Skip to main content

Carbon Allocation to Root and Shoot Systems of Woody Plants

  • Chapter
Biology of Adventitious Root Formation

Part of the book series: Basic Life Sciences ((BLSC,volume 62))

Abstract

Carbon allocation to roots is of widespread and increasing interest due to a growing appreciation of the importance of root processes to whole-plant physiology and plant productivity. Carbon (C) allocation commonly refers to the distribution of C among plant organs (e.g., leaves, stems, roots); however, the term also applies to functional categories within organs such as defense, injury, repair and storage (Mooney, 1972). It also includes C consumed by roots in maintenance respiration and nutrient uptake (Lambers, 1987). In this paper we will use the terms “C allocation,” “C partitioning,” and “component biomass accumulation” (i.e., leaf, stem and root biomass) according to the process-based definitions of Dickson (1989), and Isebrands and Dickson (1991). C allocation is the process of distribution of C within the plant to different parts (i.e., source to “sink”). C partitioning is the process of C flow into and among different chemical fractions (i.e., different molecules, different storage and transport pools). Biomass component accumulation is the end product of the process of C accumulation at a specific sink. In the present review, allocation, partitioning and distribution will be relative terms (e.g., percent of total), whereas growth and accumulation will reflect absolute size (e.g., dry weight, moles of C, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren, G.I., and Ingestad, T., 1987, Root: shoot ratio as a balance between nitrogen productivity and photosynthesis, Plant Cell Environ. 10:10.

    Google Scholar 

  • Alexander, M., 1977, “Introduction to Soil Microbiology,” John Wiley & Sons, New York.

    Google Scholar 

  • Andersen, C.P., and Rygiewicz, P.T., 1991, Stress interactions and mycorrhizal plant-response: understanding carbon allocation priorities, Environ. Pollut. 73:73.

    Article  Google Scholar 

  • Anderson, A.B., Frampton, L.J., Jr., McKeand, S.E., and Hodges, J.F., 1992, Tissue-culture shoot and root system effects on field performance of loblolly pine, Can. J. For. Res. 22:22.

    Article  Google Scholar 

  • Axelsson, B., 1985, Increasing forest productivity and value by manipulating nutrient availability, in: “Weyerhaeuser Sci. Symp.: Forest Potentials, Productivity and value,” R. Ballard, P. Farnum, G.A. Ritchie, and J.K. Winjum, eds., Weyerhaeuser Co., Tacoma.

    Google Scholar 

  • Bloom, A.J., Chapin, F.S., III., and Mooney, H.A., 1985, Resource limitation in plants — an economic analogy, Annu. Rev. Ecol. Syst. 16:16.

    Google Scholar 

  • Bowen, G.D., 1991, Soil temperature, root growth, and plant function, in: “Plant Roots: The Hidden Half,” Y. Waisel, A. Eshel, and U. Kafkafi, eds, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Breen, P.J., and Muraoka, T., 1974, Effect of leaves on carbohydrate content and movement of 14C assimilate in plum cuttings., J. Amer. Soc. Hortic. Sci. 99:99.

    Google Scholar 

  • Brand, M.H., and Lineberger, R.D., 1992, In vitro rejuvenation of Betula (Betulaceae): morphological evaluation, Amer. J. Bot., 79:618.

    Article  Google Scholar 

  • Brouwer, R., 1983, Functional equilibrium: sense or nonsense?, Neth. J. Agric. Sci. 31:31.

    Google Scholar 

  • Brown, D.A., and Upchurch, D.R., 1987, Minirhizotrons: a summary of methods and instruments in current use, in “Minirhizotron Observation Tubes: Methods and Applications for Measuring Rhizosphere Dynamics,” H.M. Taylor, ed., ASA Special Pub. No. 50, Amer. Soc. Agron., Madison, p. 15.

    Google Scholar 

  • Buwalda, J.G., Fossen, M., and Lenz, F., 1992, Carbon dioxide efflux from roots of calamodin and apple, Tree Physiol. 10:10.

    Google Scholar 

  • Caldwell, M.M., and Virginia, R.A., 1991, Root systems, in “Plant Physiological Ecology: Field Methods and Instrumentation,” R.W. Pearcy, J.R. Ehleringer, H.A. Mooney, and P.W. Rundel, eds., Chapman and Hall, New York.

    Google Scholar 

  • Cameron, R.J., and Rook, D.A., 1974, Rooting stem cuttings of Radiata pine: environmental and physiological aspects, N.Z. J. For. Sci. 4:4.

    Google Scholar 

  • Cannell, M.G.R., 1989, Physiological basis of wood production: A review, Scand. J. For. Res. 4:4.

    Article  Google Scholar 

  • Carlson, W.C., and Preisig, C.L., 1981, Effects of controlled-release fertilizers on the shoot and root development of Douglas-fir seedlings, Can. J. For. Res. 11:11.

    Google Scholar 

  • Chairiello, N.R., and Gulmon, S.L., 1991, Stress effects on plant reproduction, in: “Response of Plants to Multiple Stresses,” H.A. Mooney, W.E. Winner, E.J. Pell, and E. Chu, eds., Academic Press, Inc., San Diego.

    Google Scholar 

  • Chapin, F.S. III, Schulze, E.D., and Mooney, H.A., 1990, The ecology and economics of storage in plants, Annu. Rev. Ecol. Syst. 21:21.

    Article  Google Scholar 

  • Cheffins, N.J., and Howard, B.H., 1982, Carbohydrate changes in leafless winter apple cuttings, II. Effects of ambient air temperature during rooting, J. Hortic. Sci. 57:57.

    Google Scholar 

  • Cheikh, N., and Brenner, M.L., 1992, Regulation of key enzymes of sucrose biosynthesis in soybeans leaves, Plant Physiol. 100:100.

    Article  Google Scholar 

  • Cliquet, J., Deleens, E., Bousser, A., Martin, M., Lescure, J., Prioul, J., Mariotti, A., and Morot-Gaudry, J., 1990, Estimation of carbon and nitrogen allocation during stalk elongation by 13C and 15N tracing in Zea mays L., Plant Physiol. 92:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw, J., Lucas, W.J., and Giaquinta, R.T., 1986, “Phloem Transport,” Alan Liss, Inc., New York.

    Google Scholar 

  • Daie, J., 1985, Carbohydrate partitioning and metabolism in crops, Hortic. Rev. 7:7.

    Google Scholar 

  • Daie, J., 1986, Hormone-mediated enzyme activity in source leaves, Plant Growth Reg. 4:4.

    Article  Google Scholar 

  • Davies, W.J., and Zhang, J., 1991, Root signals and the regulation of growth and development of plants in drying soil, Annu. Rev. Plant Physiol. Mol. Biol. 42:42.

    Article  Google Scholar 

  • Davis, T.D., and Potter, J.R., 1985, Carbohydrates, water potential, and subsequent rooting of stored Rhododendron cuttings, HortSci. 20:20.

    Google Scholar 

  • Deng, X., Joly, R.J., and Hahn, D.T., 1990, The influence of plant water deficit on distribution of Relabelled assimilates in cacao seedlings, Ann. Bot. 66:66.

    Google Scholar 

  • de Wit, C.T., and Penning de Vries, F.W.T., 1983, Crop growth models without hormones, Neth. J. Agric. Sci. 31:31.

    Google Scholar 

  • Dewald, L., White, T.L., and Duryea, M.L. 1992, Growth and phenology of seedlings of four contrasting slash pine families in ten nitrogen regimes, Tree Physiol. 11:255.

    Article  PubMed  CAS  Google Scholar 

  • Dick, J.M., and Dewar, R.C., 1992, A mechanistic model of carbohydrate dynamics during adventitious root development in leafy cuttings, Ann Bot. 70:70.

    Google Scholar 

  • Dickmann, D.I., Gjerstad, D.H., and Gordon, J.C., 1975, Developmental patterns of CO2 exchange, diffusion resistance and protein synthesis in leaves of Populus x Euramericana, in: “Environmental and Biological Control of Photosynthesis,” R. Marcelle, ed., Dr. W. Junk, The Hague.

    Google Scholar 

  • Dickson, R.E., 1986, Carbon fixation and distribution in young Populus trees, in: “Crown and canopy structure in relation to productivity,” T. Fujimori, and D. Whitehead, eds., For. and For. Prod. Res. Inst., reprinted from the proceedings, Ibaraki.

    Google Scholar 

  • Dickson, R.E., 1989, Carbon and nitrogen allocation in trees, Ann. Sci. For. 46 (suppl.):631s.

    Article  Google Scholar 

  • Dickson, R.E., 1991, Assimilate distribution and storage, in: “Physiology of trees,” A.S. Raghavendra, ed., John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Dickson, R.E., and Isebrands, J.G., 1991, Leaves as regulators of stress response, in: “Response of Plants to Multiple Stresses,” H.A. Mooney, W.E. Winner, E.J. Pell, and E. Chu, eds., Academic Press, San Diego.

    Google Scholar 

  • Dirr, M.A., and Heuser, C.W., 1987, “The Reference Manual of Woody Plant Propagation,” Varsity Press, Inc., Athens.

    Google Scholar 

  • Donnelly, J.R., 1977, “Morphological and Physiological Factors Affecting Formation of Adventitious Roots on Sugar Maple Stem Cuttings, USDA Forest Service Res. Pap. NE-365.

    Google Scholar 

  • Drew, M.C., and Stolzy, L.H., 1991, Growth under oxygen stress, in: “Plant Roots: The Hidden Half,” Y. Aisel, A. Eshel, and U. Kafkafi, eds., Marcel Dekker, Inc., New York.

    Google Scholar 

  • Ehleringer, J.R., and Osmond, C.B., 1991, Stable isotopes, in: “Plant Physiological Ecology: Field Methods and Instrumentation,” R.W. Pearcy, J.R. Ehleringer, H.A. Mooney, and P.W. Rundel, eds., Chapman and Hall, New York.

    Google Scholar 

  • Eliasson, L., 1968, Dependence of root growth on photosynthesis in Populus tremula, Physiol. Plant. 21:21.

    Article  Google Scholar 

  • Ernstsen, A., and Hansen, J., 1986, Influence of gibberellic acid and stock plant irradiance on carbohydrate content and rooting in cuttings of Scots pine seedlings (Pinus sylvestris L.), Tree Physiol. 1:1.

    Article  Google Scholar 

  • Erwin, J.E., Heins, R.D., and Karlsson, M.G., 1989, Thermomorphogenesis in Lilium longiflorum, Amer. J. Bot., 76:47

    Article  Google Scholar 

  • Fege, A.S., 1983, “Changes in Populus Carbohydrate Reserves During Induction of Dormancy, Cold Storage of Cuttings, and Development of Young Plants,” Ph.D. thesis, Univ. of Minnesota, St. Paul.

    Google Scholar 

  • Fege, A., and Brown, G., 1984, Carbohydrate distribution in dormant Populus shoots and hardwood cuttings, For. Sci. 30:30.

    Google Scholar 

  • Fitter, A.H., 1992, Architecture and biomass allocation as components of the plastic response of roots to soil heterogeneity, in: “Exploitation of Environmental Heterogeneity by Plants,” M.M. Caldwell, and R.W. Pearcy, eds., Academic Press, New York, (in press).

    Google Scholar 

  • Fogel, R., 1990, Root turnover and production in forest trees, HortSci. 25:25.

    Google Scholar 

  • French, C.J., 1990, Rooting of Rhododendron’ Anna Rose Whitney’ cuttings as related to stem carbohydrate concentration, HortSci. 25:25.

    Google Scholar 

  • Friend, A.L., 1988, “Nitrogen Stress and Fine Root Growth of Douglas-fir,” Ph.D. thesis, Univ. of Washington, Seattle.

    Google Scholar 

  • Friend, A.L., Eide, M.R., and Hinckley, T.M., 1990, Nitrogen stress alters root proliferation in Douglas-fir seedlings, Can. J. For. Res. 20:20.

    Article  Google Scholar 

  • Friend, A.L., Scarascia-Mugnozza, G., Isebrands, J.G., and Heilman, P.E., 1991, Quantification of two-year-old hybrid poplar root systems: morphology, biomass, and 14C distribution, Tree Physiol. 8:8.

    Article  Google Scholar 

  • Geiger, D.R., and Serviates, J.C., 1991, Carbon allocation and response to stress, in: “Response of Plants to Multiple Stresses,” H.A. Mooney, W.E. Winner, E.J. Pell, and E. Chu, eds., Academic Press, Inc., San Diego.

    Google Scholar 

  • Gersani, M., Lips, S.H., and Sachs, T., 1980, The influence of shoots, roots and hormones on sucrose distribution, J. Exp. Bot. 31:31.

    Google Scholar 

  • Gifford, R.M., 1986, Partitioning of photoassimilate in the development of crop yield, in: “Phloem Transport,” J. Cronshaw, W.J. Lucas, and R.T. Giaquinta, eds., Alan R. Liss, Inc., New York.

    Google Scholar 

  • Gifford, R.M., and Evans, L.T., 1981, Photosynthesis, carbon partitioning and yield, Annu. Rev. Plant Physiol. 32:32.

    Article  Google Scholar 

  • Gifford, R.M., Thorne, J.M., Hitz, W.D., and Giaquinta, R.T., 1984, Crop productivity and photoassimilate partitioning, Sci. 225:801.

    Article  CAS  Google Scholar 

  • Glerum, C., 1980, Food sinks and food reserves of trees in temperate climates, N.Z. J. For. Sci. 10:10.

    Google Scholar 

  • Glinski, J. and Lipiec, J., 1990, “Soil Physical Conditions and Plant Roots,” CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Gower, S.T., Vogt, K.A., and Grier, C.C., 1992, Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability, Ecol. Monog. 62:62.

    Article  Google Scholar 

  • Graham, R.L., Farnum, P., Timmis, R., and Ritchie, G.A., 1985, Using modeling as a tool to increase forest productivity and value, in: “Weyerhaeuser Science Symposium: Forest Potentials, Productivity and value,” R. Ballard, P. Farnum, G.A. Ritchie, and J.K. Winjum, eds., Weyerhaeuser Co., Tacoma.

    Google Scholar 

  • Granato, T.C., and Raper, C.D., 1989, Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate, J. Exp. Bot. 40:40.

    Article  Google Scholar 

  • Groff, P.A., and Kaplan, D.R., 1988, The relation of root systems to shoot systems in vascular plants, Bot. Rev. 54:54.

    Article  Google Scholar 

  • Gupta, P.K., Timmis, R., and Mascarenhas, A.F., 1991, Field performance of micropropagated forestry species, In Vitro Cell Devel. Biol. 27P:159.

    Google Scholar 

  • Haissig, B.E., 1970, Preformed adventitious root initiation in brittle willows grown in a controlled environment, Can. J. Bot. 48:48.

    Article  Google Scholar 

  • Haissig, B.E., 1974a, Origins of adventitious roots, N.Z. J. For. Sci. 4:299.

    Google Scholar 

  • Haissig, B.E., 1974b, Metabolism during adventitious root primordium initiation and development, N.Z. J. For. Sci. 4:324.

    CAS  Google Scholar 

  • Haissig, B.E., 1984, Carbohydrate accumulation and partitioning in Finns banksiana seedlings and seedling cuttings, Physiol. Plant. 61:61.

    Article  Google Scholar 

  • Haissig, B.E., 1986, Metabolic processes in adventitious rooting of cuttings, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht.

    Google Scholar 

  • Haissig, B.E., 1988, Future directions in adventitious rooting research, in: “Adventitious Root Formation in Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Dioscorides Press, Portland.

    Google Scholar 

  • Haissig, B.E., 1989, Removal of the stem terminal and application of auxin change carbohydrates in Pinus banksiana cuttings during propagation, Physiol. Plant. 77:77.

    Article  Google Scholar 

  • Haissig, B.E., 1990, Reduced irradiance and applied auxin influence carbohydrate relations in Pinus banksiana cuttings during propagation, Physiol. Plant. 78:78.

    Article  Google Scholar 

  • Haissig, B.E., Davis, T.D., and Riemenschneider, D.E., 1992, Researching the controls of adventitious rooting, Physiol. Plant. 84:84.

    Article  Google Scholar 

  • Hansen, J., Strömquist, L., and Ericsson, A., 1978, Influence of the irradiance on carbohydrate content and rooting of cuttings of pine seedlings (Pinus sylvestris L.), Plant Physiol. 61:61.

    Article  Google Scholar 

  • Hendrick, R.L., and Pregitzer, K.S., 1992, The demography of fine roots in a northern hardwood forest, Ecol. 73:73.

    Article  Google Scholar 

  • Henry, P.H., Blazich, F.A., and Hinesley, L.E., 1992, Nitrogen nutrition of containerized eastern redcedar, II. Influence of stock plant fertility on adventitious rooting of stem cuttings, J. Amer. Soc. H ortic. Sci. 117:117.

    Google Scholar 

  • Hinckley, T.M., Ceulemans, R., Dunlap, J.M., Figliola, A., Heilman, P.E., Isebrands, J.G., Scarascia-Mugnozza, G., Schulte, P.J., Smit, B., Stettier, R.F., van Volkenburgh, E., and Waird, B.W., 1989, Physiological, morphological and anatomical components of hybrid vigor in Populus, in: “Structural and Functional Responses to Environmental Stresses: Water Shortage,” K.H. Kreeb, H. Richter, and T.M. Hinckley, eds., SPB Academic Pubs., The Hague.

    Google Scholar 

  • Ho, L.C., 1988, Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength, Annu. Rev. Plant Physiol. Mol Biol. 39:39.

    Article  Google Scholar 

  • Huber, S.C., 1983, Relation between photosynthetic starch formation and dry-weight partitioning between the shoot and root, Can. J. Bot. 61:61.

    Article  Google Scholar 

  • Huber, S.C., and Huber, J.L., 1992, Role of sucrose-phosphate synthase in sucrose metabolism in leaves, Plant Physiol. 99:99.

    Google Scholar 

  • Huber, S.C., Kerr, P.S., and Kalt-Torres, W., 1985, Regulation of sucrose formation and movement, in: “Regulation of Carbon Partitioning in Photosynthetic Tissue,” R.L. Heath, and J. Preiss, eds., Waverly Press, Baltimore.

    Google Scholar 

  • Ingestad, T., and Agren, G.I., 1991, The influence of plant nutrition on biomass allocation, Ecol. Appl. 1:1.

    Article  Google Scholar 

  • Ingestad, T., and Lund, A.B., 1979, Nitrogen stress in birch seedlings, I. Growth technique and growth, Physiol. Plant. 45:45.

    Article  Google Scholar 

  • Isebrands, J.G., and Burk, T.E., 1992, Ecophysiological growth process models of short rotation forest crops, in: “Ecophysiology of Short Rotation Forest Crops,” C.P. Mitchell, J.B. Ford-Robertson, T. Hinckley, and L. Sennerby-Forsse, eds., Elsevier, New York.

    Google Scholar 

  • Isebrands, J.G., and Crow, T.R., 1985, Techniques for rooting juvenile softwood cuttings of northern red oak, in: “Proc. 5th Central Hardwood For. Conf.,” J.O. Dawson, and K.A. Majerus, eds., Univ. of Illinois, Urbana-Champaign.

    Google Scholar 

  • Isebrands, J.G., and Dickson, R.E., 1991, Measuring carbohydrate production and distribution-radiotracer techniques and applications, in: “Techniques and Approaches in Forest Tree Ecophysiology,” J.P. Lassoie, and T.M. Hinckley, eds., CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Isebrands, J.G., and Fege, A.S., 1993, Applications of 14C methods for the study of metabolism in hardwood cuttings, Tree Physiol. (in press).

    Google Scholar 

  • Isebrands, J.G., and Larson, P.R., 1977, Vascular anatomy of the nodal region in Populus deltoides Bartr., Amer. J. Bot. 64:64.

    Google Scholar 

  • Isebrands, J.G., and Larson, P.R., 1980, Ontogeny of major veins in the lamina of Populus deltoides Bartr., Amer. J. Bot. 67:67.

    Article  Google Scholar 

  • Isebrands, J.G., and Nelson, N.D., 1983, Distribution of [14C]-labeled photosynthates within intensively cultured Populus clones during the establishment year, Physiol. Plant. 59:59.

    Article  Google Scholar 

  • Isebrands, J.G., Nelson, N.D., Dickmann, D.I., and Michael, D.A., 1983, “Yield Physiology of Short Rotation Intensively Cultured Poplars,” USDA Forest Service, Gen. Tech. Rep. NC-91.

    Google Scholar 

  • Isebrands, J.G., Rauscher, H.M., Crow, T.R., and Dickmann, D.I., 1990, Whole-tree growth process models based on structural-functional relationships, in: “Process Modeling of Forest Growth Responses to Environmental Stress,” R.K. Dixon, R.S. Meldahl, G.A. Ruark, and W.G. Warren, eds., Timber Press, Portland.

    Google Scholar 

  • Johnson, I.R., and Thornley, J.H.M., 1987, A model of shoot:root partitioning with optimal growth, Ann. Bot. 60:60.

    Google Scholar 

  • Johnson, J.D. 1990. Dry-matter partitioning in loblolly and slash pine: effects of fertilization and irrigation, For. Ecol. Mgmt. 30:147.

    Article  Google Scholar 

  • Jones, C.G., and Coleman, J.S., 1991, Plant stress and insect herbivory: toward an integrated perspective, in: “Response of Plants to Multiple Stresses,” H.A. Mooney, W.E. Winner, E.J. Pell, and E. Chu, eds., Academic Press, Inc., San Diego.

    Google Scholar 

  • Kerr, P.S., Huber, S.C., and Israel, D.W., 1984, Effect of N-source on soybean leaf sucrose phosphate synthase, starch formation, and whole-plant growth, Plant Physiol. 75:75.

    Article  Google Scholar 

  • Klepper, B., 1991, Root-shoot relationships, in: “Plant Roots: The Hidden Half,” Y. Waisel, A. Eshel, and U. Kafkafi, eds., Marcel Dekker, Inc., New York.

    Google Scholar 

  • Kolb, T.E., and Steiner, K.C., 1990a, Growth and biomass partitioning of northern red oak and yellow-poplar seedlings: effects of shading and grass root competition, For. Sci. 36:34.

    Google Scholar 

  • Kolb, T.E., and Steiner, K.C., 1990b, Growth and biomass partitioning response of northern red oak genotypes to shading and grass root competition, For. Sci. 36:293.

    Google Scholar 

  • Kozlowski, T.T., 1971, “Growth and Development of Trees; Cambial Growth, Root Growth, and Reproductive Growth,” vol. 2, Academic Press, New York.

    Google Scholar 

  • Kozlowski, T.T., 1992, Carbohydrate sources and sinks in woody plants, Bot. Rev. 58:58.

    Article  Google Scholar 

  • Kozlowski, T.T., and Keller, T., 1966, Food relations of woody plants, Bot. Rev. 32:32.

    Article  Google Scholar 

  • Kozlowski, T.T., Kramer, P.J., and Pallardy, S.G., 1991, “The Physiological Ecology of Woody Plants,” Academic Press, Inc., San Diego.

    Google Scholar 

  • Kramer, P.J., and Kozlowski, T.T., 1979, Physiology of Woody Plants, Academic Press, Inc., Orlando.

    Google Scholar 

  • Kuehnert, C.C., and Larson, P.R., 1983, Development and organization of the primary vascular system in the phase II leaf and bud of Osmunda cinnamomea L., Bot. Gaz. 144:144.

    Article  Google Scholar 

  • Lambers, H., 1987, Growth, respiration, exudation, and symbiotic associations: the fate of carbon translocated to roots, in: “Root Development and function,” P.J. Gregory, J.V. Lake, and D.A. Rose, eds., Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Lambers, H., Simpson, R.J., Beilharz, V.C., and Dalling, M.J., 1982, Growth and translocation of C and N in wheat (Triticwn aestivum) grown with a split root system, Physiol. Plant. 56:56.

    Article  Google Scholar 

  • Lambers, H., Szaniawski, R.C., and de Visser, R., 1983, Respiration for growth, maintenance and ion uptake: an evaluation of concepts, methods, values and their significance, Physiol. Plant. 58:58.

    Google Scholar 

  • Lang, A., 1974, Inductive phenomena in plant development, in: “Basic Mechanisms in Plant Morphogenesis,” P.S. Carlson, ed., Brookhaven Symp. Biol. No.25, Nat. Tech. Info. Serv., Springfield.

    Google Scholar 

  • Larson, P.R., 1979, Establishment of the vascular system in seedlings of Populus deltoides Bartr., Amer. J. Bot. 66:66.

    Article  Google Scholar 

  • Larson, P.R., 1983, Primary vascularization and the siting of primordia, in: “Growth and Functioning of Leaves,” J.E. Dale, and F.L. Milthorpe, eds., Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Larson, P.R., 1984, Vascularization of developing leaves of Gleditsia triacanthos L., II. Leaflet initiation and early vascularization, Amer. J. Bot. 71:71.

    Google Scholar 

  • Larson, P.R., 1985, Rachis vascularization and leaflet venation in developing leaves of Fraxinus pennsylvanica, Can. J. Bot. 63:63.

    Article  Google Scholar 

  • Larson, P.R., 1986, Vascularization of multilacunar species: Polyscias quilfoylei (Araliaceae), II. The leaf base and rachis, Amer. J. Bot. 73:73.

    Google Scholar 

  • Larson, P.R., and G.D. Fisher, 1983, Xylary union between elongating lateral branches and the main stem in Populus deltoides, Can. J. Bot. 61:61.

    Article  Google Scholar 

  • Larson, P.R., Isebrands, J.G., and Dickson, R.E., 1980, Sink to source transition of Populus leaves, Ber. Deutsch. Bot. Ges. 93:93.

    Google Scholar 

  • Leakey, R.R.B., and Coutts, M.P., 1989, The dynamics of rooting in Triplochiton scleroxylon cuttings: their relation to leaf area, node position, dry weight accumulation, leaf water potential and carbohydrate composition, Tree Physiol. 5:5.

    Article  Google Scholar 

  • Leakey, R.R.B., and Storeton-West, R., 1992, The rooting ability of Triplochiton scleroxylon cuttings: the interactions between stockplant irradiance, light quality and nutrients, For. Ecol. Mgmt. 49:49.

    Article  Google Scholar 

  • Loach, K., 1970, Shade tolerance in tree seedlings, II. Growth analysis of plants raised under artificial shade, New Phytol. 69:69.

    Article  Google Scholar 

  • Loach, K., 1988, Water relations and adventitious rooting, in: “Adventitious Root Formation in Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Dioscorides Press, Portland.

    Google Scholar 

  • Lockhart, B.R., 1992, “Morphology, Gas-Exchange, and 14C-Photosynthate Allocation Patterns in Advanced Cherrybark Oak Reproduction,” Ph.D. theses, Mississippi State Univ.

    Google Scholar 

  • Loescher, W.H., McCamant, T., and Keller, J.D., 1990, Carbohydrate reserves, translocation, and storage in woody plant roots, HortSci. 25:25.

    Google Scholar 

  • Lovell, P.H., and White, J., 1986, Anatomical changes during adventitious root formation, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht.

    Google Scholar 

  • Mansfield, T.A., 1987, Hormones as regulators of water balance, in: “Plant Hormones and Their Role in Plant Growth and Development,” P.J. Davies, ed., Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Margolis, H.A., and Waring, R.H., 1986, Carbon and nitrogen allocation patterns of Douglas-fir seedlings fertilized with nitrogen in autumn, I. Overwinter metabolism, Can. J. For. Res. 16:16.

    Google Scholar 

  • Marx, D., Hatch, A.B., and Mendicino, J.F., 1977, High soil fertility decreases sucrose content and susceptibility of loblolly pine roots to ectomycorrhizal infection by Pisolithus tinctorius, Can. J. Bot. 55:55.

    Article  Google Scholar 

  • Maynard, B.K., and Bassuk, N.L., 1988, Etiolation and banding effects on adventitious root formation, in: “Adventitious Root Formation in Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Dioscorides Press, Portland.

    Google Scholar 

  • McKeand, S.E., and Allen, H.L., 1984, Nutritional and root development factors affecting growth of tissue culture plantlets of loblolly pine, Physiol. Plant. 61:61.

    Article  Google Scholar 

  • Mengel, K., and Kirkby, E.A., 1982, “Principles of Plant Nutrition,” Int. Potash Inst., Worblaufen-Bern.

    Google Scholar 

  • Moe, R., and Andersen, A.S., 1988, Stock plant environment and subsequent adventitious rooting, in: “Adventitious Root Formation in Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Dioscorides Press, Portland.

    Google Scholar 

  • Mooney, H.A., 1972, The carbon balance of plants, Ann. Rev. Ecol. Syst. 3:3.

    Article  Google Scholar 

  • Mooney, H.A., and Winner, W.E., 1991, Partitioning response of plants to stress, in: “Response of Plants to Multiple Stresses,” H.A. Mooney, W.E. Winner, EJ. Pell, and E. Chu, eds., Academic Press, Inc., San Diego.

    Google Scholar 

  • Mor, Y., and Halevy, A.H., 1979, Translocation of 14C-assimilates in roses, I. The effect of the age of the shoot and the location of the source leaf, Physiol. Plant. 45:45.

    Article  Google Scholar 

  • Morgan, D.C., Rook, D.A., Warrington, I.J., and Turnbull, H.L., 1983, Growth and development of Pinus radiata D. Don.: The effect of light quality, Plant Cell Environ. 6:6.

    Google Scholar 

  • Naganawa, T., and Kyuma, K., 1991, Concentration-dependence of CO2 evolution from soil in chamber with low CO2 concentration (< 2,000 ppm), and CO2 diffusion/sorption model in soil, Soil Sci. Plant Nutr. 37:37.

    Article  Google Scholar 

  • Nanda, K.K., and Anand, V.K., 1970, Seasonal changes in auxin effects on rooting of stem cuttings of Populus nigra and its relationship with mobilization of starch, Physiol.Plant. 23:23.

    Google Scholar 

  • Nelson, N.D., and Isebrands, J.G., 1983, Late-season photosynthesis and photosynthate distribution in an intensively-cultured Populus nigra x laurifolia clone, Photosynthetica 17:17.

    Google Scholar 

  • Nguyen, P.V., Dickmann, D.I., Pregitzer, K.S., and Hendrick, R., 1990, Late-season changes in allocation of starch and sugar to shoots, coarse roots, and fine roots in two hybrid poplar clones, Tree Physiol. 7:7.

    Article  Google Scholar 

  • Nobel, P.S., Alm, D.M., and Cavelier, J., 1992, Growth respiration, maintenance respiration and structural-carbon costs for roots of 3 desert succulents, Fund. Ecol. 6:6.

    Article  Google Scholar 

  • Okoro, O.O., and Grace, J., 1976, The physiology of rooting populus cuttings, I. Carbohydrates and photosynthesis, Physiol Plant. 36:36.

    Article  Google Scholar 

  • Oliveira, C.M., and Priestley, C.A., 1988, Carbohydrate reserves in deciduous fruit trees, Hortic. Rev. 10:10.

    Google Scholar 

  • Patrick, J.W., 1987, Are hormones involved in assimilate transport?, in: “Hormone Action in Plant Development, A Critical Appraisal,” G.V. Hoad, J.R. Lenton, M.B. Jackson, and R.K. Atkin, eds., Butterworths, London.

    Google Scholar 

  • Patrick, J.W. 1988, Assimilate partitioning in relation to crop productivity, HortSci. 23:33.

    Google Scholar 

  • Pregitzer, K.S., Dickmann, D.I., Hendrick, R., and Nguyen, P.V., 1990, Whole-tree carbon and nitrogen partitioning in young hybrid poplars, Tree Physiol. 7:7.

    Article  Google Scholar 

  • Priestley, C.A., 1970, Carbohydrate storage and utilization, in: “Physiology of Tree Crops,” L.C Luckwill and C.V. Cutting, eds., Academic Press, London.

    Google Scholar 

  • Raich, J.W., and Nadelhoffer, K.J., 1989, Belowground carbon allocation in forest ecosystems: global trends, Ecol. 70:70.

    Article  Google Scholar 

  • Rajagopal, V., and Andersen, A.S., 1980, Water stress and root formation in pea cuttings, I. Influence of the degree and duration of water stress on stock plants grown under two levels of irradiance, Physiol. Plant. 48:48.

    Google Scholar 

  • Rauscher, H.M., Isebrands, J.G., Host, G.E., Dickson, R.E., Dickmann, D.I., Crow, T.R., and Michael, D.A., 1990, ECOPHYS: an ecophysiological growth process model for juvenile poplar, Tree Physiol. 7:7.

    Article  Google Scholar 

  • Reddy, K.R., Hodges, H.F., McKinion, J.M., and Wall, G.W., 1992, Temperature effects on pima cotton growth and development, Agron. J. 84:84.

    Google Scholar 

  • Reynolds, J.F., and Thornley, J.H.M., 1982, A shootroot partitioning model, Ann. Bot. 49:49.

    Google Scholar 

  • Richards, J.H., 1984, Root growth in response to defoliation in two Agropyron bunchgrasses: Field observations with an improved root periscope, Oecologia 64:64.

    Article  Google Scholar 

  • Rio, C del, Rallo, L., and Caballero, J.M., 1991, Effects of carbohydrate content on the seasonal rooting of vegetative and reproductive cuttings of olive, J. Hortic. Sci. 66:66.

    Google Scholar 

  • Ritchie, G.A., 1991, The commercial use of conifer rooted cuttings in forestry: a world overview, New For. 5:5.

    Article  Google Scholar 

  • Ritchie, G.A., and Long, A.J., 1986, Field performance of micropropagated Douglas fir, N.Z. J. For. Sci. 16:16.

    Google Scholar 

  • Ritchie, G.A., Tanaka, Y., and Duke, S.D., 1992, Physiology and morphology of Douglas-fir rooted cuttings compared to seedlings and transplants, Tree Physiol. 10:10.

    Article  Google Scholar 

  • Robinson, J.C, and Schwabe, W.W., 1977, Studies on the regeneration of apple cultivars from root cuttings, II. Carbohydrate and auxin relations, J. Hortic. Sci. 52:52.

    Google Scholar 

  • Rufty, T.W., Huber, S.C., and Volk, RJ., 1988, Alterations in leaf carbohydrate metabolism in response to nitrogen stress, Plant Physiol. 88:88.

    Article  Google Scholar 

  • Ryan, C.A., and Farmer, E.E., 1991, Oligosaccharide signals in plants: a current assessment, Annu. Rev. Plant Physiol. Mol. Bio. 42:42.

    Google Scholar 

  • Satoh, M., Kriedemann, P.E., and Loveys, B.R., 1977, Changes in photosynthetic activity and related processes following decapitation in mulberry trees, Physiol. Plant. 41:41.

    Article  Google Scholar 

  • Scarascia-Mugnozza, G., 1991, “Physiological and Morphological Determinants of Yield in Intensively Cultured Poplars (Populus spp.),” Ph.D. thesis, Univ. of Washington, Seattle.

    Google Scholar 

  • Schurr, U., and Jahnke, S., 1991, Effects of water stresses and rapid changes in sink water potential on phloem transport in Ricinus, in: “Recent Advances in Phloem Transport and Assimilate Compartmentation”, J.L. Bonnemain, S. Delrot, WJ. Lucas, and J. Dainty, eds., Ouest Editions Presses Academiques, Nantes.

    Google Scholar 

  • Sharp, R.E., and Davies, W.J, 1979, Solute regulation and growth by roots and shoots of water-stressed maize plants, Planta 147:147.

    Article  Google Scholar 

  • Skene, K.G.M., 1975, Cytokinin production by roots as a factor in the control of plant growth, in: “The Development and Function of Roots,” J.G. Torrey, and D.T. Clarkson, eds., Academic Press, London.

    Google Scholar 

  • Smalley, T.J., Dirr, M.A., Armitage, A.M., Wood, B.W., Teskey, R.O., and Severson, R.F., 1991, Photosynthesis and leaf water, carbohydrate, and hormone status during rooting of stem cuttings of Acer rubrum, J. Amer. Soc. Hortic. Sci. 11:11.

    Google Scholar 

  • Smit, B., Stachowiak, M., and van Volkenburgh, E., 1989, Cellular processes limiting leaf growth in plants under hypoxic root stress, J. Exp. Bot. 40:40.

    Article  Google Scholar 

  • Spence, R.D., Rykiel, E.J., Jr., and Sharpe, P.J.H., 1990, Ozone alters carbon allocation in loblolly pine: assessment with carbon-11 labeling, Environ. Pollut. 64:64.

    Article  Google Scholar 

  • Squire, R.O., Attiwill, P.M., and Neales, T.F., 1987, Effects of changes of available water and nutrients on growth, root development and water use in Pinus radiata seedlings, Aust. For. Res. 17:17.

    Google Scholar 

  • Stettier, R.F., and Ceulemans, R., 1993, Clonal material as a focus for genetic and physiological research in forest trees, in: “Clonal Forestry: Genetics, Biotechnology and Application,” M.R. Ahuja, and WJ. Libby, eds., Springer-Verlag, Berlin, (in press).

    Google Scholar 

  • Stettler, R.F., Bradshaw, H.D., and Zsuffa, L., 1992, The role of genetic improvement in short rotation forestry, in: “Ecophysiology of Short Rotation Forest Crops,” C.P. Mitchell, J.B. Ford-Robertson, T. Hinckley, and L. Sennerby-Forsse, eds. Elsevier Appl. Sci., London.

    Google Scholar 

  • Stettler, R.F., Fenn, R.C., Heilman, P.E., and Stanton, B.J., 1988, Populus trichocarpa x Populus deltoides hybrids for short-rotation culture: variation patterns and 4-year field performance, Can. J. For. Res. 18:18.

