The Origin, Diversity and Biology of Shoot-Borne Roots

  • Peter W. Barlow
Part of the Basic Life Sciences book series (BLSC, volume 62)


The term “adventitious root” is widely used to designate a root that arises either on an already lateralized root axis or at a site on the plant that is not itself a root (e.g., on a shoot or leaf) (Esau, 1953). In the latter case, the root, strictly speaking, need not be adventitious since, etymologically, this refers to a root located at an unusual site on the plant whereas such a root might be developing at a site in a way that is entirely consistent with the normal ontogenic pattern of the plant. It would be more exact to designate such a root as “shoot-borne.” This, in turn, leads to the idea that there are two types of roots: one is the shoot-borne type whose origin is self-defining, the other is the pole-borne root whose origin is from one of the poles of the embryo. According to Guédès, (Guédès et al, 1979) there is only one type of root: all roots are shoot-borne because even the embryonic root derives from the shoot-pole of the embryo. The same argument has been made for grasses (Tillich, 1977). Although this view may seem a reasonable argument from an evolutionary perspective, it is not one accepted by all morphologists. Whatever view is taken, it does seem that the term “adventitious root” can be restricted to its “true” meaning as referring to a root which develops out of the normal temporal sequence and/or at an unusual location. In most if not all cases, this would apply to a root that develops as a result of wounding and is thus evidence of a regenerative response. Adventitious roots, therefore, are simply a class of shoot-borne (or root-borne) roots developed under rather special circumstances (see the chapter by Haissig and Davis in this volume).


Adventitious Root Tree Family Root Tuber Lower Devonian Root Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aeschimann, D., and Bocquet, G., 1980, Allorhizie et homorhizie, une reconsidération des définitions et de la terminologie, Candollea 35:35.Google Scholar
  2. Barlow, P.W., 1986, Adventitious roots of whole plants: their forms, functions, and evolution, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff, Dordrecht.Google Scholar
  3. Barlow, P.W., 1989, Meristems, metamers and modules and the development of shoot and root systems, Bot. J. Linn. Soc. 100:100.CrossRefGoogle Scholar
  4. Barlow, P.W., 1987, The hierarchical organization of plants and the transfer of information during their development, Postepy Biol. Kom. 14:14.Google Scholar
  5. Blakely, L.M., Durham, M., Evans, T.A., and Blakely, R.M., 1982, Experimental studies on lateral root formation in radish seedling roots, I. General methods, developmental stages, an spontaneous formation of laterals, Bot. Gaz. 143:143.CrossRefGoogle Scholar
  6. Bonnett, H.T., Jr., and Torrey, J.G., 1966, Comparative anatomy of endogenous buds and lateral formation in Convolvulus arvensis roots cultured in vitro, Amer. J. Bot. 53:53.CrossRefGoogle Scholar
  7. Brown, W.V., and Emery, W.P.H., 1957, Persistent nucleoli and grass systematics, Amer. J. Bot. 44:44.Google Scholar
  8. Caldwell, M.M., 1979, Root structure: the considerable cost of belowground function, in: “Topics in Plant Population Biology,” O.T. Solbrig, S. Jain, G.B. Johnson, and P.H. Raven, eds, MacMillan Co., London.Google Scholar
  9. Corner, E J.H., 1978, Freshwater swamp-forest of South Johore and Singapore, Gardens’ Bull, (suppl.) 1:1.Google Scholar
  10. D’Almeida, J.F.R., 1942, A contribution to the study of the biology and physiology of Indian marsh and aquatic plants, Part II, J. Bombay Nat. Hist. Soc. 43:43.Google Scholar
  11. Davey, A.J., 1946, On the seedling of Oxalis hirta L., Ann. Bot. 10:10.Google Scholar
  12. Ellmore, G.E., 1981, Root dimorphism in Ludwigia peploides (Onagraceae): structure and gas content of mature roots, Amer. J. Bot. 68:68.CrossRefGoogle Scholar
  13. Esau, K., 1953, “Plant Anatomy,” J. Wiley, New York.Google Scholar
  14. Frangi, J.L., and Ponce, M.M., 1985, The root system of Prestoes montana and its ecological significance, Principes 29:29.Google Scholar
  15. Galil, J., 1980, Kinetics of bulbous plants, Endeavour 5:5.Google Scholar
  16. Gill, A.M., 1969, The ecology of an elfin forest in Puerto Rico, 6. Aërial roots. J. Arn. Arb. 50:197.Google Scholar
  17. Gill, A.M., and Tomlinson, P.B., 1977, Studies on the growth of red mangrove (Rhizophora mangle L.), 4. The adult root system, Biotropica 9:9.CrossRefGoogle Scholar
  18. Goller, W., 1977, Beiträge zur Anatomie adulter Gramineenwurzeln im Hinblick auf taxonomische Verwendbarkeit, Beitr. Biol. Pfl. 53:53.Google Scholar
  19. Greig, N., and Mauseth, J.D., 1991, Structure and function of dimorphic prop roots in Piper auritum L., Bull. Torr. Bot. Club 118:118.CrossRefGoogle Scholar
  20. Groff, P.A., and Kaplan, D.R., 1988, The relation of root systems to shoot systems in vascular plants, Bot. Rev. 54:54.CrossRefGoogle Scholar
  21. Guédès, M., 1979, “Morphology of Seed Plants,” J. Cramer, Vaduz.Google Scholar
  22. Harper, J.L., Jones, M., and Sackville Hamilton, N.R., 1991, The evolution of roots and the problems of analysing their behaviour, in: “Plant Root Growth, An Ecological Perspective,” D. Atkinson, ed., Blackwell Sci. Pubs., Oxford.Google Scholar
  23. Henderson, R., Ford, E.D., Renshaw, E., and Deans, J.D., 1983, Morphology of the structural root system of Sitka spruce, 1. Analysis and quantitative description, Forestry 56:56.Google Scholar
  24. Heslop-Harrison, Y., 1959, Natural and induced rooting of the stem apex of Rubus, Ann. Bot. 23:23.Google Scholar
  25. Horsley, S.B., 1971, Root tip injury and development of the paper birch root system, For. Sci. 17:17.Google Scholar
  26. Hoshikawa, K., 1969, Underground organs of the seedlings and the systematics of Gramineae, Bot. Gaz. 130:130.CrossRefGoogle Scholar
  27. Jablonka, E., Lachmann, M., and Lamb, M.J., 1992, Evidence, mechanisms and models for the inheritance of acquired characters, J. Theor. Biol. 158:158.CrossRefGoogle Scholar
  28. Jacob, F., 1977, Evolution and tinkering, Science 196:196.CrossRefGoogle Scholar
  29. Laan, P., Berrevoets, M.J., Lythe, S., Armstrong, W., and Blom, C.W.P.M., 1989, Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species, J. Ecol. 77:77.CrossRefGoogle Scholar
  30. Lambers, H., 1980, The physiological significance of cyanide-resistant respiration in higher plants, Plant Cell Environ. 3:3.Google Scholar
  31. Lamont, B., 1981a, Availability of water and inorganic nutrients in the persistent leaf bases of the grasstree Kingia australis, and uptake and translocation of labelled phosphate by the embedded aerial roots, Physiol. Plant. 52:181.CrossRefGoogle Scholar
  32. Lamont, B., 1981b, Morphometrics of the aerial roots of Kingia australis (Liliales), Aust. J. Bot. 29:81.CrossRefGoogle Scholar
  33. Lavender, E.A., Mackie-Dawson, L.A., and Atkinson, D., 1992, Genotypic variation in the development of structural roots in Betula pendula, J. Exp. Bot. 43 (suppl.) 41.CrossRefGoogle Scholar
  34. Liu, M., Li, R.-J., and Liu, M.-Y., 1993, Adaptive responses of roots and root systems to seasonal changes, Envir. Exp. Bot. 33:33.CrossRefGoogle Scholar
  35. Lück, J., and Lück, H.B., 1993, La notion de “distance morphogénétique,” in: “Modèles et Transformations, La Biologie Théorique et P. Delattre,” C. Bruter, ed., Polytechnica, Paris.Google Scholar
  36. Lüttge, U., 1991, Clusia. Morphogenetische, physiologische und biochemische Strategien von Baumwürgen im tropischen Wald, Naturwiss. 78:49.CrossRefGoogle Scholar
  37. Luxová, M., 1986, The hydraulic safety zone at the base of barley roots, Planta 169:169.CrossRefGoogle Scholar
  38. McLean, R.C., and Ivimey-Cook, W.R., 1951, “Textbook of Theoretical Botany,” vol. 1, Longmans Green and Co., London.Google Scholar
  39. Miller, J.G., 1978, “Living Systems,” McGraw Hill, New York.Google Scholar
  40. Miller, J.G., and Miller, J.L., 1990, The nature of living systems, Behav. Sci. 35:35.Google Scholar
  41. Nadkarni, N.M., 1981, Canopy roots: convergent evolution in rainforest nutrient cycles, Science 214:214.CrossRefGoogle Scholar
  42. O’Brien, T.P., and Zee, S.-Y., 1971, Vascular transfer cells in the vegetative nodes of wheat, Aust. J. Biol. Sci. 24:24.Google Scholar
  43. Piaget, J., 1971, “Structuralism,” Routledge and Kegan Paul, London.Google Scholar
  44. Putz, F.E., and Holbrook, N.M., 1989, Strangler fig rooting habits and nutrient relations in the llanos of Venezuela, Amer. J. Bot. 76:76.CrossRefGoogle Scholar
  45. Raechal, L.J., and Curtis, J.D., 1990, Root anatomy of the Bambusoideae (Poaceae), Amer. J. Bot. 77:77.CrossRefGoogle Scholar
  46. Rayner, R.J., 1983, New observations on Sawdonia ornata from Scotland, Trans. Roy. Soc. Edin. Earth Sci. 74:74.Google Scholar
  47. Rayner, R.J., 1984, New finds of Drepanophycus spinaeformis Göppert from the Lower Devonian of Scotland, Trans. Roy. Soc. EdinEarth Sci. 75:75.CrossRefGoogle Scholar
  48. Robinson, D., 1989, Phenotypic plasticity in roots and root systems: constraints, compensations and compromises, in: “Aspects of Applied Biology 22, Roots and the Soil Environment,” Assoc. Appl. Biol., Wellesbourne.Google Scholar
  49. Rouffa, A.S., 1978, On phenotypic expression, morphogenetic pattern, and synangium evolution in Psilotum. Amer. J. Bot. 65:65.CrossRefGoogle Scholar
  50. Row, H.C., and Reeder, J.R., 1957, Root-hair development as evidence of relationships among genera of Gramineae, Amer. J. Bot. 44:44.CrossRefGoogle Scholar
  51. Salleo, S., Rosso, R., and Lo Gullo, M.A., 1982, Hydraulic architecture of Vitis vinifera L. and Populus deltoides Bartr. 1-year-old twigs: II-The nodal regions as “constriction zones” of the xylem system, Giorn. Bot. Ital. 116:116.Google Scholar
  52. Samb, P.I., and Kahlem, G., 1983, Déterminism de l’organogénèse racinaire de Jussiaea repens L., Z. Pflanzenphysiol. 109:279.Google Scholar
  53. Schatz, G.E., Williamson, G.B., Cogswell, C.M., and Stam, A.C., 1985, Stilt roots and growth of arboreal palms, Biotropica 17:17.CrossRefGoogle Scholar
  54. Scott, D.H., 1962, “Spermatophyta,” Studies in Fossil Botany, vol. II, 3rd. ed., Hafner Pub. Co., New York.Google Scholar
  55. Senn, G., 1923, Ueber die Ursachen der Brettwurzelbildung bei der Pyramiden-Pappel, Verh. Naturforsch. Ges. Basel 35:35.Google Scholar
  56. Shaver, G.R., and Billings, W.D., 1975, Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska, Ecology 56:56.CrossRefGoogle Scholar
  57. Smirnoff, N., and Crawford, R.M.M, 1983, Variation in the structure and response to flooding of root aerenchyma in some wetland plants, Ann. Bot. 51:51.Google Scholar
  58. Smith-Huerta, N.L., and Jernstedt, J.A., 1989, Root contraction in hyacinth, III. Orientation of cortical microtubules visualized by immunofluorescence microscopy, Protoplasma 151:151.CrossRefGoogle Scholar
  59. Sobotik, M., and Kutschera-Mitter, L. 1991, Contribution to a key for determining taxa by anatomical features of roots, in: “Root Ecology and its Practical Application 2,” L. Kutschera, E. Hübl, E. Lichtenegger, H. Persson, and M. Sobotik, eds, Verein für Wurzelforschung, Klagenfurt.Google Scholar
  60. Sonnewald, V., and Willmitzer, L., 1992, Molecular approaches to source-sink interactions, Plant Physiol. 99:99.CrossRefGoogle Scholar
  61. Spome, K.R., 1974, “The Morphology of the Angiosperms, The Structure and Evolution of Flowering Plants,” Hutchinson.Google Scholar
  62. Staff, I.A., and Waterhouse, J.T., 1981, The biology of arborescent monocotyledons, with special reference to Australian species, in: “The Biology of Australian Plants,” J.S. Pate, and A.J. McComb, eds, Univ. West. Aust. Press, Nedlands.Google Scholar
  63. Steinitz, B., Hagiladi, A., and Anav, D., 1992, Thigmomorphogenesis and its interaction with gravity in climbing plants of Epipremum aureum, J. Plant Physiol. 140:140.CrossRefGoogle Scholar
  64. Stewart, W.N., 1983, “Paleobotany and the Evolution of Plants,” Cambridge Univ. Press, Cambridge.Google Scholar
  65. Tillich, H.-J., 1977, Vergleichend-morphologische Untersuchungen zur Identität der Gramineen-Primärwurzel, Flora 166:166.Google Scholar
  66. Ting, F.S., and Wren, M.J., 1980, Storage organ development in radish (Raphanus sativus L.), 1. A comparison of development in seedlings and rooted cuttings of two contrasting varieties, Ann. Bot. 46:46.Google Scholar
  67. Ugolev, A.M., 1990, Concept of universal functional blocks and further development of studies on the biosphere, ecosystems, and biological adaptations, J. Evol. Biochem. Physiol. 26:26.Google Scholar
  68. Waddington, C.H., 1957, “The Strategy of the Genes, A Discussion of Some Aspects of Theoretical Biology,” G. Allen and Unwin, London.Google Scholar
  69. Wallace, A.R., 1853, “Palm Trees of the Amazon and their Uses,” van Voorst, London.Google Scholar
  70. Wardlaw, I.F., 1965, The velocity and pattern of assimilate translocation in wheat plants during grain development, Aust. J. Biol. Sci. 18:18.Google Scholar
  71. Warren Wilson, P.M., and Warren Wilson, J., 1977, Experiments on the rate of development of adventitious roots on Sambucus nigra cuttings, Aust. J. Bot. 25:25.Google Scholar
  72. Weber, H., 1936, Vergleichend-morphologische Studien über die sproßbürtige Bewurzelung, Nova Acta Leopold NF 4:229.Google Scholar
  73. Weber, H., 1953, “Die Bewurzelungsverhältnisse der Pflanzen,” Verlag Herder, Freiburg.Google Scholar
  74. Whipps, J.M., 1990, Carbon economy, in: “The Rhizosphere,” J.M. Lynch, ed., J. Wiley & Sons, Chichester.Google Scholar
  75. Wilson, K., and Honey, J.N., 1966, Root contraction in Hyacinthus orientalis, Ann. Bot. 30:30.Google Scholar
  76. Zobel, R.W., 1986, Rhizogenetics (root genetics) of vegetable crops, HortSci. 21:21.Google Scholar
  77. Zobel, R., 1989, Steady-state control and investigation of root system morphology, in: “Applications of Continuous and Steady-state Methods in Root Biology,” J.G. Torrey, and L.J. Winship, eds, Kluwer Academic Pubs., Dordrecht.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter W. Barlow
    • 1
    • 2
  1. 1.Department of Agricultural SciencesUniversity of BristolBristolUK
  2. 2.AFRC Institute of Arable Crops ResearchLong Ashton Research StationBristolUK

Personalised recommendations