Skip to main content

Auxin Metabolism and Adventitious Root Initiation

  • Chapter
Biology of Adventitious Root Formation

Part of the book series: Basic Life Sciences ((BLSC,volume 62))

Abstract

In this chapter I will report on and discuss the role of auxins in adventitious root initiation, particularly the relations between endogenous indole-3-acetic acid (IAA) and the early events of adventitious rooting. The fact that IAA is involved is well established, although much of the data to support this is circumstantial. It will be not possible in this review paper to describe all the work on auxin application, transport and metabolism that might be relevant to studies of adventitious root initiation. Evidence derived from studies on auxin application has been reviewed many times [e.g., Audus (1959) and Blakesley et al. (1991b)] and will not be considered in detail in this paper. Evidence from more recent work on the analysis of endogenous auxin, and from studies on transgenic plant tissue, will be germane to the present paper. From these studies it will be apparent that we still do not have a clear understanding of the exact role of auxin in the process of adventitious root initiation. The aim of the latter part of this paper will be to describe briefly the newer technologies which are available to plant developmental physiologists, and to indicate new directions for researchers to approach the problem of auxin involvement in adventitious root initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, W.A., and Van Ysselstein, M.W.H., 1956, Studies on 3-indoleacetic acid metabolism, III. The uptake of 3-indoleacetic acid by pea epicotyls and its conversion to 3-indoleacetylaspartic acid, Plant Physiol. 31:31.

    Article  Google Scholar 

  • Andreae, W.A., 1967, Uptake and metabolism of indoleacetic acid, napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid by pea root segments in relation to growth inhibition during and after auxin application, Can. J. Bot. 45:45.

    Article  Google Scholar 

  • Andreae, W.A., and Good, N.E., 1955, The formation of indoleacetylaspartic acid in pea seedlings, Plant Physiol. 30:380.

    Article  PubMed  CAS  Google Scholar 

  • Audus, L.J., 1959, “Plant Growth Substances,” Leonard Hill, London.

    Google Scholar 

  • Bandurski, R.S., 1980, Homeostatic control of concentrations of indole-3-acetic acid, in: “Plant Growth Substances 1979,” F. Skoog, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Barbier-Brygoo, H., Guern, J., Ephritikhine, G., Shen, W.H., Maurel, C., and Klämbt, D., 1990, The sensitivity of plant protoplasts to auxin: modulation of receptors at the plasmalemma, in: “Plant Gene Transfer,” UCLA Symp. on Mol. and Cell. Biol, new ser., C. Lamb, and R. Beachy, eds., Liss, New York.

    Google Scholar 

  • Berthon, J.Y., Boyer, N., and Gaspar, T., 1987, Sequential rooting media and rooting of Sequoiadendron giganteum in vitro, Peroxidase activity as a marker, Plant Cell Rep. 6:6.

    Article  Google Scholar 

  • Berthon, J.Y., Maldiney, R., Sotta, B., Gaspar, T., and Boyer, B., 1989, Endogenous levels of plant hormones during the course of adventitious rooting in cuttings of Sequoiadendron giganteum (Lindl.) in vitro, Biochem. Physiol. Pfl. 184:184.

    Google Scholar 

  • Bialek, K., and Cohen, J.D., 1989, Free and conjugated indole-3-acetic acid and its derivatives in plants, Plant Physiol. 91:91.

    Article  Google Scholar 

  • Biran, I., and Halevy, A.H., 1973, Stock plant shading and rooting of dahlia cuttings, Sci. Hortic. 1:1.

    Article  Google Scholar 

  • Blakesley, D., Hall, J.F., Weston, G.D., and Elliott, M.C., 1985, Endogenous plant growth substances and the rooting of Phaseolus aureus cuttings, in: “Abst. 12th Int. Conf. Plant Growth Subs.,” Heidelberg.

    Google Scholar 

  • Blakesley, D., Weston, G.D., and Elliott, M.C., 1991a, Endogenous levels of indole-3-acetic acid and abscisic acid during the rooting of Cotinus coggygria cuttings taken at different times of the year, Plant Growth Reg. 10:1.

    Article  CAS  Google Scholar 

  • Blakesley, D., Weston, G.D., and Hall, J.F., 1991b, The role of endogenous auxin in root initiation. Part I: Evidence from studies on auxin application, and analysis of endogenous levels, Plant Growth Reg. 10:341.

    Article  CAS  Google Scholar 

  • Blakesley, D., and Chaldecott, M.C., 1993, The role of endogenous auxin in root initiation, Part II: Sensitivity, and evidence from studies on transgenic plant tissue, Plant Growth Reg. (in press).

    Google Scholar 

  • Cardarelli, M., Mariotti, D., Pomponi, M., Spanò, L., Capone, I., and Costantino, P., 1987a, Agrobacterium rhizogenies T-DNA genes capable of inducing hairy root phenotype, Mol. Gen. Genet. 209:475.

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli, M., Spanò, L., Marriotti, D., Mauro, M.L., Van Sluys, M.A., and Costantino, P., 1987b, The role of auxin in hairy root induction, Mol. Gen. Genet. 208:457.

    Article  CAS  Google Scholar 

  • Cohen, J.D., and Bandurski, R.S., 1982, Chemistry and physiology of bound auxins, Annu. Rev. Plant Physiol. 33:33.

    Article  Google Scholar 

  • Coleman, W.K., and Greyson, R.I., 1977, Analysis of root formation in leaf discs of Lycopersicon esculentum Mill, cultured in vitro, Ann. Bot. 41:41.

    Google Scholar 

  • Doré, J., 1965, Physiology and regeneration of cormophytes, in: “Encyc. of Plant Physiol.,” W. Rhuland, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Estruch, J.J., Schell, J., and Spena, A., 1991, The protein encoded by the rolB plant oncogene hydrolyses indole glucosides, EMBO J. 10:10.

    Google Scholar 

  • Ferrer, M.A., Pedreño, M.A., Muñoz, R., and Ros Barcelo, A., 1990, Oxidation of coniferyl alcohol by cell wall peroxidases at the expense of indole-3-acetic acid and O2. A model for the lignification of plant cell walls in the absence of H2O2, FEBS 276:276.

    Article  Google Scholar 

  • Ferrer, M.A., Pedreño, M.A., Ros Barcelo, A., and Muñoz, R., 1992, The cell wall localization of two strongly basic isoperoxidases in etiolated Lupinus albus hypocotyls and its significance in coniferyl alcohol oxidation and indole-3-acetic acid catabolism, J. Plant Physiol. 139:139.

    Article  Google Scholar 

  • Feung, C.S., Hamilton, R.H., and Mumma, R.O., 1977, Metabolism of indole-3-acetic acid. IV. Biological properties of amino acid conjugates, Plant Physiol. 59:59.

    Article  Google Scholar 

  • Gaspar, T., Penel, C., Castilllo, F.J., and Greppin, H., 1985, A two step control of basic and acidic peroxidases and its significance for growth and development, Physiol. Plant. 64:64.

    Article  Google Scholar 

  • Gaspar, T., and Hofinger, H., 1988, Auxin metabolism during adventitious rooting, in: “Adventitious Root Formation in Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Dioscorides Press, Portland.

    Google Scholar 

  • Gaspar, T., Moncousin, C., and Greppin, H., 1990, The place and role of exogenous and endogenous auxin in adventitious root formation, in: “Intracellular Communications in Plants,” B. Millet and H. Greppin, eds, INRA, Paris.

    Google Scholar 

  • Girouard, R.M, 1967, Initiation and development of adventitious roots in stem cuttings of Hedera helix, Can. J. Bot. 45:45.

    Google Scholar 

  • Grambow, H.J., and Langenbeck-Schwich, B., 1983, The relationship between oxidase activity, peroxidase activity, hydrogen peroxide and phenolic compounds in the degradation of indole-3-acetic acid in vitro, Planta. 157:157.

    Article  Google Scholar 

  • Greenwood, M.S., Atkinson, O.R., and Yawney, H.W., 1976, Studies of hard-and easy-to-root ortets of sugar maple: Differences not due to endogenous auxin content, Plant Prop. 22:22.

    Google Scholar 

  • Harris, M.J., and Outlaw, W.H., 1990, Histochemical techniques: a low volume, enzyme-amplified immunoassay with sub-fmol sensitivity, Application to measurement of abscisic acid in stomatal guard cells, Physiol Plant. 78:78.

    Article  Google Scholar 

  • Hengst, K.H., 1959, Untersuchungen zur physiologie der regeneration in der guttang Streptocarpus, II. Korrelationsersheinungen and polarität, Z. Bot. 47:47.

    Google Scholar 

  • Huffman, G.A., White, F.F., Gordon, M.P., and Nester, E.W., 1984, Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids, J. Bacteriol. 157:157.

    Google Scholar 

  • Jarvis, B.C., 1986, Endogenous control of adventitious rooting in non-woody cuttings, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed, Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Jones, A.M., 1990, Location of transported auxin in etiolated maize shoots using 5-azidoindole-3-acetic acid, Plant Physiol. 93:93.

    Article  Google Scholar 

  • Jouanin, L., 1984, Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids, Plasmid. 12:12.

    Article  Google Scholar 

  • Kracke, H., Cristoferi, G., and Marangoni, B., 1981, Hormonal changes during the rooting of hardwood cuttings of grapevine rootstocks, Amer. J. Enol. Vitic. 32:32.

    Google Scholar 

  • Label, P.H., Sotta, B., and Miginiac, E., 1989, Endogenous levels of abscisic acid and indole-3-acetic acid during in vitro rooting of wild cherry expiants produced by micropropagation, Plant Growth Reg. 8:8.

    Article  Google Scholar 

  • Law, D.M., and Hamilton, R.A., 1982, A rapid isotope dilution method for analysis of indole-3-acetic acid and indoleacetyl aspartic acid from small amounts of plant tissue, Biophys. Res. Commun. 106:106.

    Article  Google Scholar 

  • Lovell, P.H., and White, J., 1986, Anatomical changes during adventitious root formation, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Maldiney, R., Pelèse, F., Pilate, G., Sotta, B., Sossountzov, L., and Miginiac, E., 1986, Endogenous levels of abscisic acid, indole-3-acetic acid, zeatin and zeatin riboside during the course of adventitiousa root formation on cuttings of Craigella and Craigella lateral suppressor tomatoes, Physiol. Plant. 68:68.

    Article  Google Scholar 

  • Mato, M.C., Rua, M.L., and Ferro, E., 1988, Changes in levels of peroxidases and phenolics during root formation in Vitis cultured in vitro, Physiol. Plant. 72:72.

    Article  Google Scholar 

  • Maurel, C., Barbier-Brygoo, H., Brevet, J., Spena, A., Tempé, J., and Guern, J., 1991, Agrobacteriun rhizogenes T-DNA genes and sensitivity of plant protoplasts to auxins, in: “Advances in Mol. Genet. of Plant-Microbe Interactions,” vol. 1, H. Hennecke, and D.P.S. Verma, eds., Kluwer Academic Pubs., Dordrecht.

    Google Scholar 

  • Moncousin, C., Favre, J-M., and Gaspar, T., 1989, Early changes in auxin and ethylene production in vine cuttings before adventitious rooting, Plant Cell Tissue Organ Cult. 19:19.

    Article  Google Scholar 

  • Netting, A.G., and Milborrow, B.V., 1988, Methane chemical ionization mass spectrometry of the pentafluorobenzyl derivatives of abscisic acid, its metabolites and other plant growth regulators, Biomed. Env. Mass Spectrom. 17:17.

    Article  Google Scholar 

  • Nonhebel, H.M., Crozier, A., and Hillman, J.R., 1983, Analysis of [14C] indole-3-acetic acid metabolites from the roots of Zea mays seedlings using reverse-phase high-performance liquid chromatography, Physiol. Plant. 57:57.

    Article  Google Scholar 

  • Nordstrom, A.-C., Alvarado Jacobs, F., and Eliasson, L., 1991, Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings, Plant. Physiol. 96:96.

    Article  Google Scholar 

  • Nordström, A.C., and Eliasson, L., 1991, Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root formation in pea cuttings, Physiol Plant. 82:82.

    Article  Google Scholar 

  • Offringa, I.A., Melchers, L.S., Regensburg-Tuink, A.J.G., Costantino, P., Schilperoort, R.A., and Hooykaas, P.J.J., 1986, Complimentation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the TR region of the Ri plasmid of Agrobacterium rhizogenes, Proc. Natl. Acad. Sci. USA. 83:83.

    Article  Google Scholar 

  • Oppenoorth, J.M., 1979, Influence of cylohexamide and actinomycin D on initiation and early development of adventitious roots, Physiol. Plant. 47:134.

    Article  CAS  Google Scholar 

  • Pliiss, R., Titus, J., and Meier, H., 1989, IAA-induced adventitious root formation in greenwood cuttings of Populus tremula and formation of 2-indolone-3-acetylaspartic acid, a new metabolite of exogenously applied indole-3-acetic acid, Physiol. Plant. 75:75.

    Article  Google Scholar 

  • Prinsen, E., Bercetche, J., Chriqui, D., and van Onckelen, H., 1992, Pisum sativum epicotyls inoculated with Agrobacterium rhizogenes agropine strains harbouring various T-DNA fragments: Morphology, histology and endogenous indole-3-acetic acid and indole-3-acetamide content, J. Plant Physiol. 140:140.

    Article  Google Scholar 

  • Reinecke, D.M., and Bandurski, R.S., 1981, Metabolic conversion of 14C-indole-3-acetic acid to 14C-oxindole-3-acetic acid, Biochem. Biophys. Res Commun. 103:103.

    Article  Google Scholar 

  • Reinecke, D.M., and Bandurski, R.S., 1988, Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays, Plant Physiol. 86:86.

    Article  Google Scholar 

  • Ros Barcelo, A., Pedreño, M.A., Ferrer, M.A., Sabater, F., and Muñoz, R., 1990, Indole-3-methanol is the main product of the oxidation of indole-3-acetic acid catalyzed by two cytosolic basic isoperoxidases from Lupinus, Planta. 181:181.

    Google Scholar 

  • Ryder, M.H., Tate, M.E, and Kerr, A., 1985, Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs, Plant Physiol. 77:77.

    Article  Google Scholar 

  • Sabater, F., Acosta, M., Sanchez-Bravo, J., Cuello, J., and del Rio, J.A., 1983, Indole-3-methanol as an intermediate of the oxidation of indole-3-acetic acid by peroxidase, Physiol. Plant. 57:57.

    Article  Google Scholar 

  • Shen, W.H., Davioud, E., David, C., Barbier-Brygoo, H., Tempé, J., and Guern, J., 1990, High sensitivity to auxin is a common feature of hairy root, Plant Physiol. 94:94.

    Article  Google Scholar 

  • Shen, W.H., Petit, A., Guern, J., and Tempé, J., 1988, Hairy roots are more sensitive to auxin than normal roots, Proc. Natl. Acad. Sci. USA. 85:85.

    Google Scholar 

  • Smith, D.R., and Thorpe, T.A., 1975, Root initiation in cuttings of Pinus radiata seedlings, I. Developmental sequence, J. Exp. Bot. 26:26.

    Google Scholar 

  • Smith, N.G., and Wareing, P.F., 1972, The rooting of actively growing and dormant leafy cuttings in relation to the endogenous hormone levels and photoperiod, New Phytol. 71:71.

    Google Scholar 

  • Stolz, L.P., 1968, Factors influencing root initiation in an easy and a difficult-to-root Chrysanthemum, Proc. Amer. Soc. Hortic. Sci. 92:92.

    Google Scholar 

  • Stroobants, C., Sossountzov, L., and Miginiac, E., 1991, Immunocytolocalisation du riboside de la zéatine dans des feuilles de tabac isolées et bouturées, cours des phases initiales de la rhizogénèse, C.R. Acad. Sci. Paris. 312:312.

    Google Scholar 

  • Trewavas, A.J., 1981, How do plant growth substances work? I, Plant, Cell and Env. 4:4.

    Google Scholar 

  • Trewavas, A.J., 1991, How do plant growth substances work? H, Plant, Cell and Env. 14:14.

    Google Scholar 

  • Venis, M.A., 1972, Auxin-induced conjugation system in peas, Plant Physiol. 49:49.

    Article  Google Scholar 

  • Wiesman, Z., Riov, J., and Epstein, E., 1988, Comparison of movement and metabolism of indole-3-acetic acid and indole-3-butyric acid in mung bean cuttings, Physiol. Plant. 74:74.

    Article  Google Scholar 

  • Wiesman, Z., Riov, J., and Epstein, E., 1989, Characterization and rooting ability of indole-3-butyric acid conjugates formed during rooting of mung bean cuttings, Plant. Physiol. 91:91.

    Article  Google Scholar 

  • White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M.P., and Nester, E.W., 1985, Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes, J Bacteriol. 164:164.

    Google Scholar 

  • Wu, F.T., and Barnes, M.F., 1981, The hormone levels in the stems of difficult-to-root and easy-to-root rhododendrons, Biochem. Biophys. Pfl. 176:176.

    Google Scholar 

  • Zenk, M.H., 1964, Isolation, biosynthesis and function of indoleacetic acid conjugates, in: “Rég. Nat. Croiss. Vég.”, J.P. Nitsch, ed., C.N.R.S., Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blakesley, D. (1994). Auxin Metabolism and Adventitious Root Initiation. In: Davis, T.D., Haissig, B.E. (eds) Biology of Adventitious Root Formation. Basic Life Sciences, vol 62. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9492-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9492-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9494-6

  • Online ISBN: 978-1-4757-9492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics