A Historical Evaluation of Adventitious Rooting Research to 1993

  • Bruce E. Haissig
  • Tim D. Davis
Part of the Basic Life Sciences book series (BLSC, volume 62)

Abstract

Vegetative propagation of plants by rooting of cuttings (cuttage) was successfully used hundreds of years before there was any study, much less understanding, of the underlying biological processes. For some species, cuttage was old practice even in antiquity, as evidenced in the writings of Aristotle (384–322 B.C.), Theophrastus (371–287 B.C.) and Pliny the Elder (23–79 A.D.). But cuttage was never successful enough to fulfill all then-current public and commercial demands and it still is not [e.g, see chapter by Howard in this volume]. In addition, organ formation has long been a study area within plant morphogenesis (Went and Thimann, 1937), which has made adventitious rooting of academic botanical interest. Hence research on the fundamental biology of adventitious rooting began and continues.

Keywords

Adventitious Root Plant Hormone Root Formation Stem Cutting Adventitious Root Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon., 1941, Factors affecting the vegetative propagation of forest trees, For. Abs. 3:3.Google Scholar
  2. Altman, A., and Wareing, P.F., 1975, The effect of IAA on sugar accumulation and basipetal transport of 14C-labelled assimilates in relation to root formation in Phaseolus vulgaris cuttings, Physiol Plant. 33:33.CrossRefGoogle Scholar
  3. Aucher, E.C., 1930, American experiments in propagating deciduous fruit trees by stem and root cuttings, in: “Rept. and Proc. 9th Int. Hortic. Cong.,” p. 287.Google Scholar
  4. Avery, G.S., and Johnson, E.B., 1947, “Hormones and Horticulture,” McGraw-Hill Book Co., New York.Google Scholar
  5. Bachelard, E.P., and Stowe, B.B., 1963, Rooting of cuttings of Acer rubrum L. and Eucalyptus camaldulensis Dehn, Aust. J. Biol. Sci. 16:16.Google Scholar
  6. Bacon, F., 1620, “The New Organon,” F.H. Anderson, ed., The Library of Library of Liberal Arts, The Bobbs-Merrill Co., Inc., New York.Google Scholar
  7. Balasimha, D., and Subramonian, N., 1983, Roles of phenolics in auxin induced rhizogenesis & isoperoxidases in cacao (Theobroma cacao L.) stem cuttings, Indian J. Exp. Biol. 21:21.Google Scholar
  8. Balfour, L.B., 1913, Problems of propagation, J. Roy. Hortic. Soc. 38:38.Google Scholar
  9. Barlow, P.W., 1986, Adventitious roots of whole plants: their forms, functions, and evolution, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht.Google Scholar
  10. Basu, R.N., Ghosh, B., and Sen, P.K., 1968, Naturally occurring rooting factors in mango (Mangifera indica L.), Indian Agric. 12:12.Google Scholar
  11. Basu, R.N., Roy, B.N., and Böse, T.K., 1970. Interaction of abscisic acid and auxins in rooting of cuttings, Plant Cell Physiol. 11:681.Google Scholar
  12. Becker, D., Sahali, Y., and Raviv, M., 1990, The absolute configuration effect on the activity of the avocado rooting promoter, Phytochem. 29:2065.CrossRefGoogle Scholar
  13. Beijerinck, M.W., 1886, Beobachtungen und Betrachtungen über Wurzelknospen und Nebenwurzeln, Verz. Geschr. 11:11.Google Scholar
  14. Beveridge, W.I.B., 1957, “The Art of Scientific Investigation,” W.W. Norton & Co., Inc., New York.Google Scholar
  15. Biran, L, and Halevy, A.H., 1973, Endogenous levels of growth regulators and their relationship to the rooting of Dahlia cuttings, Physiol Plant. 28:28.CrossRefGoogle Scholar
  16. Blazich, F.A., 1988, Chemicals and formulations used to promote adventitious rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 132.Google Scholar
  17. Bloch, R., 1943a, Polarity in plants, Bot. Rev. 9:261.CrossRefGoogle Scholar
  18. Bloch, R., 1943b, The problem of polarity in plant morphogenesis, Chron. Bot. 7:297.Google Scholar
  19. Bloch, R., 1965, Polarity and gradients in plants: A survey, Handb. D. Pflanzenphysiol. 15:15.Google Scholar
  20. Bojarczuk, K., 1978, Studies on endogenous rhizogenic substances during the process of rooting lilac Syringa vulgaris L.) cuttings, Plant Prop. 24:24.Google Scholar
  21. Bollmark, M., and Eliasson, L., 1990, A rooting inhibitor present in Norway spruce seedlings grown at high irradiance-a putative cytokinin, Physiol. Plant. 80:527.CrossRefGoogle Scholar
  22. Bollmark, M., Kubat, B., and Eliasson, L., 1988, Variation in endogenous cytokinin content during adventitious root formation in pea cuttings, J. Plant Physiol. 132:262.CrossRefGoogle Scholar
  23. Bondi, H., 1992, The philosopher of science, Nature 358:358.CrossRefGoogle Scholar
  24. Bonner, J., Huang, R.C., and Gilden, R.V., 1963, Chromosomally directed protein synthesis, Proc. Nat. Acad. Sci. USA 50:50.CrossRefGoogle Scholar
  25. Böttger, I., and Lüdemann, I., 1964, Über die Bildung einer stoffwechsel-aktiven Ribonucleinsäurefraktion in isolierten Blättern von Euphorbia pulcherrima zu Beginn der Wurzelregeneration, Flora 155:155.Google Scholar
  26. Bouillenne, R., and Bouillenne-Walrand, M., 1939, Teneur en auxines des plantules et hypocotyles inanitiés de “Impatiens Balsamina” L. en rapport avec l’organogénèse des racines, Bull. Acad. Roy. Belg. 16:473.Google Scholar
  27. Bouillenne, R. and Bouillenne-Walrand, M., 1947, Détermination des facteurs de la rhizogénèse. Bull. Acad. Roy. Belg. 33:33.Google Scholar
  28. Bouillenne, R., and Bouillenne-Walrand, M., 1955, Auxins et bouturage, in: “Proc. 14th Int. Hortic. Cong.,” 1:231.Google Scholar
  29. Bouillenne, R., and Went, F., 1933, Recherches expérimentales sur la néoformation des racines dans les plantules et les boutures des plantes supérieures, Ann. Jard. Bot. Buitenzorg 43:43.Google Scholar
  30. Brian, P.W., Hemming, H.G., and Lowe, D., 1960, Inhibition of rooting of cuttings by gibberellic acid, Ann. Bot. 24:24.Google Scholar
  31. Brian, P.W., Hemming, H., and Radley, M., 1955, A physiological comparison of gibberellic acid with some auxins, Plant Physiol. 8:8.CrossRefGoogle Scholar
  32. Breen, P.J., and Muraoka, T., 1973, Effect of indolebutryic acid on distribution of 14C-photosynthate in softwood cuttings of’ Marianna 2624’ plum, J. Amer. Soc. Hortic. Sci. 98:98.Google Scholar
  33. Breen, P.J., and Muraoka, T., 1974, Effect of leaves on carbohydrate content and movement of 14C-assimilate in plum cuttings, J. Amer. Soc. Hortic. Sci. 99:99.Google Scholar
  34. Bunge, M., 1967, “Scientific Research I, The Search for System,” and “II, The Search for Truth,” Springer-Verlag, New York.Google Scholar
  35. Büsgen, M., and Münch, E., 1929, “The Structure and Life of Forest Trees,” 3rd ed., English trans. by T. Thomson, John Wiley & Sons, Inc., New York.Google Scholar
  36. Carlson, M.C., 1929, Microchemical studies of rooting and non-rooting rose cuttings, Bot. Gaz. 87:87.Google Scholar
  37. Carlson, M.C., 1938, The formation of nodal adventitious roots in Salix cordata, Amer. J. Bot. 25:25.CrossRefGoogle Scholar
  38. Carlson, M.C., 1950, Nodal adventitious roots in willow stems of different ages, Amer. J. Bot. 37:555.CrossRefGoogle Scholar
  39. Challenger, S., Lacey, H.J., and Howard, B.H., 1965, The demonstration of root promoting substances in apple and plum rootstocks, in: “Rep. East Maillng Res. Sta. for 1964,” p. 124.Google Scholar
  40. Chamberlin, T.C., 1897, Studies for students, The method of multiple working hypotheses, J. Geol. 5(8):837; reprinted as “Multiple Hypotheses, A Method for Research, Teaching, and Creative Thinking,” Inst. for Humane Studies, Inc., Stanford.CrossRefGoogle Scholar
  41. Chin, T., Meyer, M.M., Jr., and Beevers, L., 1969, Abscisic acid-stimulated rooting of stem cuttings, Planta 88:88.CrossRefGoogle Scholar
  42. Choong, L.I., McGuire, J.L., and Kitchin, J.T., 1969, The relationship between rooting cofactors and easy and difficult-to-root cuttings of three clones of Rhododendron, J. Amer. Soc. Hortic. Sci. 94:94.Google Scholar
  43. Claudot, A.C., Jay-Allemand, C., Magel, E.A., and Drouet, A., 1993, Phenylalanine ammonia-lyase, chalcone synthase and polyphenolic compounds in adult and rejuvenated hybrid walnut tree [sic], Trees 7:92–97.CrossRefGoogle Scholar
  44. Cooper, W.C., 1935, Hormones in relation to root formation on stem cuttings, Plant Physiol. 10:10.CrossRefGoogle Scholar
  45. Cooper, W.C., 1936, Transport of root-forming hormone in woody cuttings, Plant Physiol. 11:11.CrossRefGoogle Scholar
  46. Cooper, W.C., 1938, Hormones and root formation, Bot. Gaz. 99:99.Google Scholar
  47. Corbett, L.C., 1897, The development of roots from cuttings, Meehans Monthly 7:7.Google Scholar
  48. Crocker, W., Hitchcock, A.E., and Zimmerman, P.W., 1935, Similarities in the effects of ethylene and the plant auxins, Contrib. Boyce Thomp. Inst. 7:7.Google Scholar
  49. Curtis, O.F., 1918, “Stimulation of Root Growth in Cuttings by Treatment with Chemical Compounds,” Cornell Univ. Agric. Exp. Sta. Mem. 14, New York.Google Scholar
  50. Darwin, C., 1859, “The Origin of Species,” reprinted by The Modern Library, New York.Google Scholar
  51. Davies, P.J., 1988, The plant hormones: their nature, occurrence, and functions, in: “Plant Hormones and Their Role in Plant Growth and Development,” P.J. Davies, ed., Academic Pubs., Dordrecht.Google Scholar
  52. Davis, T.D., and Haissig, B.E., 1990, Chemical control of adventitious root formation in cuttings, Plant Growth Reg. Soc. Amer. Quart. 18(1): 1.Google Scholar
  53. Davis, T.D., and Sankhla, N., 1988, Effect of shoot growth retardants and inhibitors on adventitious rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Sen, vol. 2, Dioscorides Press, Portland, p. 174.Google Scholar
  54. Davis, T.D., Haissig, B.E., and Sankhla, N., eds., 1988, “Adventitious Root Formation in Cuttings,” Dioscorides Press, Portland.Google Scholar
  55. De Bary, A., 1884, “Comparative anatomy of phanerogams and ferns,” English trans. by F.O. Bower, and D.H. Scott, Clarendon Press, Oxford.Google Scholar
  56. De Candolle, A.-P., 1825, Premier mémoire sur les lenticelles des arbres et le développement des racines qui en sortent, Ann. Sci. Nat., p. 5.Google Scholar
  57. De Candolle, A.-P., 1832, “Physiologie Végétale, ou Exposition des Forces et des Fonctions Vitales des Végétaux,” vols. 1 and 2, Béchet Jeune, Lib. Fac. Med., Paris.Google Scholar
  58. De Haan, I., 1936, Polar root formation, Rec. Trav. Bot. Néerl. 33:33.Google Scholar
  59. Deuber, C.G., 1940, Vegetative propagation of conifers, Trans. Conn. Acad. Arts and Sci. 43:43.Google Scholar
  60. Devaux, H., 1899, Asphixie spontanée et production d’alcool dans les tissus profonds des tiges ligneuses poussant dans les conditions naturelles, C.R. Acad. Sci. Paris 128:1346.Google Scholar
  61. Dick, J. McP., and Dewar, R.C., 1992, A mechanistic model of carbohydrate dynamics during adventitious root development in leafy cuttings, Ann. Bot. 70:70.Google Scholar
  62. Diels, L., 1906, “Jugendformen und Blütenreife,” Gebrüder Borntraeger Verlag, Berlin.Google Scholar
  63. Driesch, H., 1901, “Die organisechen Regulationen,” Leipzig.Google Scholar
  64. Duhamel du Monceau, H.L., 1758, “La Physique des Arbres,” Vols. I and II, Guerin and Delatour, Paris.Google Scholar
  65. Dunn, S., and Townsend, R.J., 1954, Propagation of sugar maple from vegetative cuttings, J. For. 52:52.Google Scholar
  66. Esau, K., 1977, “Anatomy of Seed Plants,” John Wiley & Sons, Inc., New York.Google Scholar
  67. Fadl, M.S., and Hartmann, H.T., 1967a, Relationship between seasonal changes in endogenous promoters and inhibitors in pear buds and cutting bases and the rooting of pear hardwood cuttings, Proc. Amer. Soc. Hortic. Sci. 91:96–112.Google Scholar
  68. Fadl, M.S., and Hartmann, H.T., 1967b, Isolation, purification, and characterization of an endogenous root-promoting factor obtained from basal sections of pear hardwood cuttings, Plant Physiol. 42:541.PubMedCrossRefGoogle Scholar
  69. Fellenberg, G., 1965, Hemmung der Wurzelbildung an etiolierten Erbsenepikotylen durch Bromuracil und Histon, Planta 64:64.CrossRefGoogle Scholar
  70. Fellenberg, G., 1966, Die Hemmung auxininduzierter Wurzelbildung an etiolierten Erbsenepikotylen mit Histon und Antimetaboliten der RNS-und Proteinsynthese, Planta 71:71.CrossRefGoogle Scholar
