The ERabp Gene Family: Structural and Physiological Analyses

  • Klaus Palme
  • Thomas Hesse
  • Christine Garbers
  • Carl Simmons
  • Dieter Söll
Part of the Basic Life Sciences book series (BLSC, volume 62)


Auxins are a group of phytohormones that influence a wide range of growth and developmental responses in plants. Effects induced by auxins include a stimulation of cell enlargement and stem growth, cell division, vascular tissue differentiation, initiation of roots on stem cuttings, the development of branch roots and the differentiation of roots in tissue culture (Davies, 1987). Although auxin can inhibit the growth of a primary root at rather low concentrations, probably due to the induction of ethylene production, lateral branch roots and adventitious roots are stimulated by high auxin levels, an effect that has been very useful in horticultural practice for plant propagation by cuttings (see chapter by Blakesley, by Haissig and Davis, and by Howard in this volume).


Adventitious Root Formation Partial Amino Acid Sequence Photoaffinity Label Auxin Receptor Maize Coleoptile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Ghislain, M., and Guern, J., 1989, Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts, Proc. Natl. Acad. Sci. USA 86:86.CrossRefGoogle Scholar
  2. Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Maurel, C., Palme, K., Schell, J., and Guern, J., 1991, Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant J. 1:1.CrossRefGoogle Scholar
  3. Booth, C., and Koch, G.L.E., 1989, Perturbation of cellular calcium induces secretion of luminal ER proteins, Cell 59:59.CrossRefGoogle Scholar
  4. Campos, N., Feldwisch, J., Zettl, R., Boland, W., Schell, J., and Palme, K., 1991, Identification of auxin binding proteins using an improved assay for photoaffinity labeling with 5-N3-[7-3H]-indole-3-acetic acid, Technique 3:3.Google Scholar
  5. Campos, N., Bako, L., Feldwisch, J., Schell, J., and Palme, K., 1992, A protein from maize labeled with azido-IAA has novel ß-glucosidase activity, Plant J. 2:2.CrossRefGoogle Scholar
  6. Davies, P.J., 1987, “Plant Hormones and their Role in Plant Growth and Development,” Martinus Nijhoff Pubs., Dordrecht.CrossRefGoogle Scholar
  7. Dohrmann, U., Hertel, R., and Kowalik, W., 1978, Properties of auxin binding sites in different subcellular fractions from maize coleoptiles, Planta 140:140.CrossRefGoogle Scholar
  8. Feldwisch, J., Zettl, R., Hesse, F., Schell, J., and Palme, K., 1992, An auxin binding protein is localised to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23 kDa polypeptide, Proc. Natl. Acad. Sci. USA 89:89.CrossRefGoogle Scholar
  9. Felle, H., Brummer, B., Berti, A., and Parish, R.W., 1986, Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells, Proc. Natl. Acad. Sci. USA. 83:83.CrossRefGoogle Scholar
  10. Felle, H., Peters, W., and Palme, K., 1991, The electrical response of maize to auxins, Biochim. Biophys. Acta 1064:1064.Google Scholar
  11. Hedrich, R., and Schroeder, J.I., 1989, The physiology of ion channels and electrogenic pumps in higher plants, Annu. Rev. Plant Physiol. 40:40.Google Scholar
  12. Hertel, R., Thomson, K.S., and Russo, V.E.A., 1972, In vitro auxin binding to paniculate cell fractions from corn coleoptiles, Planta 107:107.CrossRefGoogle Scholar
  13. Hesse, T., Feldwisch, J., Balshüsemann, D., Bauw, G., Puype, M., Vandekerckhove, J., Löbler, M., Klämbt, D., Schell, J., and Palme, K., 1989, Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin, EMBO J. 8:8.Google Scholar
  14. Hicks, G.R., Rayle, D.L., Jones, A.M., and Lomax, T.L., 1989a, Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin, Proc. Natl. Acad. Sci. USA 86:4948.PubMedCrossRefGoogle Scholar
  15. Hicks, G.R., Rayle, D.L., and Lomax, T.L., 1989b, The diageotropica mutant of tomato lacks high specific activity auxin binding sites, Science 245:52.PubMedCrossRefGoogle Scholar
  16. Inohara, N., Shimomura, S., Fukui, T., and Futai, M., 1989, Auxin-binding protein located in the endoplasmic reticulum of maize shoots: Molecular cloning and complete structure, Proc. Natl. Acad. Sci. USA 86:3564–3568.PubMedCrossRefGoogle Scholar
  17. Jones, A.M., Melhado, L.L., Ho, T.-H., and Leonhard, N.J., 1984, Azido auxins, Quantitative binding data in maize, Plant Physiol. 74:74.CrossRefGoogle Scholar
  18. Jones, A. M., and Prasad, P. V., 1992, Auxin binding proteins and their possible roles in auxin-mediated plant cell growth, BioEssays 14:14.Google Scholar
  19. Lazarus, C.M., Napier, R.M., Yu, L.-X., Lynas, C., and Venis, M.A., 1991, Auxin binding protein antibodies and genes, in “Molecular Biology of Plant Development,” G.I. Jenkins, and W. Schuch., eds., Company of Biologists Ltd., Cambridge.Google Scholar
  20. Macdonald, H., Jones, A.M., and King, P., 1991, Photoaffinity labeling of soluble auxin-binding proteins, J. Biol. Chem. 266:266.Google Scholar
  21. Melhado, L.L., Jones, A.M., Leonard, N.J., and Vanderhoef, L., 1981, Azido auxins: synthesis and biological activity of fluorescent photoaffinity labeling agents, Plant Physiol. 68:68.CrossRefGoogle Scholar
  22. Napier, R., and Venis, M. (1990) Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein, Planta 182:313–318.CrossRefGoogle Scholar
  23. Palme, K., Feldwisch, J., Hesse, T., Bauw, G., Puype, M., Vandekerckhove, J., and Schell, J., 1990, Auxin binding proteins from maize coleoptiles: Purification and molecular properties, in “Hormone Perception and Signal Transduction in Animais and Plants,” vol. XLIV, J.A. Roberts, C. Kirk, and M. Venis, eds., The Company of Biologists Ltd., Cambridge.Google Scholar
  24. Palme, K., Hesse, T., Moore, I., Campos, N., Feldwisch, J., Garbers, C., Hesse, F., and Schell, J., 1991, Hormonal modulation of plant growth: The role of auxin perception, Mechanisms of Development 33:33.CrossRefGoogle Scholar
  25. Palme, K., Hesse, T., Campos, N., Garbers, C., Yanofsky, M.F., and Schell, J., 1992, Molecular analysis of an auxin binding protein gene located on chromosome 4 of arabidopsis, Plant Cell 4:4.Google Scholar
  26. Pelham, H.R.B., 1990, The retention signal for the soluble proteins of the endoplasmic reticulum, Trends Biochem. Sci. 15:15.CrossRefGoogle Scholar
  27. Peters, W.S., and Felle, H., 1991, Control of apoplast pH in corn coleoptile segments, II. The effect of various auxins and auxin analogues, J. Plant Physiol. 137:137.Google Scholar
  28. Prasad, P.V., and Jones, A.M., 1992, Putative receptor for the plant growth hormone auxin identified and characterized by anti-idiotypic antibodies, Proc. Natl. Acad. Sci. USA 88:88.Google Scholar
  29. Ray, P.M., Dohrmann, U., and Hertel, R., 1977, Specificity of auxin-binding sites on maize coleoptile membranes as possible receptor sites of auxin action, Plant Physiol. 60:60.Google Scholar
  30. Rück, A., Palme, K., Venis, M.A., Napier, R., and Felle, H.H., 1993, Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma current in Zea mays protoplasts, Plant J. (in press).Google Scholar
  31. Shimomura, S., Sotobayashi, T., Futai, M., and Fukui, T., 1986, Purification and properties of an auxin-binding protein from maize shoot membranes, J. Biochem. 99:99.Google Scholar
  32. Schwob, E., Choi, S.-Y., Simmons, C., Migliaccio, F., Ilag, L., Hesse, T., Palme, K., and Söll, D., 1993, Molecular analysis of three maize 22 kDa auxin binding protein genes — transient promoter expression and regulatory regions, Plant J. (in press).Google Scholar
  33. Tillmann, U., Viola, G., Kayser, B., Siemeister, G., Hesse, H., Palme, K., Löbler, M., and Klämbt, D., 1989, cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): Isolation and characterization by immunological methods, EMBO J. 8:8.Google Scholar
  34. Venis, M.A., 1977, Solubilisation and partial purification of auxin-binding sites of corn membranes, Nature 266:266.CrossRefGoogle Scholar
  35. Venis, M., 1985, “Hormone Binding Sites in Plants,” Longman, New York.Google Scholar
  36. Venis, M., 1987, Can auxin receptors be purified by affinity chromatography? in “Plant Hormone Receptors,” D. Klämbt, ed., NATO ASI Series H, vol. 10., Springer-Verlag, Berlin.Google Scholar
  37. Venis, M.A., Napier, R.M., Barbier-Brygoo, H., Maurel, C., Perrot-Rechenmann, C., and Guem, J., 1992, Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity, Proc. Natl. Acad. Sci. USA 89:89.CrossRefGoogle Scholar
  38. Yu, L.-X., and Lazarus, CM., 1991, Structure and sequence of an auxin-binding protein gene from maize (Zea mays L.), Plant. Mol. Biol. 16:16.CrossRefGoogle Scholar
  39. Zettl, R., Campos, N., Boland, W., Schell, J., and Palme, K., 1991, 5’-azido-[3,6-3H2]-naphthylphtalamic acid, a photoactivatable probe for auxin efflux carrier proteins. Technique 3:3.Google Scholar
  40. Zettl, R., Feldwisch, J., Boland, W., Schell, J., and Palme, K., 1992, Azido-[3,6-3H2]-N-l-naphthylphtalamic acid, a novel photo-activatable probe for auxin efflux carrier proteins from higher plants: Identification of a 23 kDa protein from maize coleoptile plasma membranes, Proc. Natl. Acad. Sci.USA 89:89.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Klaus Palme
    • 1
  • Thomas Hesse
    • 1
  • Christine Garbers
    • 1
    • 2
  • Carl Simmons
    • 2
  • Dieter Söll
    • 2
  1. 1.Max-Planck-Institut für ZüchtungsforschungKöln 30Germany
  2. 2.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations