Expression of Macrophage Chemotactic Protein-1 in Rat Glial Cells

  • Charles-Félix Calvo
  • Michel Mallat
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)


By an in vitro chemotaxis assay, we have shown that rat brain macrophages in culture release a soluble factor which stimulates the migration of bone marrow-derived macrophages. This activity was significantly decreased by an immune serum directed against the rat monocyte chemoattractant protein-1 (chemokine MCP-1). By Northern blot analysis, we have shown that MCP-1 is indeed synthetized by brain macrophages in culture, or by astrocytes after in vitro activation. We then evidenced an in vivo production of MCP-1 in the adult rat brain following injury induced by a local injection of kainic acid. This synthesis is localized in both astrocytes and brain macrophages by immunocytochemistry. Altogether, these results suggest that microglial and astroglial secretion of chemokines could contribute to the mechanism(s) leading to the infiltration of the central nervous system by blood-derived monocytes as observed in several pathologies.


Conditioned Medium Microglial Cell Nous Avons Kainic Acid Experimental Allergic Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Dans une étude réalisée chez le rat, nous avons montré que le milieu conditionné de macrophages cérébraux en culture contient une activité chimiotactique s’exerçant sur des macrophages provenant d’une culture de moelle osseuse. Cette activité est fortement inhibée par un anticorps dirigé contre la chemokine MCP-1 de rat. Par ailleurs, l’expression du messager de cette protéine a été detectée par Northern blot, dans des macrophages cérébraux en culture et dans des astrocytes stimulés par le LPS. Par la suite, nous avons montré que l’expression de MCP-1 était induite in vivo lors d’une lésion cérébrale produite par injection d’acide kainic dans le striatum. La synthèse de la protéine a été détectée dans les astrocytes et dans les macrophages cérébraux, suggèrant l’intervention de ces deux types cellulaires dans le (s) mécanisme (s) conduisant à l’infiltration du système nerveux central par des monocytes sanguins observée au cours de certaines pathologies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ling, E A., Wong, W C. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7: 9–18, 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Gendelman, H E., Lipton, S A., Tardieu, M., Burkrinsky, M 1., Nottet, H S L M. The neuropathogenesis of HIV-1 infection. J. Leukoc. Biol 56: 389–398, 1994.PubMedGoogle Scholar
  3. 3.
    Perry, H V., Andersson, P B., Gordon, S. Macrophages and inflammation in the central nervous system. Trends. Neurose 16: 268–273, 1993.CrossRefGoogle Scholar
  4. 4.
    Streit, W J., Graeber, M B., Kreutzberg, G W. Functional plasticity of microglia: a review. Glia 1: 301–307, 1988.PubMedCrossRefGoogle Scholar
  5. Benveniste, E N. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am. J. Phvsiol 263: Cl-C15, 1992.Google Scholar
  6. 6.
    Andersson, P B., Perry, V H., Gordon, S. Intracerebral injection of proinflammatory cytokines or leukocyte chemotaxins induces minimal myelomonocytic cell recruitment to the parenchyma of the central nervous system. J. Exp. Med 176: 255–259, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Oppenheim, J J., Zachariae, C O C., Mukaida, N., Matsushima, K. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu. Rev. Immunol 9: 617–648, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Miller, M D., Krangel, M S. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit. Rev. Immunol 12: 17–46, 1992.PubMedGoogle Scholar
  9. 9.
    Baggiolini, M., Dewalt, B., Mosser, B. Interleukin-8 and related chemotactic cytokines CXC and C C chemokines. Adv. Immunol 55: 97–179, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Murphy, P M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev Immunol 12: 593–633, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Hulkower, K., Brosnan, C F., Aquino, D A., Cammer, W., Kulshrestha, S., Guida, M P.. Rapoport, D A., Berman, J W. Expression of CSF- I, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J. Immunol 150: 2525–2533, 1993.PubMedGoogle Scholar
  12. 12.
    Ransohoff, R M., Hamilton, T A., Tanie, M.. Stoler, M H., Shick, H E., Major, J A., Estes, M L., Thomas, D M., Tuohy, V K. Astrocyte expression of mRNA encoding cytokines 1P-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB. J 7: 592–600, 1993.PubMedGoogle Scholar
  13. 13.
    Vanguri, P., Farber, J M. IFN and virus-inducible expression of an immediate early gene, crg-2/I P-10, and a delayed gene, I-Ars, in astrocytes and microglia. J. Immunol 152: 1411–1418, 1994.PubMedGoogle Scholar
  14. 14.
    Hayashi, M., Luo, Y., Laning, J., Strieter, R M., Dorf, M E. Production and function of monocyte chemoattractant protein-I and other 13 chemokines in murine glial cells. J. Neuroimmunol 60: 143–150, 1995.PubMedCrossRefGoogle Scholar
  15. 15.
    Yoshimura, T., Robinson, E A., Tanaka, S., Appella, E., Kuratsu, J I., Leonard, E J. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med 169: 1449–1459, 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Introna, M., Bast, R C., Tannenbaum, C S., Hamilton, T A., Adams, D O. The effect of LPS on expression of the early “competence” genes JE and KC in murine peritoneal macrophages. J. Immunol 138: 3891–3896, 1987.PubMedGoogle Scholar
  17. 17.
    Yoshimura, T., Robinson, E A., Tanaka, S., Appella, E., Leonard, E J. Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J. Immunol 142: 1956–1962, 1989.PubMedGoogle Scholar
  18. 18.
    Takehara, K., Leroy, E C., Grotendorst, G R. TGF(3 inhibition of endothelial cell proliferation: Alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell. 49: 415–422, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Cochran, B H., Reffel, A C., Stiles, C D. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33: 939–947, 1983.PubMedCrossRefGoogle Scholar
  20. 20.
    Valente, A J., Graves, D T., Vialle-Valentin, C E., Delgado, R., Schwartz, C J. Purification of a monocyte chemotactic factor secreted by non human primate vascular cells in culture. Biochemistry 27: 4162–4168, 1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Standiford, T J., Kunkel, S L., Phan, S H., Rollins, B J., Strieter, R M. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein expression from human pulmonary type II -like epithelial cells. J. Biol. Chem. 266: 9912–9918, 1991.PubMedGoogle Scholar
  22. 22.
    Graves, D T., Jiang, Y L., Williamson, M J., Valente, A J. Identification of monocyte chemotactic activity produced by malignant cells. Science 245: 1490–1493, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Zachariae, C O C., Anderson, A O., Thompson, H L., Appella, E., Mantovani, A., Oppenheim, J J., Matsushima, K. Properties of monocyte chemotactic and activating factor (MCAF) purified from a human fibrosarcoma cell line. J. Exp. Med 171: 2177–2182, 1990.PubMedCrossRefGoogle Scholar
  24. 24.
    Jiang, Y., Beller, D I., Frendl, G., Graves, D T. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J. Immunol 148: 2423–2428. 1992.PubMedGoogle Scholar
  25. 25.
    Shyy, Y J., Wickham, L L., Hagan, J P., Hsieh, H J., Hu, Y L., Telian, S H., Valente, A J., Paul Sung, K L., Chien, S. Human monocyte colony-stimulating factor stimulates the gene expression of monocyte chemotactic protein-I and increases the adhesion of monocytes to endothelial monolayers. J Clin Invest 92: 1745–1751, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Théry, C., Chamak, B., Mallat, M. Cytotoxic effect of brain macrophages on developing neurons. Eue J. Neurosci 3: 1155–1164, 1991.CrossRefGoogle Scholar
  27. 27.
    Dijkstra, C D., Döpp, E A., Joling, P., Kraal, G. The heterogeneity of mononuclear phagocytes in lymphoïd organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies EDI, ED2 and ED3. Immunoloçv 54: 589–599, 1985.Google Scholar
  28. 28.
    Tushinski, R J., Oliver, 1 T., Guibert, L J., Tynan, P W., Warner, J R., Stanley, E R. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28: 71–81, 1982.Google Scholar
  29. 29.
    Marty, S., Dusart, I., Peschanski, M. Glial changes following an excitotoxic lesion in the CNS. I. Microglia/Macrophages. Neuroscience 45: 529–539, 1991.PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshimura, T., Takeya, M., Takahashi, K. Molecular cloning of rat monocyte chemoattractant protein-1 (MCP-1) and its expression in rat spleen cells and tumor cell lines. Biochem. Biophys. Res. Commun 174: 504–509, 1991.PubMedCrossRefGoogle Scholar
  31. 31.
    Fort, P., Marty, L., Piechaczyk, M., El Sabrouty, S., Dani, C., Jeanteur, P., Blanchard, J M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-deshydrogenase multigenic family. Nucleic. Acids. Res 13: 1431–1442, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Charles-Félix Calvo
    • 1
  • Michel Mallat
    • 1
  1. 1.Chaire de Neuropharmacologie INSERM U114Collège de FranceParis Cedex 05France

Personalised recommendations