  71. Fellenberg, G., 1967, Möglichkeiten der Regulierung differentieller DNS-Aktivitäten bei höheren Pflanzen durch Histon, Planta 76:76.CrossRefGoogle Scholar
  72. Fellenberg, G., 1969a, Veränderungen des Nucleoproteids von Erbsenepikotylen durch synthetische Auxine bei der Induktion der Wurzelneubildung, Planta 84:195.CrossRefGoogle Scholar
  73. Fellenberg, G., 1969b, Veränderungen des Nucleoproteids unter dem Einfluss von Auxine und Ascorbinsäure bei der Wurzelneubildung an Erbsenepikotylen, Planta 84:324.CrossRefGoogle Scholar
  74. Fellenberg, G., 1969c, Hemmung der Wurzelneubildung durch saure und neutrale Kernproteine, Planta 86:165.CrossRefGoogle Scholar
  75. Fernqvist, L, 1966, Studies on factors in adventitious root formation, Ann. Agric. Coll. Sweden 32:32.Google Scholar
  76. Fischnich, O., 1935, Über den Einfluss von ß-Indolylessigsäure auf die Blattbewegungen und die Adventivwurzelbildung von Coleus, Planta 24:24.CrossRefGoogle Scholar
  77. Fitting, H., 1909, Die Beeinflussung der Orchideenblüten durch die Bestäubung und durch andere Umstände, Zeit. Planzenphysiol. 1:1.Google Scholar
  78. Fitting, H., 1910, Weitere entwicklungsphysiologische Untersuchungen an Orchideenblüten, Zeit. Pflanzenphysiol. 2:2.Google Scholar
  79. Gardner, F.E., 1929, The relationship between tree age and the rooting of cuttings, Proc. Amer. Soc. Hortic. Sci. 26:26.Google Scholar
  80. Gaspar, T., Smith, D., and Thorpe, T., 1977, Arguments supplémentaires en faveur d’une variation inverse du niveau auxinique endogène au cours des deux premières phases de la rhizogénèse, C.R. Acad. Sci. Paris 285:285.Google Scholar
  81. Geissbühler, H., and Skoog, F., 1957, Comments on the application of plant tissue cultivation to propagation of forest trees, TAPPI 40:40.Google Scholar
  82. Geneve, R.L., Mokhtari, M., and Hackett, W.P. 1991. Adventitious root initiation in reciprocally grafted leaf cuttings from the juvenile and mature phase of Hedera helix L., J. Exp. Bot. 42:65.CrossRefGoogle Scholar
  83. Gesto, M.D.V., Vazques, A., and Vieitez, E., 1981, Changes in the rooting inhibitory effect of chestnut extracts during cold storage of the cuttings, Physiol. Plant. 51:51.CrossRefGoogle Scholar
  84. Girouard, R.M., 1967, Anatomy of adventitious root formation in stem cuttings, in: “Proc. Int. Plant Prop. Soc. Annu. Meeting,” 1967:289.Google Scholar
  85. Girouard, R.M., 1969, Physiological and biochemical studies of adventitious root formation, Extractable rooting cofactors from Hedera helix. Can. J. Bot. 47:47.CrossRefGoogle Scholar
  86. Goebel, K., 1889, Ueber die Jugenzustände der Pflanzen, Flora 72:72.Google Scholar
  87. Goebel, K., 1898-1901, “Organographie der Pflanzen,” Gustav Fischer Verlag, Jena.Google Scholar
  88. Goebel, K., 1902, Ueber Regeneration im Pflanzenreich, Biol. Centralbl. 22:22.Google Scholar
  89. Goebel, K., 1903a, Regeneration in plants, Bull. Torrey Bot. Club 30:197.CrossRefGoogle Scholar
  90. Goebel, K., 1903b, Morphologische und biologische Bemerkungen, 14. Weitere Studien über Regeneration, Flora 92:132.Google Scholar
  91. Goebel, K., 1903c, Studien ueber Regeneration, Flora 92:132.Google Scholar
  92. Goebel, K., 1905a, “Organography of Plants Especially of the Archegoniatae and Spermatophyta,” English edition by I.B. Balfour, Clarendon Press, Oxford.Google Scholar
  93. Goebel, K., 1905b, Allgemeine Regenerationsprobleme, Flora 95:384.Google Scholar
  94. Goodwin, R.H., and Goddard, D.R., 1940, The oxygen consumption of isolated woody tissues, Amer. J. Bot. 27:27.CrossRefGoogle Scholar
  95. Grace, N.H., 1937, Physiologic curve of response to phytohormones by seeds, growing plants, cuttings, and lower plant forms, Can. J. Res. 15(C):538.CrossRefGoogle Scholar
  96. Grace, N.H., 1945, Liberation of growth stimulating materials by rooting Salix cuttings, Can. J. Res. 23(C):85.CrossRefGoogle Scholar
  97. Gregory, L.E., and van Overbeek, J., 1945, An analysis of the process of root formation on cuttings of a difficult hibiscus variety, Proc. Amer. Soc. Hortic. Sci. 46:46.Google Scholar
  98. Groff, P.A., and Kaplan, D.R., 1988, The relation of root systems to shoot systems in vascular plants, Bot. Rev. 54:54.CrossRefGoogle Scholar
  99. Guillot, A., 1965, Action de la 2-thiouracile sur la rhizogénèse dans les boutures de plantules étiolées de tomate, Planta 67:67.CrossRefGoogle Scholar
  100. Guillot, A., 1971, Action de la 5-bromouracile et de ses nucléosides sur la morphogénèse des boutures de plantules étiolées 2-thiouracile sur la rhizogénèse dan les boutures de plantules étiolées de tomate, Planta 67:67.Google Scholar
  101. Guillot, A., 1972, Action de la désoxyuridine sur l’inhibition de la rhizogénèse et de la croissance de l’hypocotyle observée en présence de 5-bromodésoxyuridine chez le boutures de plantules étiolées de tomate, Planta 102:102.Google Scholar
  102. Haagen-Smit, A.J., Dandliker, W.B., Wittwer, S.H., and Murneek, A.E., 1946, Isolation of 3-indoleacetic acid from immature corn kernels, Amer. J. Bot. 33:33.CrossRefGoogle Scholar
  103. Haberlandt, G., 1914, Zur Physiologie der Zellteilung, Sitz. Ber. K. Preuss. Akad. Wiss. 1914:1914.Google Scholar
  104. Hackett, W.P., 1970, The influence of auxin, catechol and methanolic tissue extracts on root initiation in aseptically cultured shoot apices of the juvenile and adult forms of Hedera helix, J. Amer. Soc. Hortic. Sci. 95:95.Google Scholar
  105. Hackett, W.P., 1988, Donor plant maturation and adventitious root formation, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Advances in Plant Sciences Series, vol. 2, Dioscorides Press, Portland, p. 11.Google Scholar
  106. Hagemann, A., 1932, Untersuchungen an Blattstecklingen. Gartenbauwiss. 6:6.Google Scholar
  107. Haffner, V., Enjalric, F., Lardet, L., and Carron, M.P., 1991, Maturation of woody plants: a review of metabolic and genomic aspects, Ann. Sci. For. 48:48.CrossRefGoogle Scholar
  108. Haissig, B.E., 1965, Organ formation in vitro as applicable to forest tree propagation, Bot. Rev. 31:31.CrossRefGoogle Scholar
  109. Haissig, B.E., 1970, Influence of indole-3-acetic acid on adventitious root primordia of brittle willow, Planta 95:95.CrossRefGoogle Scholar
  110. Haissig, B.E., 1971, Influences of indole-3-acetic acid on incorporation of 14C-uridine by adventitious root primordia of brittle willow, Bot. Gaz. 132:132.CrossRefGoogle Scholar
  111. Haissig, B.E., 1972, Meristematic activity during adventitious root primordium development, Influences of endogenous auxin and applied gibberellic acid, Plant Physiol. 49:49.CrossRefGoogle Scholar
  112. Haissig, B.E., 1974a, Origins of adventitious roots, N.Z. J. For. Sci. 4:299.Google Scholar
  113. Haissig, B.E., 1974b, Influences of auxins and auxin synergists on adventitious root primordium initiation and development, N.Z. J. For. Sci. 4:311.Google Scholar
  114. Haissig, B.E., 1982a, Carbohydrate and amino acid concentrations during adventitious root primordium development in Pinus banksiana Lamb. cuttings, For. Sci. 28:813.Google Scholar
  115. Haissig, B.E., 1982b, Activity of some glycolytic and pentose phosphate pathway enzymes during the development of adventitious roots, Physiol. Plant. 55:261.CrossRefGoogle Scholar
  116. Haissig, B.E., 1986, Metabolic processes in adventitious rooting, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht, p. 141.Google Scholar
  117. Haissig, B.E., 1988, Future directions in adventitious rooting research, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 303.Google Scholar
  118. Haissig, B.E., and Riemenschneider, D.E., 1988, Genetics of adventitious rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 47.Google Scholar
  119. Haissig, B.E., and Riemenschneider, D.E., 1992, The original basal stem section influences rooting in Pinus banksiana, Physiol. Plant. 86:86.CrossRefGoogle Scholar
  120. Haissig, B.E., Davis, T.D., and Riemenschneider, D.E., 1992, Researching the controls of adventitious rooting, Physiol. Plant. 84:84.CrossRefGoogle Scholar
  121. Hansen, J., 1988, Influence of gibberellins on adventitious root formation, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 162.Google Scholar
  122. Harder, R., Schumacher, W., Firbas, F., and Denffer, D. von, 1965, “Strasburger’s Textbook of Botany,” English trans. by P. Bell, and D. Coombe, Longmans, Green and Co., Ltd., London.Google Scholar
  123. Hartmann, H.T., Kester, D.E., and Davies, F.T., Jr., 1990, “Plant Propagation, Principles and Practices,” Prentice-Hall, Inc., Englewood Cliffs.Google Scholar
  124. Hartsema, A.M., 1924, Anatomische und experimentelle Untersuchungen über das Auftreten von Neubildungen an Blättern von Begonia rex, Rec. Trav. Bot. Néerl. 23:23.Google Scholar
  125. Hatton, R.G., 1930, Stock: scion relationships, J. Roy. Soc. Hortic. Sci. 55(11): 169.Google Scholar
  126. Heide, O.M., 1965, Interaction of temperature, auxins, and kinins in the regeneration ability of Begonia leaf cuttings, Physiol. Plant. 18:18.Google Scholar
  127. Hess, C.E., 1959, A study of plant growth substances in easy and difficult-to-root cuttings, in: “Proc. 9th Annu. Intl. Plant Prop. Soc,” p. 39.Google Scholar
  128. Hess, C.E., 1960, Research in root initiation — a progress report, in: “Proc. 10th Annu. Meeting Plant Prop. Soc,” p. 118.Google Scholar
  129. Hess, C.E., 1961, The physiology of root initiation in easy-and difficult-to-root cuttings, Hormolog 3:3.Google Scholar
  130. Hess, C.E., 1962, Characterization of the rooting cofactors extracted from Hedera helix L. and Hibiscus rosa-sinensis L., in: “Proc. Int. Plant Prop. Soc.,” 1961:51.Google Scholar
  131. Heuser, C.W., 1988, Bioassay, immunoassay, and verification of adventitious root promoting substances,” in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 274.Google Scholar
  132. Hicks, P.A., 1928, Chemistry of growth as represented by carbon/nitrogen ratio, Regeneration of willow cuttings, Bor. Gaz. 86:86.Google Scholar
  133. Hinds, H.V., ed., 1974, “Special Issue on Vegetative Propagation,” N.Z. J. For., vol. 4, no. 2.Google Scholar
  134. Hitchcock, A.E., 1935a, Tobacco as a test plant for comparing the effectiveness of preparations containing growth substances, Contrib. Boyce Thomp. Inst. 7:349.Google Scholar
  135. Hitchcock, A.E., 1935b, Indole-3-n-propionic acid as a growth hormone and the quantitative measurement of plant response, Contrib. Boyce Thomp. Inst. 7:87.Google Scholar
  136. Hitchcock, A.E., and Zimmerman, P.W., 1931, Rooting of greenwood cuttings as influenced by the age of tissue at the base, Proc. Amer. Soc. Hortic. Sci. 27:136.Google Scholar
  137. Hitchcock, A.E., and Zimmerman, P.W., 1932, Relation of rooting response to age of tissue at the base of greenwood cuttings, Contrib. Boyce Thomp. Inst. 4:4.Google Scholar
  138. Hitchcock, A.E., and Zimmerman, P.W., 1936, Effect of growth substances on the rooting response of cuttings, Contrib. Boyce Thomp. Inst. 8:8.Google Scholar
  139. Humphries, E.C., 1960, Inhibition of root development on petioles and hypocotyls of dwarf bean (Phaseolus vulgaris) by kinetin, Physiol. Plant. 13:13.Google Scholar
  140. Hutchins, R.M., ed., 1953, “Francis Bacon. Advancement of Learning, Novum Organum, New Atlantis,” in: “Great Books of the Western World,” Encyclopedia Britannica, Inc., Chicago.Google Scholar
  141. Jackson, M.B., ed., 1986, “New Root Formation in Plants and Cuttings,” Martinus Nijhoff Pubs., Dordrecht.CrossRefGoogle Scholar
  142. Jackson, M.B., and Harney, P.M., 1970, Rooting cofactors, indoleacetic acid and adventitious root initiation in mung bean cuttings (Phaseolus aureus), Can. J. Bot. 48:48.Google Scholar
  143. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3:3.CrossRefGoogle Scholar
  144. Jacobs, W.P., 1979, “Plant Hormones and Plant Development,” Cambridge Univ. Press, Cambridge.Google Scholar
  145. Jones, A.M., 1990, Do we have the auxin receptor yet?, Physiol. Plant. 80:80.CrossRefGoogle Scholar
  146. Julliard, J., Sotta, B., Pelletier, G., and Miginiac, E., 1992, Enhancement of naphthaleneacetic acid-induced rhizogenesis in TL-DNA-transformed Brassica napus without significant modification of auxin levels and auxin sensitivity, Plant Physiol. 100:100.CrossRefGoogle Scholar
  147. Kato, J., 1958, Studies on the physiological effect of gibberellin, II. On the interaction of gibberellin with auxins and growth inhibitors, Physiol. Plant. 11:11.Google Scholar
  148. Kawase, M., 1964, Centrifugation, rhizocaline and rooting in Salix alba L., Physiol. Plant. 17:17.CrossRefGoogle Scholar
  149. Kawase, M., 1970, Root-promoting substances in Salix alba, Physiol. Plant. 23:23.CrossRefGoogle Scholar
  150. Kawase, M., 1981, A “dream” chemical to aid propagation of woody plants, Ohio Rept. 66(1):8.Google Scholar
  151. Klebs, G., 1903, “Willkürliche Entwicklungsänderungen bei Pflanzen,” Gustav Fischer Verlag, Jena.CrossRefGoogle Scholar
  152. Knight, T.A., 1809, On the origin and formation of roots, Roy. Soc. Philos., pt. 1, p. 16., Reprinted: Sq. Q. London, 1809.Google Scholar
  153. Kögl, F., Haagen-Smit, J.A., and Erxleben, H., 1934, Über ein neues Auxin (“Hetero-auxin”) aus Harn, 11. Mitteilung über planzliche Wachstumsstoffe, Hoppe-Seylers Zeit. Physiol. Chem. 228:228.Google Scholar
  154. Kraft, J.C., Shepard, T., and Juchau, M.R., 1993, Tissue levels of retinoids in human embryos/fetuses, Reprod. Toxicol. 7:11–15.PubMedCrossRefGoogle Scholar
  155. Kraus, E.J., and Krabill, H.R., 1918, “Vegetation and Reproduction with Special Reference to Tomato,” Oregon Agric. Coll. Exp. Sta. Bull. 149.Google Scholar
  156. Kraus, E.J., Brown, N.A., and Hamner, K.C., 1936, Histological reactions of bean plants to indoleacetic acid, Bot. Gaz. 98:98.CrossRefGoogle Scholar
  157. Krenke, N.P., 1933, “Wundkompensation, Transplantation und Chimären bei Pflanzen. Monographie aus dem Gesamtgebiet der Physiologie der Pflanzen und der Tiere,” trans. from Russian, J. Springer-Verlag, Berlin.Google Scholar
  158. Kühne, W. von, 1878, Erfahrungen und Bemerkungen über Enzyme und Fermente, Heidelberg Univ. Physiol. Inst. Unters. 1:1.Google Scholar
  159. Kunkel, A., 1878, Ueber elektromotorische Wirkungen an unverletzten lebenden Pflanzentheilen, Arb. Deutsh Bot. Inst. Würzburg 2:2.Google Scholar
  160. Kunkel, A., 1879, Ueber einige Eigentümlichkeiten des elektrishen Leitungsvermögens lebender Pflanzentheile, Arb. Deutsch Bot. Inst. Würzburg 2:333.Google Scholar
  161. Kupfer, E., 1907, Studies of plant regeneration, Mem. Torrey Bot. Club. 12:12.Google Scholar
  162. Küster, E., 1903, Beobachtungen über Regenerationserscheinungen an Pflanzen, Beih. Bot. Centralbl. 14:14.Google Scholar
  163. Larson, P.R., 1975, Development and organization of the primary vascular system in Populus deltoides according to phyllotaxy, Amer. J. Bot. 62:62.CrossRefGoogle Scholar
  164. Larson, P.R., 1979, Establishment of the vascular system in seedling of Populus deltoides Bartr., Amer. J. Bot. 66:66.CrossRefGoogle Scholar
  165. Larson, P.R., 1980, Interrelations between phyllotaxis, leaf development and the primary-secondary transition in Populus deltoides, Ann. Bot. 46:46.Google Scholar
  166. Lee, C.I., 1971, “Influence of Intermittent Mist on the Development of Anthocyanins and Root-Inducing Substances in Euonymus alatus (Sieb.) ‘Compactas,’ Ph.D. thesis, Cornell Univ., No. 72-8957, Univ. Microfilms Int., Ann Arbor.Google Scholar
  167. Lee, C.I., McGuire, J.J., and Kitchin, J.T., 1969, The relationship between rooting cofactors of easy and difficult-to-root cuttings of three clones of Rhododendron, J. Amer. Soc. Hortic. Sci. 94:94.Google Scholar
  168. Lemaire, A., 1886, Recherches sur l’origine et le developpement des racines laterales chez les dicotyledones, Ann. Sci. Nat. Ser. VII Bot. 3:3.Google Scholar
  169. Letham, D.S., 1963, Zeatin, a factor inducing cell division isolated from Zea mays, Life Sci. No. 8, p. 569.Google Scholar
  170. Libbert, E., 1956, Untersuchungen über die Physiologie der Adventivwurzelbildung, I. Die Wirkungsweise einiger Komponenten des Rhizocalinkomplexes, Flora 144:144.Google Scholar
  171. Linser, H., 1940, Über das Vorkommen von Hemmstoff in Pflanzenextrakten, sowie über das Verhältnis von Wuchsstoffgehalt und Wuchsstoffabgabe bei Pflanzen oder Planzenteilen, Planta 31:31.CrossRefGoogle Scholar
  172. Linser, H., 1948, Über den Einfluß von Pflanzenextrakten auf das Streckungswachstum, Wurzel-und Sproßbildung bei Planzen, Ost. Bot. Zeit. 95:95.CrossRefGoogle Scholar
  173. Lipecki, J., and Dennis, F.G., 1972, Growth inhibitors and rooting cofactors in relation to rooting response of softwood apple cuttings, HortSci. 7:7.Google Scholar
  174. Loeb, J., 1917a, Influence of the leaf upon root formation and geotropic curvature in the stem of Bryophyllum calycinum and the possibility of a hormone theory of these processes, Bot. Gaz. 63:25.CrossRefGoogle Scholar
  175. Loeb, J., 1917b, The chemical basis of axial polarity in regeneration, Science 46:547.PubMedCrossRefGoogle Scholar
  176. Loeb, J., 1919a, The physiological basis of morphological polarity in regeneration. I., J. Gen. Physiol. 1:337.PubMedCrossRefGoogle Scholar
  177. Loeb, J., 1919b, The physiological basis of morphological polarity in regeneration. II., J. Gen. Physiol. 1:687.PubMedCrossRefGoogle Scholar
  178. Loeb, J., 1923, Theory of regeneration based on mass action, J. Gen. Physiol. 5:5.Google Scholar
  179. Loeb, J., 1924, “Regeneration from a Physico-Chemical Viewpoint,” McGraw-Hill Book Co., Inc., New York.CrossRefGoogle Scholar
  180. Lovell, P.H., and White, J., 1986, Anatomical changes during adventitious root formation, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht, p. 111.CrossRefGoogle Scholar
  181. Lugovoy, M., 1937, The rooting and non-rooting of tree species in connection with the anatomical structure of lenticels, Ukrain. Akad. Sci., Inst. Bot. J., No. 23, p. 239.Google Scholar
  182. Lund, E.J., 1923, Electrical control of organic polarity in the egg of Fucus, Bot. Gaz. 76:76.CrossRefGoogle Scholar
  183. Lund, E.J., 1924, Experimental control of organic polarity by the electric current, V. The nature of the control of organic polarity by the electric current, J. Exp. Zool. 41:41.Google Scholar
  184. Lund, E.J., 1928, Relation between continuous bio-electric currents and cell respiration II., J. Exp. Zool. 51:51.CrossRefGoogle Scholar
  185. Lund, E.J., 1930, Internal distribution of the electric correlation potentials in the Douglas fir, Pub. Puget Sound Biol. Sta. 7:7.Google Scholar
  186. Lund, E.J., 1931, The unequal effect of O2 concentration on the velocity of oxydation on loci of different electric potential, and glutathione content, Protoplasma 13:13.CrossRefGoogle Scholar
  187. Lund, E.J., and Kenyon, W.A., 1927, Relation between continuous bio-electric currents and cell respiration I. Electric correlation potentials in growing root tips, J. Exp. Zool. 48:48.CrossRefGoogle Scholar
  188. Lunenfeld, M., ed., 1991, “1492, Discovery, Invasion, Encounter,” D.C. Heath and Co., Lexington.Google Scholar
  189. Mahlstede, J.P., and Watson, D.P., 1952, An anatomical study of adventitious root development in stems of Vaccinium corymbosum, Bot. Gaz. 113:113.CrossRefGoogle Scholar
  190. Majima, R., and Hoshino, T., 1925, Synthetische Versuche in der Indol-Gruppe, VI. Eine neue Synthese von ß-Indolyl-alkylaminen, Ber. Deutsch. Chem. Gesell. 58:58.Google Scholar
  191. Marston, M.E., 1955, The history of vegetative propagation, in: “Proc. 14th Int. Hortic. Cong.,” p. 1157.Google Scholar
  192. Massart, J., 1918, Sur la polarité des organes végétaux, Bull. Biol. Er. Belg. 51:51.Google Scholar
  193. Maurel, C., Barbier-Brygoo, H., Spena, A., Tempé, J., and Guern, J., 1991, Single rol genes from the Agrobacteriun rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum, Plant Physiol. 97:97.CrossRefGoogle Scholar
  194. Maurel, C., Brevet, J., Barbier-Brygoo, H., Guern, J., and Tempé, J., 1990, Auxin regulates the promoter of the root-inducing rolB gene of Agrobacterium rhizogenes in transgenic tobacco, Mol. Gen. Genet. 223:223.CrossRefGoogle Scholar
  195. Mayer, F., and Oppenheimer, T., 1916, Über Naphthyl-essigsäuren, Ber. Deutsh. Chem. Ges. 49:49.Google Scholar
  196. McCallum, W.B., 1905a, Regeneration in plants. L, Bot. Gaz. 40:97.CrossRefGoogle Scholar
  197. McCallum, W.B., 1905b, Regeneration in plants. IL, Bot. Gaz. 40:241.CrossRefGoogle Scholar
  198. Mitsuhashi, M., Shibaoka, H., and Shimokoriyama, M., 1969a, Portual: A root promoting substance in Portulaca leaves, Plant Cell Physiol. 10:715.Google Scholar
  199. Mitsuhashi, M., Shibaoka, H., and Shimokoriyama, M., 1969b, Morphological and physiological characterization of IAA-less-sensitive and IAA-sensitive phases in rooting of Azukia cuttings, Plant Cell Physiol. 10:867.Google Scholar
  200. Molnar, J.M., and LaCroix, L.J., 1972a, Studies of the rooting of cuttings of Hydrangea macrophylla: enzyme changes, Can. J. Bot. 30:315.CrossRefGoogle Scholar
  201. Molnar, J.M., and LaCroix, L.J., 1972b, Studies on the rooting of cuttings of Hydrangea macrophylla: DNA and protein changes, Can. J. Bot. 50:387.CrossRefGoogle Scholar
  202. Moorby, J., and Wareing, P.F., 1963, Ageing in woody plants, Ann. Bot. 27:27.Google Scholar
  203. Moore, T.C., 1979, “Biochemistry and Physiology of Plant Hormones,” Springer-Verlag, New York.CrossRefGoogle Scholar
  204. Morgan, T.H., 1901, “Regeneration,” Columbia Univ, Biol, Ser. VII, The MacMillan Co., New York.Google Scholar
  205. Morgan, T.H., 1903, The hypothesis of formative stuffs, Bull. Torrey Bot. Club 30:30.CrossRefGoogle Scholar
  206. Morgan, T.H., 1904, Polarity and regeneration in plants, Bull. Torrey Bot. Club 31:31.CrossRefGoogle Scholar
  207. Morgan, T.H., 1906, The physiology of regeneration, J. Exp. Zool. 3:3.Google Scholar
  208. Mudge, K.W., 1988, Effect of ethylene on rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 150.Google Scholar
  209. Mullins, M.G., 1985, Regulation of adventitious root formation in microcuttings, Acta Hortic. 166:166.Google Scholar
  210. Nanda, K.K., Jain, M.K., and Malhotra, S., 1971. Effect of glucose and auxins in rooting etiolated stem segments of Populus nigra, Physiol. Plant. 24:387.CrossRefGoogle Scholar
  211. Nanda, K.K., Kumar, P., and Kochhar, V.K., 1974, Role of auxins, antiauxin and phenol in the production and differentiation of callus on stem cuttings of Populus robusta, N.Z. J. For. Sci. 4:4.Google Scholar
  212. Němec, B., 1930, Bakterielle Wuchsstoffe, Ber. Deutsch. Bot. Gesell. 48:48.Google Scholar
  213. Němec, B., 1934, Ernährung, Organogene und Regeneration, Vest. Kral. Ces. Spol. Nauk. Tr. 7:7.Google Scholar
  214. Newton, A.C., Muthoka, P.N., and Dick, McP., 1992, The influence of leaf area on the rooting physiology of leafy stem cuttings of Terminalia spinosa Engl., Trees 6:6.CrossRefGoogle Scholar
  215. Niedergang-Kamien, E., and Leopold, A.C., 1957, Inhibitors of polar auxin transport, Physiol. Plant. 10:10.CrossRefGoogle Scholar
  216. Niedergang-Kamien, E., and Skoog, F., 1956, Studies on polarity and auxin transport in plants, I. Modification of polarity and auxin transport by triiodobenzoic acid, Plant. Physiol. 9:9.Google Scholar
  217. Noll, F., 1900, Über den bestimmenden Einfluss von Wurzelkrümmungen auf Entstehung und Anordnung der Seiten wurzeln, Landw. Jahrb. 29:29.Google Scholar
  218. Nussey, A.N., 1948, “Some Effects of Boron on the Rooting of Softwood cuttings,” M.S. thesis, McGill Univ., Canada.Google Scholar
  219. Orlikowska, T., 1992, Influence of arginine on in vitro rooting of dwarf apple rootstock, Plant Cell Tissue Organ Cult. 31:31.Google Scholar
  220. Ott, J.J., 1763, “Dendrologie Europaæ Mediæ, oder: Saat, Pflanzung, und Gebrauch des Holzes, nach den Grundsätzen des Herrn Duhamel,” Heidegger und Compagnie, Zürich.Google Scholar
  221. Paton, D.M., Willing, R.R., Nicholls, W., and Pryor, L.D., 1970, Rooting of stem cuttings of Eucalyptus: A rooting inhibitor in adult tissue, Aust. J. Bot. 18:18.CrossRefGoogle Scholar
  222. Payen, A., and Persoz, J.F., 1833, Memoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels, Ann. Chim. Phys. 53:53.Google Scholar
  223. Platt, J.R., 1964, Strong inference, Science 146:146.CrossRefGoogle Scholar
  224. Pledge, H.T., 1947, “Science Since 1500, A Short History of Mathematics, Physics, Chemistry, Biology,” Min. Educ, Sci. Museum. Pliny (C. Plinius Secundus), ca. 77 A.D., “Natural History,” English trans. by T.E. Page, E. Capps, L.A. Post, W.H.D. Rouse, and E.H. Warmington, eds., Loeb Classical Lib., Harvard Univ. Press, Cambridge.Google Scholar
  225. Priestley, J.H., and Ewing, J., 1923, Physiological studies in plant anatomy, New Phytol. 22:22.CrossRefGoogle Scholar
  226. Priestley, J.H., 1926, Problems of vegetative propagation, J. Roy. Hortic. Soc. 51(1): 1.Google Scholar
  227. Priestley, J.H., and Swingle, C.F., 1929, “Vegetative Propagation from the Standpoint of Plant Anatomy,” U.S. Dept. Agric. Tech. Bull. No.151.Google Scholar
  228. Rasmussen, A., and Andersen, A.S., 1980, Water stress and root formation in pea cuttings, II. Effects of abscisic acid treatment of cuttings from stock plants grown under two levels of irradiance, Physiol. Plant. 48:48.CrossRefGoogle Scholar
  229. Raviv, M., Becker, D., and Sahali, Y., 1986, The chemical identification of root promoters extracted from avocado tissues, Plant Growth Regul. 4:4.CrossRefGoogle Scholar
  230. Reuveni, O., and Adato, I., 1974, Endogenous carbohydrates, root promoters, and root inhibitors in easy-and difficult-to-root date palm (Phoenix dactylifera L.) offshoots, J. Amer. Soc. Hortic. Sci. 99:99.Google Scholar
  231. Richards, M., 1964, Root formation on cuttings of Camellia reticulata var. ‘Capt. Rawes,’, Nature 204:601.CrossRefGoogle Scholar
  232. Ross, A.C., 1993, Overview of retinoid metabolism, Nutrition 123:2 suppl., p. 346.Google Scholar
  233. Ruge, U., 1957, Zur Wirkstoff-Analyse des Rhizokalin-Komplexes I, Zeit. Bot. 45:45.Google Scholar
  234. Ruge, U., 1960, Zur Wirkstoff-Analyse des Rhizokalin-Komplexes II, Zeit. Bot. 48:292.Google Scholar
  235. Sachs, J., 1880 and 1882, Stoff und Form der Pflanzenorgane, I. and IL, Arb. Bot. inst. Würzburg 2:452 and 689.Google Scholar
  236. Sachs, L, 1887, “Vorlesungen über Pflanzen-Physiologie,” Wilhelm Engelmann Verlag, Leipzig.Google Scholar
  237. Sagee, O., Raviv, M., Medina, Sh., Becker, D., and Cosse, A., 1992, Involvement of rooting factors and free IAA in the rootability of citrus species stem cuttings, Sci. Hortic. 51:51.CrossRefGoogle Scholar
  238. Salkowski, E., and Salkowski, H., 1880, Ueber die skatolbildende Substanz, Ber. Deutsch. Chem. Gesell. 13:13.Google Scholar
  239. Schaffalitzky de Muckadell, M., 1959, Investigations on aging of apical meristems in woody plants and its importance in silviculture, reprinted from Det forstlige Forsøgsvœsen i Danmark 25:309, Kandrup & Wunsch’s Bogtrykkeri, København.Google Scholar
  240. Schmidt, E., 1956, Anatomische Untersuchungen über das Vorkommen von Wurzelanlagen in verschiedenen Internodien von Pisum sativum, Flora 144:144.Google Scholar
  241. Schmülling, T., Schell, L, and Spena, A., 1989, Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants, The Plant Cell 1:1.Google Scholar
  242. Seago, J.L., Jr., and Marsh, L.C., 1990, Origin and development of lateral roots in Typha glauca, Amer. J. Bot. 77:77.CrossRefGoogle Scholar
  243. Selby, C., Kennedy, S.J., and Harvey, B.M.R., 1992, Adventitious root formation in hypocotyl cuttings of Picea sitchensis (Bong.) Carr. — the influence of plant growth regulators, New Phytol. 120:120.CrossRefGoogle Scholar
  244. Shibaoka, H., 1971, Effects of indoleacetic, ρ-chlorophenoxyisobutyric and 2,4,6-trichlorophenoxyacetic acids on three phases of rooting in Azukia cuttings, Plant and Cell Physiol. 12:12.Google Scholar
  245. Sitte, P., 1992, A modern concept of the “cell theory,” A perspective on competing hypotheses of structure, Int. J. Plant Sci. 153(3):S1.CrossRefGoogle Scholar
  246. Skoog, F., and Miller, CO., 1957, Chemical regulation of growth and organ formation in plant tissues cultured in vitro, in: “Biol. Action of Growth Sub. 11th Symp. Soc. Exp. Biol.,” Cambridge Univ. Press, Cambridge, p. 118.Google Scholar
  247. Skoog, F., Strong, F.M., and Miller, CO., 1965, Cytokinins, Science 148:148.CrossRefGoogle Scholar
  248. Smith, E.P., 1928, A comparative study of the stem structure of the genus Clematis with special reference to anatomical changes induced by vegetative propagation, Trans. Roy. Soc. Edinburgh 55:55.CrossRefGoogle Scholar
  249. Snow, A.G., Jr., 1939, “Clonal Variation in Rooting Response of Red Maple Cuttings,” USDA Forest Service, Northeastern For. Exp. Sta. Tech. Note. No. 29.Google Scholar
  250. Spiegel, P., 1955, Some internal factors affecting rooting of cuttings, in: “Rept. 14th Int. Hortic. Cong.,” vol. 1, p. 239.Google Scholar
  251. Stebbins, G.L., 1992, Comparative aspects of plant morphogenesis: A cellular, molecular, and evolutionary approach, Amer. J. Bot. 79:79.CrossRefGoogle Scholar
  252. Stoutemyer, V.T., 1937, “Regeneration in Various Types of Apple Wood,” Res. Bull. Iowa Agric. Exp. Sta., No. 220, p. 308.Google Scholar
  253. Strydom, D.K., and Hartmann, H.T., 1960, Absorption, distribution, and destruction of indoleacetic acid in plant stem cuttings, Plant Physiol. 35:35.CrossRefGoogle Scholar
  254. Stuart, N.W., 1938, Nitrogen and carbohydrate of kidney bean cuttings as affected by treatment with indoleacetic acid, Bot. Gaz. 100:100.CrossRefGoogle Scholar
  255. Swingle, C.F., 1927, Burrknot formations in relation to the vascular system of the apple stem, J. Agric. Res. 34:34.Google Scholar
  256. Taylor, G.G., and Odom, R.E., 1970, Some biochemical compounds associated with rooting of Carya illinoensis stem cuttings, J. Amer. Soc. Hortic. Sci. 95:95.Google Scholar
  257. Theophrastus, ca. 300 B.C., “Enquiry into Plants,” English trans. by A. Hort, G.P. Putnam’s Sons, New York (1916).Google Scholar
  258. Thimann, K.V., and Koepfli, J.B., 1935, Identity of the growth-promoting and root-forming substances of plants, Nature 135:135.CrossRefGoogle Scholar
  259. Thimann, K.V., and Went, F.W., 1934, On the chemical nature of the rootforming [sic] hormone, Proc. Kon. Akad. Wetensch. Amst. 37:37.Google Scholar
  260. Trécul, A., 1846, Sur l’origine des racines, Ann. Sci. Nat. Bot. 6:6.Google Scholar
  261. Trewavas, A., 1981, How do plant growth substances work?, Plant Cell and Environ. 4:4.Google Scholar
  262. Tripepi, R.R., Heuser, C.W., and Shannon, J.C., 1983, Incorporation of tritiated thymidine and uridine into adventitious-root initial cells of Vigna radiata, J. Amer. Soc. Hortic. Sci. 108:108.Google Scholar
  263. Trippi, V.S., 1963, Studies on ontogeny and senility in plants, IV. Activity of some enzymes at different stages of ontogeny and in clones from juvenile and adult zones of Robinia pseudoacacia, Phyton 20:160, XI-1963.Google Scholar
  264. van der Lek, H.A.A., 1924, Over de wortelvorming van houtige stekken, Meded. Landbouwhoogeschool Wageningen, 28:1.Google Scholar
  265. van der Lek, H.A.A., 1934, Over den invloed der knoppen op de wortelvorming der stekken, Meded. Landbouwhoogeschool Wageningen 38(2): 1.Google Scholar
  266. van Overbeek, J, and Gregory, L.E., 1945, A physiological separation of two factors necessary for the formation of roots on cuttings, Amer. J. Bot. 32:32.Google Scholar
  267. van Overbeek, J., Gordon, S.A., and Gregory, L.E., 1946, An analysis of the function of the leaf in the process of root formation in cuttings, Amer. J. Bot. 33:33.Google Scholar
  268. van Staden, J., and Harty, A.R., 1988, Cytokinins and adventitious root formation, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 185.Google Scholar
  269. van Tieghem, P., and Douliot, H., 1888, Recherches comparatives sur l’origine des membres endogènes dans les plantes vasculaires, Ann. Sci. Nat. Bot. 8:8.Google Scholar
  270. Verbeke, J.A., 1992, Developmental principles of cell and tissue differentiation: Cell-cell communication and induction, Int. J. Plant Sci. 153(3):S86.CrossRefGoogle Scholar
  271. Vieitez, E., Vazquez, A., and Areses, M.L., 1966a, Rooting problems of chestnut cuttings, Cong. Colloq. Univ. Liège 38:115.Google Scholar
  272. Vieitez, E., Gesto, M.D.V., Mato, M.C., Vazquez, A., and Carnicer, A., 1966b, p-hydroxzybenzoic acid, a growth regulator, isolated from woody cuttings of Ribes rubrum, Physiol. Plant. 19:294.CrossRefGoogle Scholar
  273. Vieitez, J., Kingston, D.G.I., Ballester, A., and Vieitez, E., 1987, Identification of two compounds correlated with lack of rooting capacity of chestnut cuttings, Tree Physiol. 3:241.CrossRefGoogle Scholar
  274. Vöchting, H., 1878 and 1884, “Über Organbildung im Pflanzenreich, Physiologische Untersuchungen über Wachsthumsursachen und Lebenseinheiten,” I., Max Cohen & Sohn (FR Cohen) Verlag, Bonn; II., Emil Strauss Verlag, Bonn.Google Scholar
  275. Vöchting, H., 1892, “Über Transplantation am Pflanzenkörper,” Tübingen.Google Scholar
  276. Vöchting, H., 1906, Über Regeneration und Polarität bei höhereren Pflanzen, Bot. Zeit. 64:64.Google Scholar
  277. Warmke, H.E., and Warmke, G.L., 1950, The role of auxin in the differentiation of root and shoot primordia from rooting cuttings of Taraxacum and Cichorium, Amer. J. Bot. 37:272–280.CrossRefGoogle Scholar
  278. Went, F.A.F.C., 1930, Über wurzelbildende Substanzen bei Bryophyllum calycinum Salisb., Zeit. Bot. 23:23.Google Scholar
  279. Went, F.W., 1928, Wuchsstoff und Wachstum, Rec. Trav. Bot. Néerl. 25:25.Google Scholar
  280. Went, F.W., 1929, On a substance causing root formation, Proc. Kon. Akad. Wetensch. Amst. 32:32.Google Scholar
  281. Went, F.W., 1932, Eine botanische Polaritätstheorie, Jahrb. Wiss. Bot. 76:76.Google Scholar
  282. Went, F.W., 1934a, A test method for rhizocaline, the root-forming substance, Proc. Kon. Akad. Wetensch. Amst. 37:445.Google Scholar
  283. Went, F.W., 1934b, On the pea test method for auxin, the plant growth hormone, Proc. Kon. Akad. Wetensch. Amst. 37:547.Google Scholar
  284. Went, F.W., 1935, Hormones involved in rootformation [sic], The phenomenon of inhibition, in: “Proc. 6th Int. Bot. Cong.,” vol. 2, p. 267.Google Scholar
  285. Went, F.W., 1938, Specific factors other than auxin affecting growth and root formation, Plant Physiol. 13:13.CrossRefGoogle Scholar
  286. Went, F.W., 1939, The dual effect of auxin on root formation, Amer, J. Bot. 26:26.Google Scholar
  287. Went, F.W., 1974, Reflections and speculations, Annu. Rev. Plant Physiol. 25:25.CrossRefGoogle Scholar
  288. Went, F.W., and Thimann, K.V., 1937, “Phytohormones,” MacMillan Co., New York.Google Scholar
  289. Wildon, D.C., Thain, J.F., Minchin, P.E.H., Gubb, I.R., Reilly, A.J., Skipper, Y.D., Doherty, H.M., O’Connell, P.J., and Bowles, D.J., 1992, Electrical signalling and systemic proteinase inhibitor induction in the wounded plant, Nature 360:360.CrossRefGoogle Scholar
  290. Wilson, P.J., and van Staden, J., 1990, Rhizocaline, rooting co-factors, and the concept of promoters and inhibitors of adventitious rooting — a review, Ann. Bot. 66:66.Google Scholar
  291. Winkler, H., 1900, Ueber Polarität, Regeneration und Heteromorphose bei Bryopsis, Jahrb. Wiss. Bot. 36:36.Google Scholar
  292. Zimmerman, P.W., 1930, Oxygen requirements for root growth of cuttings in water, Amer. J. Bot. 17:17.CrossRefGoogle Scholar
  293. Zimmerman, P.W., and Hitchcock, A.E., 1929, Vegetative propagation of holly, Amer. J. Bot. 16:16.CrossRefGoogle Scholar
  294. Zimmerman, P.W., and Hitchcock, A.E., 1933, Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases, Contr. Boyce Thomp. Inst. 5:5.Google Scholar
  295. Zimmerman, P.W., and Hitchcock, A.E., 1946, The relation between age of stem tissue and the capacity to form roots, J. Gerontol. 1:1.Google Scholar
  296. Zimmerman, P.W., and Wilcoxon, F. 1935, Several chemical growth substances which cause initiation of roots and other responses in plants, Contrib. Boyce Thomp. Inst. 7:209.Google Scholar
  297. Zimmerman, P.W., Crocker, W., and Hitchcock, A.E., 1933, Initiation and stimulation of roots from exposure of plants to carbon monoxide gas, Contr. Boyce Thomp. Inst. 7:7.Google Scholar
  298. Zimmerman, R., 1963, Rooting cofactors in some southern pines, in: “Proc. Int. Plant Prop. Soc,” 13:71.Google Scholar
  299. Zimmerman, R.H., ed., 1976, “Symposium on Juvenility in Woody Perennials,” Acta Hortic, No. 56.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Bruce E. Haissig
    • 1
  • Tim D. Davis
    • 2
  1. 1.USDA Forest Service North Central Forest Experiment StationForestry Sciences LaboratoryRhinelanderUSA
  2. 2.Research and Extension CenterTexas A&M UniversityDallasUSA

Personalised recommendations