    Article  Google Scholar 

  • Stieber, J., and Beringer, H., 1984, Dynamic and structural relationships among leaves, roots, and storage tissue in the sugar beet, Bot. Gaz. 145:145.

    Article  Google Scholar 

  • Stitt, M., 1990, Fructose-2,6-bisphosphate as a regulatory molecule in plants, Annu. Rev. Plant Physiol. Mol Bio. 41:41.

    Google Scholar 

  • Stitt, M., and Quick, W.P., 1989, Photosynthetic carbon partitioning: its regulation and possibilities for manipulation, Physiol. Plant. 77:77.

    Article  Google Scholar 

  • Stitt, M., Gerhardt, R., Wilke, I., and Heldt, H.W., 1987, The contribution of fructose 2,6-bisphosphate to the regulation of sucrose synthesis during photosynthesis, Physiol. Plant. 69:311.

    Article  Google Scholar 

  • Sutton, R.F., 1980, Root system morphogenesis, N.Z. J. For. Sci. 10:10.

    Google Scholar 

  • Thornley, J.H.M. 1972, A balanced quantitative model for root:shoot ratios in vegetative plants, Ann. Bot. 36:431.

    Google Scholar 

  • Thornley, J.H.M., 1976, “Mathematical Models in Plant Physiology,” Academic Press, London.

    Google Scholar 

  • Timmis, R., Ritchie, G.A., and Pullman, G.S., 1992, Age-and position-of-origin and rootstock effects in Douglas-fir plantlet growth and plagiotropism, Plant Cell Tissue Organ Cult. 29:29.

    Article  Google Scholar 

  • Topa, M.A., and McLeod, K.W., 1986, Responses of Pinus clausa, Pinus serotina and Pinus taeda seedlings to anaerobic solution culture, I. Changes in growth and root morphology, Physiol. Plant. 68:68.

    Google Scholar 

  • Tschaplinski, T.J., and Blake, T.J., 1989, Correlation between early root production, carbohydrate metabolism, and subsequent biomass production in hybrid poplar, Can. J. Bot. 67:67.

    Google Scholar 

  • van den Driessche, R., 1987, Importance of current photosynthate to new root growth in planted conifer seedlings, Can. J. For. Res. 17:17.

    Article  Google Scholar 

  • van Veen, J.A., Liljeroth, E., Lekkerkerk, L.J.A., and van de Geijn, S.C., 1991, Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels, Ecol. Appl. 1:1.

    Google Scholar 

  • Vapaavuori, E.M., Rikala, R., and Ryyppo, A., 1992, Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation, Tree Physiol. 10: 217–230.

    Article  PubMed  Google Scholar 

  • Veierskov, B., 1988, Relations between carbohydrates and adventitious root formation, in: “Adventitious Root Formation in Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Dioscorides Press, Portland.

    Google Scholar 

  • Vieitez, E., 1974, Vegetative propagation of chestnut, N.Z. J. For. Sci. 4:4.

    Google Scholar 

  • Vieitez, A.M., Ballester, A., Garcia, M.T., and Vieitez, E., 1980, Starch depletion and anatomical changes during the rooting of Castanea sativa Mill, cuttings, Sci. Hortic. 13:13.

    Article  Google Scholar 

  • Vogt, K.A., and Persson, H., 1991, Measuring growth and development of roots, in: “Techniques and Approaches in Forest Tree Ecophysiology,” J.P. Lassoie, and T.M. Hinckley, eds., CRC Press, Boca Raton.

    Google Scholar 

  • Vogt, K.A., Vogt, D.J., Moore, E.E., and Sprugel, D.G., 1989, Methodological considerations in measuring biomass, production, respiration and nutrient resorption for tree roots in natural ecosystems, in: “Applications of Continuous and Steady-State Methods to Root Biology,” J.G. Torrey, and L.J. Winship, eds., Kluwer Academic Pubs., Dordrecht.

    Google Scholar 

  • Wardlaw, I.F., 1990, Tansley Review No. 27, The control of carbon partitioning in plants, New Phytol. 116:116.

    Article  Google Scholar 

  • Wareing, P.F., 1980, Root hormones and shoot growth, in: “Control of Shoot Growth in Trees,” Proc. Joint Workshop of IUFRO Working Parties on Xylem and Shoot Growth Physiol.,” Frederiction.

    Google Scholar 

  • Watts, S., Rodriguez, J.L., Evans, S.E., and Davies, W.J., 1981, Root and shoot growth of plants treated with abscisic acid, Ann. Bot. 47:47.

    Google Scholar 

  • Whisler, F.D., Acock, B., Baker, D.N., Fye, R.E., Hodges, H.F., Lambert, J.R., Lemmon, H.E., McKinion, and Reddy, V.R., 1986, Crop simulation models in agronomic systems. Adv. Agron. 40:40.

    Google Scholar 

  • Wilson, J.B., 1988, A review of evidence on the control of shoot:root ratio in relation to models, Ann. Bot. 61:61.

    Google Scholar 

  • Wyse, R.E., 1986, Sinks as determinants of assimilate partitioning: possible sites for regulation, in: “Phloem Transport,” J. Cronshaw, W.J. Lucas, and R.T. Giaquinta, eds., Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friend, A.L., Coleman, M.D., Isebrands, J.G. (1994). Carbon Allocation to Root and Shoot Systems of Woody Plants. In: Davis, T.D., Haissig, B.E. (eds) Biology of Adventitious Root Formation. Basic Life Sciences, vol 62. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9492-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9492-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9494-6

  • Online ISBN: 978-1-4757-9492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics