New Techniques to Study Transepithelial and Transendothelial Resistances of Cultured Cells

  • Joachim Wegener
  • Helmut Franke
  • Stephan Decker
  • Martin Erben
  • Hans-Joachim Galla
Part of the Advances in Behavioral Biology book series (ABBI, volume 46)

Summary

Measurement of transepithelial electrical resistances (TER) is a very common tool for investigations concerning epithelial and endothelial barrier properties. We here introduce two new and powerful techniques for the determination of TERs that might open further applications. The first method takes advantage of the wide spread DC technique and allows to study individual colonies of a cell monolayer grown on waterpermeable filter supports. The second technique is based on AC impedance analysis and enables to determine TERs of cell monolayers grown on gold surfaces.

Keywords

Gold Surface Transendothelial Electrical Resistance Transendothelial Electrical Resistance Porcine Brain Capillary Endothelial Cell Typical Impedance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

La mesure de la résistance transépithéliale (RTE) est un outil très courant pour la détermination des propriétés des barrières physiologiques épithéliales et endothéliales. Nous avons mis au point deux nouvelles techniques efficaces de mesure des RTE qui, de plus, pourraient permettre de nouvelles applications. La première méthode consiste à utiliser la technique bien connue en courant continu et permet la mesure de la RTE d’un petit nombre de cellules organisées en colonies distinctes sur des supports semi-imperméables. La seconde technique utilise l’analyse de l’impédance en courant alternatif et permet de déterminer les RTE de monocouches cellulaires ensemencées sur des supports recouverts d’or.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L Hein M., Mädefesscl C., Haag B., Teichmann K., Post A., Galla H.-J., Chem. Phys. Lipids, 63 (1992) 223–233PubMedCrossRefGoogle Scholar
  2. 2.
    Risau W., Dingier A., Albrecht U., Dehouck M.P., Ceccelli R.J., Neuochem., 58 (1992) 667–672CrossRefGoogle Scholar
  3. 3.
    Erben M., Decker S., Franke H., Galla H.-J., J. Biochem. Biophys. Methods, in pressGoogle Scholar
  4. 4.
    Stevenson B.R., Anderson J.M., Goodenough D.A., Mooseker M.S., Cell Biol., 107 (1988) 2401–2408CrossRefGoogle Scholar
  5. 5.
    Richardson J.C.W., Scalera V., Simmons N.L., Biochim. Biophys. Acta, 673 (1981) 26–36CrossRefGoogle Scholar
  6. 6.
    Griepp E.B., Dolan W.J., Robbins E.S., Sabatini D.D., J. Cell Biol., 96 (1983) 693–702PubMedCrossRefGoogle Scholar
  7. 7.
    Erben M., Dissertation, Universität Münster, Germany, 1993Google Scholar
  8. 8.
    Rubin L.L. et al., J. Cell Biol., 155: 6 (1991) 1725–1735CrossRefGoogle Scholar
  9. 9.
    Rutten M. J., Hoover R. J., Karnovsky M. J., Brain Res., 425 (1987) 301–310PubMedCrossRefGoogle Scholar
  10. 10.
    Southwell B. et al., Endocrinology, 132 (1993) 2116–2126CrossRefGoogle Scholar
  11. 11.
    Hein M., Post A., Galla H.-J., Chem. Phys. Lipids 63 (1992) 213–222PubMedCrossRefGoogle Scholar
  12. 12.
    Kachar, Reese, Nature 296(1982)464–466Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Joachim Wegener
    • 1
  • Helmut Franke
    • 1
  • Stephan Decker
    • 1
  • Martin Erben
    • 1
  • Hans-Joachim Galla
    • 1
  1. 1.Department of BiochemistryUniversity of MünsterMünsterGermany

Personalised recommendations