzuki, K., 1990, Juvenile Sandhoff disease: A Japanese patient carrying a mutation identical to that found earlier in a Canadian patient, J. Neurol. Sci. 98: 277–286.PubMedCrossRefGoogle Scholar
  32. Morreau, H., Galjart, N. J., Gillemans, N., Willemsen, R., van der Horst, G.T.J., and d’Azzo, A., 1989, Alternate splicing of ß-galactosidase messenger RNA generates the classic lysosomal enzyme and a ß-galactosidase-related protein, J. Biol. Chem. 264: 20655–20663.PubMedGoogle Scholar
  33. Morreau, H., Bonten, E., Zhou, X.-Y., and d’Azzo, A., 1991, Organization of the gene encoding human lysosomal ß-galactosidase, DNA Cell Biol. 10: 495–504.PubMedCrossRefGoogle Scholar
  34. Mosna, G., Fattore, S., Tubiello, G., Brocca, S., Trubia, M., Gianazza, E., Gatti, R., Danesino, C., Minelli, A., and Piantanida, M., 1992, A homozygous missense arginine to histidine substitution at position 482 of the β-galactosidase in an Italian infantile GM1-gangliosidosis patient, Hum. Genet. 90: 247–250.PubMedCrossRefGoogle Scholar
  35. Mueller, O. T., Henry, W. M., Eddy, R. L., and Shows, T. B., 1986, Sialidosis and galactosialidosis: Chromosomal assignment of two genes associated with neuraminidase deficiency, Proc. Natl. Acad. Sci. USA 83: 1817–1821.PubMedCrossRefGoogle Scholar
  36. Myerowitz, R., 1988, Splice junction mutation in some Ashkenazi Jews with Tay—Sachs disease: Evidence against a single defect within this ethnic group, Proc. Natl. Acad. Sci. USA 85: 3955–3958.PubMedCrossRefGoogle Scholar
  37. Myerowitz, R., and Costigan, C., 1988, The major defect in Ashkenazi Jews with Tay—Sachs disease is an insertion in the gene for the a-chain of ß-hexosaminidase, J. Biol. Chem. 263: 18587–18589.PubMedGoogle Scholar
  38. Myerowitz, R., and Hogikyan, N. D., 1986, Different mutations in Ashkenazi Jewish and nonJewish French Canadians with Tay—Sachs disease, Science 232: 1646–1648.PubMedCrossRefGoogle Scholar
  39. Myerowitz, R., and Hogikyan, N. D., 1987, A deletion involving Alu sequences in the betahexosaminidase alpha chain gene of French Canadians with Tay—Sachs disease, J. Biol. Chem. 262: 15396–15399.PubMedGoogle Scholar
  40. Myerowitz, R., Piekarz, R., Neufeld, E. F., Shows, T. B., and Suzuki, K., 1985, Human 3-hexosaminidase a chain: Coding sequence and homology with the G3-chain, Proc. Natl. Acad. Sci. USA 82: 7830–7834.PubMedCrossRefGoogle Scholar
  41. Nakano, T., and Suzuki, K., 1989, Genetic cause of a juvenile form of Sandhoff disease: Abnormal splicing of 3-hexosaminidase 13 chain gene transcript due to a point mutation within intron 12, J. Biol. Chem. 264: 5155–5158.PubMedGoogle Scholar
  42. Navon, R., and Proia, R. L., 1989, The mutations in Ashkenazi Jews with adult GM2 gangliosidosis, the adult form of Tay—Sachs disease, Science 243: 1471–1474.PubMedCrossRefGoogle Scholar
  43. Neote, K., Bapat, B., Dumbrille-Ross, A., Troxel, C., Schuster, S. M., Mahuran, D. J., and Gravel, R. A., 1988, Characterization of the human HEXB gene encoding lysosomal ß-hexosaminidase, Genomics 3: 279–286.PubMedCrossRefGoogle Scholar
  44. Neote, K., McInnes, B., Mahuran, D. J., and Gravel, R., 1990, Structure and distribution of an Alu-type deletion mutation in Sandhoff disease, J. Clin. Invest. 86: 1524–1531.PubMedCrossRefGoogle Scholar
  45. Nishimoto, J., Nanba, E., Inui, K., Okada, S., and Suzuki, K., 1991, GM1-gangliosidosis (genetic ß-galactosidase deficiency): Identification of mutations in different clinical phenotypes among Japanese patients, Am. J. Hum. Genet. 49: 566–574.PubMedGoogle Scholar
  46. O’Brien, J. S., Stern, M. B., Landing, B. H., O’Brien, J. I., and Donnel, G. N., 1965, Generalized gangliosidosis: Another inborn error of metabolism? Am. J. Dis. Child. 109: 338–346.PubMedGoogle Scholar
  47. Ohno, K., and Suzuki, K., 1988a, Mutation in GM2-gangliosidosis B1 variant, J. Neurochem. 50: 316–318.PubMedCrossRefGoogle Scholar
  48. Ohno, K., and Suzuki, K., 1988b, A splicing defect due to an exon—intron junctional mutation results in abnormal ß-hexosaminidase a chain mRNAs in Ashkenazi Jewish patients with Tay—Sachs disease, Biochem. Biophys. Res. Commun. 153: 463–469.PubMedCrossRefGoogle Scholar
  49. Ohno, K., and Suzuki, K., 1988c, Multiple abnormal ß-hexosaminidase a chain mRNAs in a compound-heterozygous Ashkenazi Jewish patient with Tay—Sachs disease, J. Biol. Chem. 263: 18563–18567.PubMedGoogle Scholar
  50. Okada, S., and O’Brien, J. S., 1968, Generalized gangliosidosis: Beta-galactosidase deficiency, Science 160: 1002–1004.PubMedCrossRefGoogle Scholar
  51. Okada, S., and O’Brien, J. S., 1969, Tay—Sachs disease: Generalized absence of a 3-D-N-acetylhexosaminidase component, Science 165: 698–700.PubMedCrossRefGoogle Scholar
  52. Oshima, A., Tsuji, A., Nagao, Y., Sakuraba, H., and Suzuki, Y., 1988, Cloning, sequencing, and expression of cDNA for human ß-galactosidase, Biochem. Biophys. Res. Commun. 157: 238–244.PubMedCrossRefGoogle Scholar
  53. Proia, R. L., and Soravia, E., 1987, Organization of the gene encoding the human 3-hexosaminidase a chain, J. Biol. Chem. 262: 5677–5681.PubMedGoogle Scholar
  54. Purpura, D. P., and Suzuki, K., 1976, Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease, Brain Res. 116: 1–21.PubMedCrossRefGoogle Scholar
  55. Sachs, B., 1887, On arrested cerebral development, with special reference to its cortical pathology, J. Nerv. Ment. Dis. 14: 541–553.Google Scholar
  56. Sacrez, R., Juif, J. G., Gigonnet, J. M., and Gruner, J. E., 1967, Maladie de Landing, ou idiotie amaurotique infantile précose avec gangliosidose généralizéede type GM I, Pediatric 22: 143–162.Google Scholar
  57. Sandhoff, K., 1969, Variation of ß-acetylhexosaminidase apttern in Tay—Sachs disease, FEBS Leu. 4: 351–354.CrossRefGoogle Scholar
  58. Sandhoff, K., Harzer, K., and Fürst, W., 1995, Sphingolipid activator proteins, in: The Metabolic and Molecular Basis of Inherited Disease, (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), 7th ed., McGraw—Hill, New York, pp. 2727–2441.Google Scholar
  59. Schröder, M., Klima, H., Nakano, T., Kwon, H., Quintern, L. E., Gärtner, S., Suzuki, K., and Sandhoff, K., 1989, Isolation of a cDNA encoding the human GM2-activator protein, FEBS Lett. 251: 197–200.PubMedCrossRefGoogle Scholar
  60. Schröder, M., Schnabel, D., Suzuki, K., and Sandhoff, K., 1991, A mutation in the gene of a glycolipid-binding protein (GM2 activator) that causes GM2-gangliosidosis variant AB, FEBS Lett. 290: 1–3.PubMedCrossRefGoogle Scholar
  61. Schröder, M., Schnabel, D., Young, E., Suzuki, K., and Sandhoff, K., 1993, Molecular genetics of GM2-gangliosidosis AB variant: A novel mutation and expression in BHK cells, Hum. Genet. 92: 437–440.PubMedCrossRefGoogle Scholar
  62. Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), 1995, The Metabolic and Molecular Basis of Inherited Disease, 7th ed., McGraw—Hill, New York.Google Scholar
  63. Seringe, P., Plainfosse, B., Lautman, F., Lorilloux, J., Calamy, G., Berry, J.-P., and Watchi, J.-M., 1968, Gangliosidose généralizée du type Norman-Landing à GM1. Etude à propos d’un cas diagnostiqué du vivant du malade, Ann. Pediat. 15: 165–184.PubMedGoogle Scholar
  64. Shimmoto, M., Takano, T., Fukuhara, Y., Oshima, A., Sakuraba, H., and Suzuki, Y., 1990, Japanese-type adult galactosialidosis: A unique and common splice junction mutation causing exon skipping in the protective protein/carboxypeptidase gene, Proc. Jpn. Acad. 66B: 217–222.Google Scholar
  65. Shimmoto, M., Fukuhara, Y., Itoh, K., Oshima, A., Sakuraba, H., and Suzuki, Y., 1993, Protective protein gene mutations in galactosialidosis, J. Clin. Invest. 91: 2393–2398.PubMedCrossRefGoogle Scholar
  66. Shows, T. B., Strafford-Wolff, L. R., Brown, J. A., and Meisler, M., 1979, GMI -gangliosidosis: Chromosome 3 assignment of a 0-galactosidase A gene (13-GalA), Somat. Cell Genet. 5: 147–158.PubMedCrossRefGoogle Scholar
  67. Strisciuglio, P., Parenti, G., Giudice, C., Lijoi, S., Hoogeveen, A. T., and d’Azzo, A., 1988, The presence of a reduced amount of 32-kd “protective” protein is a distinct biochemical finding in late infantile galactosialidosis, Hum. Genet. 80: 304–306.PubMedCrossRefGoogle Scholar
  68. Suzuki, K., 1968, Cerebral GMI -gangliosidosis: Chemical pathology of visceral organs, Science 159: 1471–1472.PubMedCrossRefGoogle Scholar
  69. Suzuki, K., 1977, Globoid cell leukodystrophy (Krabbe disease) and GM1-gangliosidosis, in: Practical Enzymology of the Sphingolipidoses, ( R. H. Glew and S. P. Peters, eds.), Liss, New York, pp. 101–136.Google Scholar
  70. Suzuki, K., 1987, Enzymatic diagnosis of sphingolipidoses, Methods Enzymol. 138: 727–762.PubMedCrossRefGoogle Scholar
  71. Suzuki, K., 1991, Neuropathology of late-onset gangliosidoses, Dev. Neurosci. 13: 205–210.PubMedCrossRefGoogle Scholar
  72. Suzuki, K., 1994a, Sphingolipid activator proteins, Essays Biochem. in press.Google Scholar
  73. Suzuki, K., 1994b, Molecular basis of genetic sphingolipid activator protein deficiencies, Trends Glycosci. Glycotechnol. 6: 215–227.CrossRefGoogle Scholar
  74. Suzuki, K., and Chen, G. C., 1967, Brain ceramide hexosides in Tay—Sachs disease and generalized gangliosidosis (GM I -gangliosidosis), J. Lipid Res. 8: 105–113.PubMedGoogle Scholar
  75. Suzuki, K., and Vanier, M. T., 1991, Biochemical and molecular aspects of late-onset GM2gangliosidosis: B1 variant as the prototype, Dev. Neurosci. 13: 288–294.PubMedCrossRefGoogle Scholar
  76. Suzuki, K., Suzuki, K., and Kamoshita, S., 1969, Chemical pathology of GM1-gangliosidosis (generalized gangliosidosis), J. Neuropathol. Exp. Neurol. 28: 25–73.PubMedCrossRefGoogle Scholar
  77. Suzuki, Y., Crocker, A. C., and Suzuki, K., 1971a, GM1-gangliosidosis: Correlation of clinical and biochemical data, Arch. Neurol. 24: 58–64.PubMedCrossRefGoogle Scholar
  78. Suzuki, Y., Jacob, J. C., Suzuki, K., Kutty, K. M., and Suzuki, K., 1971b, G2-gangliosidosis with total hexosaminidase deficiency, Neurology 21: 313–328.PubMedCrossRefGoogle Scholar
  79. Suzuki, Y., Nakamura, N., Fukuoka, K., Shimada, Y., and Uono, M., 1977, (3-Galactosidase deficiency in juvenile and adult patients. Report of six Japanese cases and review of literature, Hum. Genet. 36: 219–229.Google Scholar
  80. Suzuki, Y., Sakuraba, H., Yamanaka, T., Ko, Y.-M., Iimori, Y., Okamura, Y., and Hoogeveen, A. T., 1984, Galactosialidosis: A comparative study of clinical and biochemical data on 22 patients, in: The Developing Brain and Its Disorders, ( M. Arima, Y. Suzuki, and H. Yabuuchi, eds.), University of Tokyo Press, Tokyo, pp. 161–175.Google Scholar
  81. Suzuki, Y., Nanba, E., Tsuji, A., Yang, R.-C., Okamura-Oho, Y., and Yamanaka, T., 1988, Clinical and genetic heterogeneity in galactosialidosis, Brain Dysfunct. 1: 285–293.Google Scholar
  82. Suzuki, Y., Sakuraba, H., Oshima, A., Yoshida, K., Shimmoto, M., Takano, T., and Fukuhara, Y., 1991, Clinical and molecular heterogeneity in hereditary 13-galactosidase deficiency, Dev. Neurosci. 13: 299–303.PubMedCrossRefGoogle Scholar
  83. Swallow, D. M., Islam, I., Fox, M. F., Povey, S., Klima, H., Schepers, U., and Sandhoff, K., 1993, Regional localization of the gene coding for the GM2 activator protein (GM2A) to chromosome 5q32–33 and confirmation of the assignment of GM2AP to chromosome 3, Ann. Hum. Genet. 57: 187–193.PubMedCrossRefGoogle Scholar
  84. Takano, T., Shimmoto, M., Furuhara, Y., Itoh, K., Kase, R., Takiyama, N., Kobayashi, T., Oshima, A., Sakuraba, H., and Suzuki, Y., 1991, Galactosialidosis: Clinical and molecular analysis of 19 Japanese patients, Brain Dysfunct. 4: 271–280.Google Scholar
  85. Tanaka, H., and Suzuki, K., 1975, Lactosylceramide ß-galactosidase in human sphingolipidoses: Evidence for two genetically distinct enzymes, J. Biol. Chem. 250: 2324–2332.PubMedGoogle Scholar
  86. Tanaka, H., and Suzuki, K., 1977, Substrate specificities of the two genetically distinct human brain 3-galactosidases, Brain Res. 122: 325–335.PubMedCrossRefGoogle Scholar
  87. Tanaka, A., Ohno, K., and Suzuki, K., 1988, GM2-gangliosidosis B1 variant: A wide geographic and ethnic distribution of the specific I3-hexosaminidase a chain mutation originally identified in a Puerto Rican patient, Biochem. Biophys. Res. Commun. 156: 1015–1019.PubMedCrossRefGoogle Scholar
  88. Tanaka, A., Ohno, K., Sandhoff, K., Maire, I., Kolodny, E. H., Brown, A., and Suzuki, K., 1990, GM2-gangliosidosis B1 variant: Analysis of 3-hexosaminidase a gene abnormalities in seven patients, Am. J. Hum. Genet. 46: 329–339.PubMedGoogle Scholar
  89. Tay, W., 1881, Symmetrical changes in the region of the yellow spot in each eye of an infant, Trans. Ophthalmol. Soc. UK 1: 155.Google Scholar
  90. Terry, R. D., and Korey, S. R., 1960, Membranous cytoplasmic granules in infantile amaurotic idiocy, Nature 188: 1000–1002.PubMedCrossRefGoogle Scholar
  91. Terry, R. D., and Weiss, M., 1963, Studies in Tay—Sachs disease: II. Ultrastructure of cerebrum, J. Neuropathol. Exp. Neurol. 22: 18–55.PubMedCrossRefGoogle Scholar
  92. Tranchemontagne, J., Michaud, L., and Potier, M., 1990, Deficient lysosomal carboxypeptidase activity in galactosialidosis, Biochem. Biophys. Res. Commun. 168: 22–29.PubMedCrossRefGoogle Scholar
  93. van Diggelen, O. P., Schram, A. W., Sinnot, M. L., Smith, P. J., Robinson, D., and Galjaard, H., 1981, Turnover of 3-galactosidase in fibroblasts from patients with genetically different types of 3-galactosidase deficiency, Biochem. J. 200: 143–151.PubMedGoogle Scholar
  94. van Diggelen, O. P., Hoogeveen, A. T., Smith, P. J., Reuser, A.J.J., and Galjaard, H., 1982, Enhanced proteolytic degradation of normal ß-galactosidase in the lysosomal disease with combined 3-galactosidase and neuraminidase deficiency, Biochim. Biophys. Acta 703: 69–76.PubMedCrossRefGoogle Scholar
  95. van Pelt, J., Kamerling, J. P., Vliegenthart, J.F.G., Hoogeveen, A. T., and Galjaard, H. A., 1988a, Comparative study of the accumulated sialic acid-containing oligosaccharides from human galactosialidosis and sialidosis fibroblasts, Clin. Chim. Acta 174: 325–335.PubMedCrossRefGoogle Scholar
  96. van Pelt, J., van Kuik, J. A., Kamerling, J. P., Vliegenthart, J.F.G., van Diggelen, O. P., and Galjaard, H., 1988b, Storage of sialic acid-containing carbohydrates in the placenta of a human galactosialidosis fetus—Isolation and structural characterization of 16 sialyloligosaccharides, Eur. J. Biochem. 177: 327–338.PubMedCrossRefGoogle Scholar
  97. van Pelt, J., Hard, K., Kamerling, J. P., Vliegenthart, J.F.G., Reuser, A.J.J., and Galjaard, H., 1989, Isolation and structural characterization of twenty-one sialyloligosaccharides from galactosialidosis urine. An intact N,N’-diacetylchitobiose unit at the reducing end of a diantennary structure, Biol. Chem. Hoppe-Seyler 370: 191–203.PubMedCrossRefGoogle Scholar
  98. Wenger, D. A., Tarby, T. J., and Wharton, C., 1978, Macular cherry-red spots and myoclonus with dementia: Coexistent neuraminidase and 3-galactosidase deficiencies, Biochem. Biophys. Res. Commun. 82: 589–595.PubMedCrossRefGoogle Scholar
  99. Wiegant, J., Galjart, N. J., Raap, A. K., and d’Azzo, A., 1991, The gene encoding human protective protein (PPGB) is on chromosome 20, Genomics 10: 345–349.PubMedCrossRefGoogle Scholar
  100. Xie, B., Kennedy, J. L., McInnes, B., Auger, D., and Mahuran, D., 1992a, Identification of a processed pseudogene related to the functional gene encoding the GM2 activator protein: Localization of the pseudogene to human chromosome 3 and the functional gene to human chromosome 5, Genomics 14: 796–798.PubMedCrossRefGoogle Scholar
  101. Xie, B., Wang, W., and Mahuran, D. J., 1992b, A Cys138-to-Arg substitution in the GM2 activator protein is associated with the AB variant form of GM2 gangliosidosis, Am. J. Hum. Genet. 50: 1046–1052.PubMedGoogle Scholar
  102. Yoshida, K., Oshima, A., Shimmoto, M., Fukuhara, Y., Sakuraba, H., Yanagisawa, N., and Suzuki, Y., 1991, ß-Galactosidase gene mutations in GM1-gangliosidosis: A common point mutation among Japanese adult-chronic cases, Am. J. Hum. Genet. 49: 435–442.PubMedGoogle Scholar
  103. Yoshida, K., Oshima, A., Sakuraba, H., Nakano, T., Yanagisawa, H., Inui, K., Okada, S., Uyama, E., Namba, R., Kondo, K., Iwasaki, S., Takamiya, K., and Suzuki, Y., 1992, GM1 gangliosidosis in adults: Clinical and molecular analysis of 16 Japanese patients, Ann. Neurol. 31: 328–332.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kunihiko Suzuki
    • 1
  1. 1.Brain and Development Research Center, Departments of Neurology and PsychiatryUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations