Control of Root System Architecture through Chemical and Genetic Alterations of Polyamine Metabolism

  • David Tepfer
  • Jean-Pierre Damon
  • Gozal Ben-Hayyim
  • Alessandro Pellegrineschi
  • Daniel Burtin
  • Josette Martin-Tanguy
Part of the Basic Life Sciences book series (BLSC, volume 62)


Plant growth is plastic, responding to a variety of environmental cues and conditions; and plant growth has been altered using genetics, biochemistry, horticulture and agronomy. However, efforts to modify growth have been mostly been aimed at the aerial parts of the plant. In the present paper we will retrace and discuss our efforts to alter root system architecture, first through genetic transformation, then through chemical and physiological means.


Hairy Root Adventitious Root Formation Agrobacterium Rhizogenes Root System Architecture Polyamine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann, C., 1977, Pflanzen aus Agrobacterium rhizogenes tumoren aus Nicotiana tabacum, Plant Sci. Lett. 8:8.Google Scholar
  2. Bécard, G., and Fortin, J., 1988, Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots, New Phytol. 108:108.CrossRefGoogle Scholar
  3. Burtin, D., Martin-Tanguy, J., and Tepfer, D., 1991, α-DL-difluoromethylornithine, a specific, irreversible inhibitor of putrescine biosynthesis, induces a phenotype in tobacco similar to that ascribed to the root-inducing, left-hand transferred DNA of Agrobacterium rhizogenes, Plant Physiol. 95:461.PubMedCrossRefGoogle Scholar
  4. Cardarelli, M., Mariotti, D., Pomponi, M., Spano, L., Capone, I., and Costantino, P., 1987, Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype, Mol. Gen. Genet. 209:209.CrossRefGoogle Scholar
  5. Chilton, M.-D., Tepfer, D., Petit, A., David, C., Casse-Delbart, F., and Tempé, J., 1982, Agrobacterium rhizogenes inserts T-DNA into the genomes of host plant root cells, Nature 295:295.CrossRefGoogle Scholar
  6. Durand-Tardif, M., Broglie, R., Slightom, J., and Tepfer, D., 1985, Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum: organ and phenotypic specificity, J. Mol. Biol. 186:186.CrossRefGoogle Scholar
  7. Estruch, J., Schell, J., and Spena, A., 1991a, The protein encoded by the rolB plant oncogene hydrolyses indole glucosides, EMBO J. 10:3125.PubMedGoogle Scholar
  8. Estruch, J., Chriqui, D., Grossmann, K., Schell, J., and Spena, A., 1991b, The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates, EMBO J. 10:2889.PubMedGoogle Scholar
  9. Jouanin, L., Vilaine, F., Tourneur, J., Pautot, V., Muller, J.-F., and Caboche, M., 1987, Transfer of a 4.3 kb fragment of the TL-DNA of Agrobacterium rhizogenes strain A4 confers the pRi transformed phenotype to regenerated plants, Plant Sci. 53:53.CrossRefGoogle Scholar
  10. Julliard, J., Sotta, B., Pelletier, G., and Miginiac, E., 1992, Enhancement of naphthaleneacetic acid-induced rhizogenesis in TL-DNA-transformed Brassica napus without significant modification of auxin levels and auxin sensitivity, Plant Physiol. 100:100.CrossRefGoogle Scholar
  11. Levesque, H., Delepelaire, P., Rouzé, P., Slightom, J., and Tepfer, D., 1988, Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens, Plant Mol. Biol. 11:11.CrossRefGoogle Scholar
  12. Maliga, P., Sz.-Breznovits, A., and Márton, L., 1973, Streptomycin-resistant plants from callus culture of haploid tobacco, Nature New Biol. 244:244.Google Scholar
  13. Malmberg, R.L., Smith, K.E., Bell, E., and Cellino, M.L., 1992, Arginine decarboxylase of oats is clipped from a precursor into 2 polypeptides found in the soluble enzyme, Plant Physiol. 100:100.CrossRefGoogle Scholar
  14. Martin-Tanguy, J., Tepfer, D., Paynot, M., Burtin, D., Heisler, L., and Martin, C., 1990, Inverse relationship between polyamine levels and the degree of phenotypic alteration induced by the Ri TL-DNA from Agrobacterium rhizogenes, Plant Physiol. 92:92.CrossRefGoogle Scholar
  15. Maurel, C., Barbierbrygoo, H., Brevet, J., Spena, A., Tempé, J., and Guern, J., 1991a, Agrobacterium rhizogenes T-DNA genes and sensitivity of plant protoplasts to auxins, in: “Advances in Molecular Genetics of Plant-Microbe Interactions,” vol. 1, H. Hennecke, and D.P.S. Verma, eds., Kluwer Academic Pubs., Dordrecht.Google Scholar
  16. Maurel, C., Barbierbrygoo, H., Spena, A., Tempé, J., and Guern, J., 1991b, Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum, Plant Physiol. 97:212.PubMedCrossRefGoogle Scholar
  17. Mugnier, J., and Mosse, B., 1987, Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically, Phytopath. 77:77.Google Scholar
  18. Ooms, G., Twell, D., Bossen, M., Hoge, J., and Murrel, M., 1986, Developmental regulation of Ri TL-DNA gene expression in roots, shoots and tubers of transformed potato (Solanum tuberosum cv. Desiree), Plant Mol. Biol. 6:6.CrossRefGoogle Scholar
  19. Oono, Y., Handa, T., Kanaya, K., and Uchimiya, H., 1987, The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants, Jpn. J. Genet. 62:62.CrossRefGoogle Scholar
  20. Riker, A., Banfield, W., Wright, W., Keitt, G., and Sagen, H., 1930, Studies on infectious hairy root of nursery apple trees, J. Agric. Res. 41:41.Google Scholar
  21. Schaerer, S., and Pilet, P.-E., 1993, Quantification of indole-3-acetic acid in untransformed and Agrobacterium rhizogenes-transformed pea roots using gas chromatography mass spectrometry, Planta 189:189.CrossRefGoogle Scholar
  22. Schmülling, T., Schell, J., and Spena, A., 1988, Single genes from Agrobacterium rhizogenes influence plant development, EMBO J. 7:7.Google Scholar
  23. Shen, W., Petit, A., Guern, J., and Tempé, J., 1988, Hairy roots are more sensitive to auxin than normal roots, Proc. Natl. Acad. Sci. USA 85:85.Google Scholar
  24. Sinkar, V., Pythoud, F., White, F., Nester, E., and Gordon, M., 1988a, rol A locus of the Ri plasmid directs developmental abnormalities in transgenic plants, Genes and Dev. 2:688.PubMedCrossRefGoogle Scholar
  25. Sinkar, V., White, F., Fumer, I., Abrahamsen, M., Pythoud, F., and Gordon, M., 1988b, Reversion of aberrant plants transformed with Agrobacterium rhizogenes is associated with the transcriptional inactivation of the TL-DNA genes, Plant Physiol. 86:47.CrossRefGoogle Scholar
  26. Slightom, J., Durand-Tardif, M., Jouanin, L., and Tepfer, D., 1986, Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid, J. Biol. Chem. 261:261.Google Scholar
  27. Spena, A., Schmülling, T., Koncz, C., and Schell, J., 1987, Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants, EMBO J. 6:6.Google Scholar
  28. Spena, A., Estruch, J.J., Prinsen, E., Nacken, W., Vanonckelen, H., and Sommer, H., 1992, Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth, Theor. Appl. Genet. 84:84.Google Scholar
  29. Sun, L.-Y., Monneuse, M.-O., Martin-Tanguy, J., and Tepfer, D., 1991, Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes, Plant Sci. 80:80.CrossRefGoogle Scholar
  30. Taylor, B., Amasino, R., White, F., Nester, E., and Gordon, M., 1985, T-DNA analysis of plants regenerated from hairy root tumors, Mol. Gen. Genet. 201:201.Google Scholar
  31. Tepfer, D., 1982, La transformation génétique de plantes supérieures par Agrobacterium rhizogenes, In: “2e Colloq. Recher. Fruitières,” Cent. Tech. Interprof. des Fruits et Légumes, Bordeaux.Google Scholar
  32. Tepfer, D., 1983a, The biology of genetic transformation of higher plants by Agrobacterium rhizogenes, in: “Molecular Genetics of the Bacteria Plant Interaction,” A. Punier, ed., Springer-Verlag, Berlin.Google Scholar
  33. Tepfer, D., 1983b, The potential uses of Agrobacterium rhizogenes in the genetic engineering of higher plants: nature got there first, in: “Genet. Eng. in Eukaryotes,” P. Lurquin, and A. Kleinhofs, eds., Plenum Press, New York.Google Scholar
  34. Tepfer, D., 1984, Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype, Cell 47:47.Google Scholar
  35. Tepfer, D., 1989, Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology and evolution, in: “Plant-Microbe Interactions,” T. Kosuge, and E. Nester, eds., McGraw Hill, New York.Google Scholar
  36. Tepfer, D., and Tempé, J., 1981, Production d’agropine par des racines formées sous l’action d’Agrobacterium rhizogenes, souche A4, C. R. Acad. Sci. Paris 292:292.Google Scholar
  37. Tepfer, D., Goldmann, A., Fleury, V., Maille, M., Message, B., Pamboukdjian, N., Boivin, C., Dénarié, J., Rosenberg, C., Lallemand, J.Y., Descoins, C., Charpin, I., and Amarger, N., 1988a, Calystegins, nutritional mediators in plant-microbe interactions, in: “Molecular Genetics of Plant-Microbe Interactions,” R. Palacios, and D. Verma, eds., APS Press, St. Paul.Google Scholar
  38. Tepfer, D., Goldmann, A., Pamboukdjian, N., Maille, M., Lépingle, A., Chevalier, D., Dénarié, J., and Rosenberg, C., 1988b, A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegia sepium., J. Bacteriol. 170:1153.PubMedGoogle Scholar
  39. Vilaine, F., Charbonnier, C., and Casse-Delbart, F., 1987, Further insight concerning the TL-region of the Ri plasmid of Agrobacterium rhizogenes strain A4: transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments, Mol. Gen. Genet. 210:210.CrossRefGoogle Scholar
  40. White, F., Ghidossi, G., Gordon, M., and Nester, E., 1982, Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome., Proc. Natl. Acad. Sci. U.S.A. 79:79.CrossRefGoogle Scholar
  41. White, F., Taylor, B., Huffman, G., Gordon, M., and Nester, E., 1985, Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmid of Agrobacterium rhizogenes, J. Bacteriol. 164:164.Google Scholar
  42. Willmitzer, L., Sanchez-Serrano, J., Bushfeld, E., and Schell, J., 1982, DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues, Mol. Gen. Genet. 186:186.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • David Tepfer
    • 1
  • Jean-Pierre Damon
    • 1
  • Gozal Ben-Hayyim
    • 2
  • Alessandro Pellegrineschi
    • 1
  • Daniel Burtin
    • 3
  • Josette Martin-Tanguy
    • 3
  1. 1.INRACedex VersaillesFrance
  2. 2.The Volcani Center Institute of HorticultureBet-DaganIsrael
  3. 3.INRADijonFrance

Personalised recommendations