Skip to main content

Part of the book series: The Depressive Illness Series ((DISS,volume 3))

Abstract

From a historical perspective, the amino acid neurotransmitters are recent candidates for consideration in theories of psychiatric illness. The biogenic amines, particularly norepinephrine and serotonin, have traditionally played a major role in theories regarding the biochemical basis of depression and of its treatment. This is readily explained by a general focus in neuroscience on biogenic amine neurochemistry and neuropharmacology during the formative decades of biological psychiatry. Also, it reflects the early observation that depletion of the biogenic amines with agents such as reserpine was often accompanied by the development of depressive symptoms. Similarly, the first-generation antidepressants were early reported to enhance biogenic amine activity through inhibition of monoamine oxidase or blockade of synaptic reuptake. Thus the catecholamine theory of depression was first published about 25 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia P, Grewaal DS, Singhal RL: Changes in y-aminobutyric acid and glutamic acid and glutamic acid decarboxylase in discrete regions of rat brain following lithium administration and withdrawal. Drug Dev Res 1983; 3: 153–161.

    Article  CAS  Google Scholar 

  • Akasu T: 5-hydroxytryptamine facilitates GABA-induced depolarization in bullfrog primary afferent neurons. Neurosci Lett 1988; 92: 270–274.

    Google Scholar 

  • Apud JA, Racagni G, Iuliano E, Cocchi D, Casanueva F, Muller EE: Role of central nervous system-derived or circulating y-aminobutyric acid on prolactin secretion in the rat. Endocrinol 1981; 108: 1505–1510.

    Article  CAS  Google Scholar 

  • Barbaccia ML, Ravizza L, Costa E: Maprotiline: An antidepressant with an unusual pharmacological profile. J Pharm Exper Ther 1986; 236: 307–312.

    CAS  Google Scholar 

  • Bartholini G: Experimental basis for the antidepressant action of the GABA receptor agonist progabide. Neurosci Lett 1984a; 47: 351–355.

    Article  PubMed  CAS  Google Scholar 

  • Bartholini G: Pharmacology of the GABAergic system: Effects of progabide, a GABA receptor agonist. Psychoneuroendocrinol 1984b; 9: 135–140.

    Article  CAS  Google Scholar 

  • Bartholini G, Lloyd KG, Scatton B, Zivkovic B, Morselli PL: The GABA hypothesis of depression and antidepressant drug action. Psychopharmacol Bull 1985; 21: 385–388.

    PubMed  CAS  Google Scholar 

  • Berrettini WH, Umberkoman-Wiita B, Nurnberg JI, Jr, Vogel WH, Gershon ES, Post RM: Platelet GABA-transaminase in affective illness. Psychiat Res 1980; 7: 255–260.

    Article  Google Scholar 

  • Berrettini WH, Nurnberger JI, Jr, Hare T, Gershon ES, Post RM: Plasma and CSF GABA in affective illness. Brit J Psychiat 1982; 141: 483–487.

    Article  PubMed  CAS  Google Scholar 

  • Berrettini WH, Nurnberger JI, Jr, Hare TA, Simmons-Ailing S, Gershon ES, Post RM: Reduced plasma and CSF y-aminobutyric acid in affective illness: Effect of lithium carbonate. Bio Psychiat 1983; 18: 184–195.

    Google Scholar 

  • Berrettini WH, Goldin LR, Nurnberger JI, Jr, Gershon ES: Genetic factors in affective illness. J Psychiat Res 1984; 18: 329–350.

    Article  PubMed  CAS  Google Scholar 

  • Berrettini WH, Nurnberger JI, Jr, Hare TA, Simmons-Ailing S, Gershon ES: CSF GABA in euthymic manic-depressive patients and controls. Biol Psychiat 1986; 21: 844–846.

    Article  PubMed  CAS  Google Scholar 

  • Bohlen P, Huot S, Palfreyman MG: The relationship between GABA concentrations in brain and cerebrospinal fluid. Brain Res 1979; 167: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno G, Raiteri M: A carrier for GABA uptake exists on noradrenaline nerve endings in selective rat brain areas but not on serotonin terminals. J Neural Transm 1987a; 69: 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno G, Raiteri M: Release-regulating GABAA receptors are present on noradrenergic nerve terminals in selective areas of the rat brain. Synapse 1987b; 1: 254–257.

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Evangelista S, Meli A: Effect of GABAergic drugs in the behavioral despair test in rats. Eur J Pharmacol 1986; 121: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Mancinelli A, D’Aranno V, Evangelista S, Meli A: On the role of endogenous GABA in the forced swimming test in rats. Pharmacol Biochem Behav 1987; 29: 275–279.

    Article  Google Scholar 

  • Bosler O: Ultrastructural relationships of serotonin and GABA terminals in the rat suprachiasmatic nucleus. Evidence for a close interconnection between the two afferent systems. J Neurocytol 1989; 18: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Bowdler JM, Green AR, Minchin MCW, Nutt DJ: Regional GABA concentration and [3H]-diazepam binding in rat brain following repeated electroconvulsive shock. J Neural Transm 1983; 56: 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Bowers MB, Jr, Gold BI, Roth RH: CSF GABA in psychotic disorders. Psychopharmacol 1980; 70: 279–282.

    Article  Google Scholar 

  • Caron PC, Code LJ, Kremzner LT: Putrescine, a source of y-aminobutyric acid in the adrenal gland of the rat. Biochem J 1988; 251: 559–562.

    PubMed  CAS  Google Scholar 

  • Cheetham SC, Crompton MR, Katona CLE, Parker SJ, Horton RW: Brain GABAA/benzodiazepine binding sites and glutamic acid decarboxylase activity in depressed suicide victims. Brain Res 1988; 460: 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Cross JA, Horton RW: Are increases in GAI3AB receptors consistent findings following chronic antidepressant administration? Eur J Pharmacol 1987; 141: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Dennis T, Curet O, Nishikawa T, Scatton B: Further evidence for, and nature of, the facilitatory GABAergic influence on central noradrenergic transmission. NS Arch Pharmacol 1985; 331: 225–234.

    Article  CAS  Google Scholar 

  • Drugan RC, Ryan SM, Minor TR, Maier SF: Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacol Biochem Behav 1984; 21: 749–754.

    Article  PubMed  CAS  Google Scholar 

  • Drugan RC, Maier SF, Skolnick P, Paul SM, Crawley JN: An anxiogenic benzodiazepine receptor ligand induces learned helplessness. Eur J Pharmacol 1985; 113: 453–457.

    Article  PubMed  CAS  Google Scholar 

  • Drugan RC, Morrow AL, Weizman R, Weizman A, Deutsch SI, Crawley JN, Paul SM: Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res 1989; 487: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Emrich HM, Zerssen DV, Kissling W, Moller HJ, Windorfer A: Effect of sodium valproate on mania. Arch Psychiatr Nervenkr 1980; 229: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Emrich HM, Dose M, Von Zerssen D: The use of sodium valproate, carbamazepine and oxcarbazepine in patients with affective disorders. J Affect Disord 1985; 8: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Enna SJ, Ziegler MG, Lake CR, Wood JH, Brooks BR, Butler IJ: Cerebrospinal fluid y-aminobutyric acid. In: Wood JH (Ed.), Neurobiology of Cerebrospinal Fluid, New York: Plenum Press, 1980; 189–196.

    Chapter  Google Scholar 

  • Erdo SL, Kiss B: Presence of GABA, glutamate decarboxylase, and GABA transaminase in peripheral tissues: A collection of quantitative data. In: Erdo SL, Bowery NG (Eds.), GABAergic Mechanisms in the Mammalian Periphery, New York: Raven Press, 1986.

    Google Scholar 

  • Ferkany JW, Butler IJ, Enna SJ: Effect of drugs on rat brain, cerebrospinal fluid and blood GABA content. J Neurochem 1978a; 33: 29–33.

    Article  Google Scholar 

  • Ferkany JW, Smith LA, Seifert WE, Jr, Caprioli RM, Enna SJ: Measurement of y-aminobutyric acid (GABA) in blood. Life Sci 1978b; 22: 2101–2128.

    Article  Google Scholar 

  • Ferraro TN, Hare TA: Free and conjugated amino acids in human CSF influence of age and sex. Brain Res 1985; 338: 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Ferraro TN, Golden GT, Hare TA: Repeated electroconvulsive shock selectively alters y-aminobutyric acid levels in the rat brain: Effect of electrode placement. Convulsive Ther 1990; 6 (3): 199–208.

    Google Scholar 

  • Francois-Bellan AM, Hery M, Faldon M, Hery F: Evidence for GABA control of serotonin metabolism in the rat suprachiasmatic area. Neurochem Int 1988; 134 (4): 455–462.

    Article  Google Scholar 

  • Gerner RH, Hare TA: CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiat 1981; 138: 1098–1101.

    PubMed  CAS  Google Scholar 

  • Gerner RH, Fairbanks L, Anderson GM, Young JG, Scheinin M, Linnoila M, Hare TA, Shaywitz BA, Cohen DJ: CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. Am J Psychiat 1984; 141: 1533–1540.

    PubMed  CAS  Google Scholar 

  • Gold BI, Bowers MB, Jr, Roth RH, Sweeney DW: GABA levels in CSF of patients with psychiatric disorders. Am J Psychiat 1980; 137: 362–364.

    PubMed  CAS  Google Scholar 

  • Gottesfeld Z: Effect of lithium and other alkali metals on brain chemistry and behavior. Psychopharmacologia 1976; 45: 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Green AR: GABAB-receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. Br J Pharmacol 1987; 91: 517–522.

    Google Scholar 

  • Green AR, Vincent ND: The effect of repeated electroconvulsive shock on GABA synthesis and release in regions of rat brain. Br J Pharmacol 1987a; 92: 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Minchin CW, Vincent ND: Inhibition of GABA release from slices prepared from several brain regions of rats at various times following a convulsion. Br J Pharmacol 198Th; 92: 13–18.

    Google Scholar 

  • Grove J, Schecter PJ, Hanke NFJ, de Smet Y, Agid Y, Tell G, Koch-Weser J: Concentration gradients of free and total y-aminobutyric acid and homocarnosine in human CSF: Comparison of suboccipital and lumbar sampling. J Neu rochem 1982; 39: 1618–1622.

    Article  CAS  Google Scholar 

  • Hare TA, Manyam NVB: Rapid and sensitive ion-exchange fluorometric measurement of y-aminobutyric acid in physiological fluids. Anal Biochem 1980; 101: 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Honig A, Bartlett JR, Bouras N, Bridges PK: Amino acid levels in depression: a preliminary investigation. J Psychiatr Res 1989; 22 (3): 159–164.

    Article  Google Scholar 

  • Joly D, Lloyd KG, Pichat P, Sanger DJ: Correlation between the behavioral effect of desipramine and GABAB receptor regulation in the olfactory bulbectomized rat. Br J Pharmacol 1987: 125.

    Google Scholar 

  • Kaiya H, Namba M, Yoshida H, Nakamura S: Plasma glutamate decarboxylase activity in neuropsychiatry. Psychiat Res 1982; 6: 335–343.

    Article  CAS  Google Scholar 

  • Karbon EW, Duman RS, Enna SJ: GABAB receptors and norepinephrine-stimulated CAMP production in rat brain cortex. Brain Res 1984; 306: 327–332.

    Google Scholar 

  • Kasa K, Otsuki S, Yamamoto M, Sato M, Kuroda H, Ogawa N: Cerebrospinal fluid y-aminobutyric acid and homovanillic acid in depressive disorders. Biol Psychiatry 1982; 17: 877–883.

    Google Scholar 

  • Korf J, Venema K: Desmethylimipramine enhances the release of endogenous GABA and other neurotransmitter amino acids from the rat thalamus. J Neurochem 1983; 40: 946–950.

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER, Kleinman JE, Wyatt RJ: GABA concentrations in forebrain areas of suicide victims. Bio! Psychiat 1988; 23: 109–114.

    Article  CAS  Google Scholar 

  • Leonard BE, Tuite M: Anatomical, physicological, and behavioral aspects of olfactory bulbectomy in the rat. Int Rev Neurobiol 1981; 22: 251–286.

    Article  PubMed  CAS  Google Scholar 

  • Lewis WC, Calden G, Thurston JR, Gilson WE: Psychiatric and neurological reactions to cycloserine in the treatment of tuberculosis. Dis Chest 1957; 32: 172–182.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski JF, Jr, Cohen BM, Zubenko GS, Waternaux CM: Minireview: Adrenoreceptors and the pharmacology of affective illness: A unifying theory. Life Sci 1988; 40: 1947–1963.

    Google Scholar 

  • Lloyd KG, Pichat P: Decrease in GABAB binding in the frontal cortex of olfactory bulbectomized rats. Br J Pharmacol 1985; 87: 36 P.

    Google Scholar 

  • Lloyd KG, Morselli PL: Psychopharmacology of GABAergic drugs. In: Meltzer HY (Ed.), Psychopharmacology: The Third Generation of Progress, New York: Raven Press, 1987, 183–195.

    Google Scholar 

  • Lloyd KG, Morselli PL, Depoortere H, Fournier V, Zivkovic B, Scatton B, Broekkamp C, Worms P, Bartholini G: The potential use of GABA agonists in psychiatric disorders: Evidence from studies with progabide in animal models and clinical trials. Pharmacol Biochem Behav 1983; 18: 957–966.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd KG, Thuret F, Pilc A: Upregulation of y-aminobutyric acid (GABA)B binding sites in rat frontal cortex: A common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther 1985; 235: 191–199.

    PubMed  CAS  Google Scholar 

  • Lloyd KG, Morselli PL, Bartholini G: GABA and affective disorders. Med Biol 1987; 65: 159–165.

    PubMed  CAS  Google Scholar 

  • Lloyd KG, Zivkovic B, Scatton B, Morselli PL, Bartholini G: The GABAergic hypothesis of depression. Prog Neuropsychopharmacol Biol Psychiat 1989; 13: 341–351.

    Article  CAS  Google Scholar 

  • Loscher W: GABA in plasma and cerebrospinal fluid of different species. Effects of y-acetylenic GABA, y-vinyl GABA and sodium valproate. J Neurochem 1979; 32: 1587–1591.

    Article  PubMed  CAS  Google Scholar 

  • Loscher W: Relationship between GABA concentrations in cerebrospinal fluid and seizure excitability. J Neurochem 1982; 38: 293–295.

    Article  PubMed  CAS  Google Scholar 

  • Loscher W, Schmidt D: Monitoring of y-aminobutyric acid in human cerebrospinal fluid: Downward revision of previous control values. Ther Drug Monit 1984; 6: 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Loscher W, Schmidt D: Diazepam increases y-aminobutyric acid in human cerebrospinal fluid. J Neurochem, 49: 152–157.

    Google Scholar 

  • Loscher W, Rating D, Siemes H: GABA in cerebrospinal fluid of children with febrile convulsions. Epilepsia 1981; 22: 697–702.

    Article  PubMed  CAS  Google Scholar 

  • Moss HB, Yao JK, Burns M, Maddock J, Tarter RE: Plasma GABA-like activity in response to ethanol challenge in men at high risk for alcoholism. Biol Psychiatry 1990; 27: 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Motohashi N, Ikawa K, Kariya T: GABAB receptors are up-regulated by chronic treatment with lithium or carbamazepine. GABA hypothesis of affective disorders? Eur J Pharmacol 1989; 166: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Musch B, Garreau M: An overview of the antidepressant activity of fengabine (SL 79.229–00) in open clinical studies. In: Shagass C, Jasiassen RC, Bridger WH, Wiss KJ, Stoff D, Simpson GM (Eds.), Biological Psychiatry, New York: Elsevier, 1986; 920–922.

    Google Scholar 

  • Overmier JB, Hellhammer DH: The learned helplessness model of human depression. In: Simon P, Soubrie P, Widlocher D (Eds.), An Inquiry into Schizophrenia and Depression, New York: Karger, 1988, 177–202.

    Google Scholar 

  • Perlow MJ, Enna ST, O’Brien PJ, Hoffman HJ, Wyatt RJ: Cerebrospinal fluid y-aminobutyric acid: Daily pattern and response to haloperidol. J Neurochem 1979; 32: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE: Neurotransmitter abnormalities in senile dementia. J Neurol Sci 1977; 34: 247–265.

    Article  PubMed  CAS  Google Scholar 

  • Petty F, & Trivedi M: Benzodiazepines in the treatment of depression. Neuropsychopharmacology 1992 (submitted).

    Google Scholar 

  • Petty F, Coffman JA: Plasma GABA: A possible indicator of altered GABA function in psychiatric illness. Neuropharmacol 1984; 23: 859–860.

    Article  CAS  Google Scholar 

  • Petty F, Kramer GL: Plasma GABA and mood disorders. Society for Neuroscience Annual Meeting, Phoenix, Arizona, October 29—November 3, 1989. Petty F, Schiesser MA: Plasma GABA in affective illness. J Affect Disord 1981; 3: 339–343.

    Article  PubMed  CAS  Google Scholar 

  • Petty F, Sherman AD: Plasma GABA: A blood test for bipolar affective disorder trait? Psychol Psychiat Behav 1982; 7: 431–439.

    Google Scholar 

  • Petty F, Sherman AD: Plasma GABA levels in psychiatric illness. J Affect Disord 1984; 6: 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Petty F, Sherman AD, Saquitne J: GABAergic modulation of learned helplessness. Pharmacol Biochem Behav 1981; 15: 567–570.

    Article  PubMed  CAS  Google Scholar 

  • Petty F, McChesney C, Kramer G: Intracortical glutamate injection produces helpless-like behavior in the rat. Pharmacol Biochem Behav 1985; 22: 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Petty F, Kramer G, Feldman M: Is plasma GABA of peripheral origin? Biol Psychiat 1987; 22: 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Petty F, Kramer GL, Dunnam D, Rush AJ: Plasma GABA and mood disorders. American College of Neuropsychopharmacology Annual Meeting, Maui, Hawaii, December 10–15, 1989a.

    Google Scholar 

  • Petty F, Kramer GL, Dunnam D, Backman K, Rush AJ: Plasma GABA and mood disorders. New Clinical Drug Evaluation Unit Program Annual Meeting, Key Biscayne, Florida, May 30—June 2, 1986.

    Google Scholar 

  • Petty F, Kramer GL, Dunnam D, Rush AJ: Plasma GABA: Stable trait marker for mood disorders? Society for Biological Psychiatry Annual Meeting, New York, New York, May 9–13, 1990a.

    Google Scholar 

  • Petty F, Kramer GL, Dunnam D, Rush AJ: Plasma GABA in mood disorders. Psychopharmacol Bull 1990b; 26 (2): 157–162.

    PubMed  CAS  Google Scholar 

  • Plaznik A, Tamorska E, Hauptmann M, Bidzinski A, Kostowski W: Brain neurotransmitter systems mediating behavioral deficits produced by inescapable shock treatment in rats. Brain Res 1988; 447: 122–132.

    Article  PubMed  CAS  Google Scholar 

  • Poncelet M, Martin P, Danti S, Simon P, Soubrie P: Noradrenergic rather than GABAergic processes as the common mediation of the antidepressant profile of GABA agonists and imipramine-like drugs in animals. Pharmacol Biochem Behav 1987; 28: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M: Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47: 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Ballenger JC, Hare TA, Goodwin FK, Lake CR, Jimerson DC, Bunney WE, Jr: Cerebrospinal fluid GABA in normals and patients with affective disorders. Brain Res Bull 1980; 5: 755–759.

    Article  Google Scholar 

  • Roy A, DeJong J, Ferraro T, Adinoff B, Gold P, Rubinow LD, Linnoila M: CSF GABA and neuropeptides in pathological gamblers and normal controls. Psychiat Res 1989; 30: 137–144.

    Article  CAS  Google Scholar 

  • Rubio MC, Losada MEO: GABAergic responses to lithium chloride: Dependence on dose, treatment length and experimental condition. In: Racagni G, Donoso AO (Eds.), GABA and Endocrine Function, New York: Raven Press, 1986, 69–77.

    Google Scholar 

  • Rush AJ, Gullion CM, Roffwarg HP: Research strategies to identify trait-like biological abnormalities in major depression. Presented at the American College of Neuropsychopharmacology, San Juan, Puerto Rico, December 10–14, 1990.

    Google Scholar 

  • Sackeim HA, Decina P, Prohovnik I, Malitz S, Resor SR: Anticonvulsant and antidepressant properties of electroconvulsive therapy: A proposed mechanism of action. Bio Psychiat 1983; 18: 1301–1310.

    CAS  Google Scholar 

  • Scatton B, Lloyd KG, Zivkovic B, Dennis T, Claustre Y, Dedek J, Arbilla S, Langer SZ, Bartholini G: Fengabine, a novel antidepressant GABAergic agent. II. Effect on cerebral noradrenergic, serotonergic and GABAergic transmission in the rat. J Pharmacol Exp Ther 1987; 241: 251–257.

    PubMed  CAS  Google Scholar 

  • Schlicker E, Classenm K, Gothert M: GABAB receptor-mediated inhibition of serotonin release in the rat brain. NS Arch Pharmacol 326: 99–105.

    Google Scholar 

  • Schmidt D, Loscher W: Plasma and cerebrospinal fluid y-aminobutyric acid in neurological disorders. J Neurol Neurosurg Psychiat 1982; 45: 931–935.

    Article  PubMed  CAS  Google Scholar 

  • Seligman, MEP, Maier SF: Failure to escape traumatic shock. J Exp Psychol 1967; 74: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Sherman AD, Petty F: Neurochemical basis of the action of antidepressants on learned helplessness. Behav Neural Biol 1980; 30: 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Sherman AD, Petty F: Additivity of neurochemical changes produced by learned helplessness and imipramine. Behav Neural Biol. 1982; 35: 344–353.

    Article  PubMed  CAS  Google Scholar 

  • Sherman AD, Allers GL, Petty F, Henn FA: A neuropharmacologically relevant animal model of depression. Neuropharmacology 1979; 891–893.

    Google Scholar 

  • Sherman AD, Sacquitine JL, Petty F: Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 16: 449–454.

    Google Scholar 

  • Squires RF, Saederup E: Antidepressants and metabolites that block GABAA receptors coupled to 35S-t-butylbicyclophosphorothionate binding sites in rat brain. Brain Res 1988; 441: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Strahlendorf JC, Lee M, Netzeband JG, Strahlendorf HK: Pentobarbital augments serotonin-mediated inhibition of cerebellar purkinje cells. Neuroscience 1988; 107–115.

    Google Scholar 

  • Suranyi-Cadotte BE, Dam TV, Quirion R: Antidepressant-anxiolytic interaction: Decreased density of benzodiazepine receptors in rat brain following chronic administration of antidepressants. Eur J Pharmacol 1985; 106: 673–675.

    Article  Google Scholar 

  • Suzdak PD, Gianutsos G: Differential coupling of GABA-A and GABA-B receptors to the noradrenergic system. J Neural Trans 1985a; 62: 77–89.

    Article  CAS  Google Scholar 

  • Suzdak PD, Gianutsos G: Parallel changes in the sensitivity of y-aminobutyric acid and noradrenergic receptors following chronic administration of antidepressant and GABAergic drugs. Neuropharmacol 1985b; 24: 217–222.

    Article  CAS  Google Scholar 

  • Suzdak PD, Gianutso G: Effect of chronic imipramine or baclofen on GABA-B binding and cyclic AMP production in cerebral cortex. Eur J Pharmacol 1986; 131: 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Uhlhaas S, Lanage H, Wappenschmidt J, Olek K: Free and conjugated CSF and plasma GABA in Huntington’s chorea. Acta Neurol Scand 1986; 74: 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Zacharko RM, Anisman H: Pharmacological, biochemical, and behavioral analyses of depression: Animal models. In: Koob GF, Ehlers CL, Kupfer DJ (Eds.), Animal Models of Depression. Boston: Birkhauser, 1989, 204–238.

    Chapter  Google Scholar 

  • Zachmann M, Tocci P, Nyhan WL: The occurrence of y-aminobutyric acid in human tissues other than brain. J Biol Chem 1966; 241: 1355–1358.

    PubMed  CAS  Google Scholar 

  • Zimmer R, Teelken AW, Meier KD, Acken-Heil M, Zander KJ: Preliminary studies on CSF y-aminobutyric acid levels in psychiatric patients before and during treatment with different psychotropic drugs. Prog Neuro-Psychopharmacol 1980; 4: 613–620.

    Article  CAS  Google Scholar 

  • Zivkovic B, Scatton B, Dedek J, Bartholini G: GABA influence on noradrenergic and serotonergic transmission: Implications in mood regulation. In: Langer SZ, et al. (Eds.), New Vistas in Depression, Oxford: Pergamon Press, 1982, 195–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petty, F., Kramer, G.L., Hendrickse, W. (1993). Gaba and Depression. In: Mann, J.J., Kupfer, D.J. (eds) Biology of Depressive Disorders. Part A. The Depressive Illness Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9498-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9498-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9500-4

  • Online ISBN: 978-1-4757-9498-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics