Glial Activation as a Common Denominator in Neurodegenerative Disease: A Hypothesis in Neuropathophysiology

  • W. Sue
  • T. Griffin
  • Laura C. Stanley
Part of the Altschul Symposia Series book series (ALSS, volume 2)

Abstract

The presence of large numbers of activated microglia and astroglia (gliosis) is a hallmark of neurodegeneration. However, neither the molecular impetus for glial activation in neurodegeneration nor its consequences are understood. Glial proliferation and hypertrophy may be found in diverse neurodegenerative conditions: vascular insufficiency, as in stroke (Garcia, 1992); trauma, as in dementia pugilistica (Corsellis et al., 1973) and experimentally induced central nervous system (CNS) lesions (Rio-Hortega and Penfield, 1927; Cavanaugh, 1970; Bigmami and Dahl, 1976; Latov et al., 1979); exposure to infectious agents, as in AIDS (Navia et al., 1986; Budka et al., 1987; Wiley et al., 1991) and scrapie (Diedrich et al., 1991); genetic defects, as in trisomy 21 (Down’s syndrome) (Meyer et al., 1939; Wisniewski et al., 1985; Griffin et al., 1989) and familial Alzheimer’s disease (Murphy and Ellis, 1991); and unknown agents, as in sporadic Alzheimer’s disease (Schechter et al., 1981; Mancardi et al., 1983; Griffin et al., 1989; Delacourte, 1990; Mandybur and Chuirazzi, 1990; Diedrich et al., 1991; Frederickson, 1992). Although gliosis is the common thread in these neurodegenerative diseases, most studies have focused on other neuropathophysiological features. For example, the severe gliosis that accompanies the neuronal and extracellular alterations in dementia pugilistica has been recognized for some time (Corsellis et al., 1973), but the distribution of activated glia and glia-derived cytokines in this disorder is only now under investigation (G.W. Roberts, personal communication).

Keywords

Glial Fibrillary Acidic Protein Down Syndrome Amyloid Precursor Protein Senile Dementia Neuritic Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, C.R., Selkoe, D.J. and Potter, H., 1988, Hnmmiochemical identification of theserine protease inhibitor a1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease, Cell 52: 487–501.PubMedCrossRefGoogle Scholar
  2. Abraham, C.R. and Potter, H., 1989, Alzheimer’s disease: recent advances in understanding the brain amyloid deposits, Biotech. 7: 147–151.CrossRefGoogle Scholar
  3. Allore, R., O’Hanlon, D., Price, R., Neilson, K., Willard, H.F., Cox, D.R. Marks, A. and Dunn, R.J., 1988, Gene encoding the 13 subunit of S100 protein is on chromosome 21: Implications for Down syndrome, Science 239: 1311–1313.Google Scholar
  4. S. Antonaci, S., Garofalo, A.R, Chicco, C., Polignano, A.V., Pugliese, P., Misefari, A. and Jirillo, E., 1990, Senile dementia, Alzheimer type: A distinct entity in the immunosenescence?,. 1 Clin. Lab.Anal. 4: 16–21.CrossRefGoogle Scholar
  5. Araga, S., Kaginoto, H., Funamoto, K. and Takahashi, K., 1991, Reduced natural killer cell activity in patients with dementia of the Alzheimer type, Acta Neurol. Scand. 84: 259–263.PubMedCrossRefGoogle Scholar
  6. Araki, W., Kitaguclú, N., Tokushima, Y., Ishii, K, Aratake, H., Shimohanna, S., Nakamura, S. and Kimura, J., 1991, Trophic effect of beta-amyloid precursor protein on cerebral cortical neurons inculture, Biochem. and Biophys. Res. Commun. 181: 265–271.Google Scholar
  7. Annanini, M.P., Hutchins, C., Stein, B.A. and Sapolsky, R.M., 1990, Glucocorticoid endangerment of hippocampal neurons is NMDA-receptor dependent, Brain Res. 532: 7–12.CrossRefGoogle Scholar
  8. Azmitia, E.C., Dolan, K. and Whitaker-Azmitia, P.M., 1990, S100(3 but not NGF, EGF, insulin or calmodulin is a CNS scrotonergic growth factor, Brain Res. 516: 354–356.PubMedCrossRefGoogle Scholar
  9. Azmitia, E.C., Griffin, W.S.T., Marshak, D.R., Van Eldik, L.J., Whitaker-Azmitia, P.M., S10013 and serotonin: A possible astrocytic neuronal link to neuropathology to AD, Prog. Brain Res. In press.Google Scholar
  10. Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke-lqbal, I., Iqbal, K. and Wis iewski, H.M., 1989, Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease, Brain Res. 477: 90–99.PubMedCrossRefGoogle Scholar
  11. Barger, S.W. and Van Eldik, L.J., 1992, S 100(3 stimulates calcium fluxes inglial and neuronal cells, J. Biol. Chem. 267: 9689–9694.PubMedGoogle Scholar
  12. Barton, A.J., Harrison, P.J., Najlerahim, A., Heffernan, J., McDonald, B., Robinson, J.R., Davies, D.C., Harrison, W.J., Mitra, P., Hardy, J.A. and Pearson, R.C.A., 1990, increased tau messenger RNA in Alzheimer’s disease hippocampus, Am. J. Pathol. 137: 497–502.Google Scholar
  13. Baudier, J. and Cole, R.D., 1988, Reinvestigation of the sulthydryl reactivity in bovine brain S-10013 (bb) protein and the microtubule-associated tau proteins. Ca“ stimulates disulfide cross-linking between S-10013 subunit and the microtubule-associated tau (2) protein, Biochem. 27: 2728–2736.CrossRefGoogle Scholar
  14. Baudier, J. and Cole, R.D., 1988, Interactions between the microtubule-associated tau proteins and S 10013 regulate tau phosphorylation by the Cam/cahnodulin-dependent protein kinase II,.1 Biol.Chem. 263: 5876–5883.Google Scholar
  15. Bauer, J., Strauss, S., Schreiter-Gasser, U., Ganter, U., Schlegel, P., Witt, I., Yolk, B. and Berger, M., 1991, hnterleukin-6 and a.-2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices, 1 EBS’Letts 285: 111–114.Google Scholar
  16. Berkenbosch, F., Van Oers, J., Del Rey, A., Tilders, F. and Besedovsky, H., 1987, Cortic otropin-releasing factor-producing neurons in the rat activated by interleukin-1, Science 238: 524–526.PubMedCrossRefGoogle Scholar
  17. Besedovsky, H., Del Rey, A., Sorkin, E. and Dinarello, C.A., 1986, liumunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science 233: 652–654.Google Scholar
  18. Bessler, H., Sirota, P., Hart, J. and Djaldetti, M., 1989, Lymphokine production inpatients with Alzheimer’s disease, Age Ageing 18: 21–25.PubMedCrossRefGoogle Scholar
  19. Bhattacharyya, A., Oppenbein, R.W., Prevetta, D., Moore, B.W., Brackenbury, R. and Ruttier, N., 1992, S100 is present in developing chicken neurons and Schwann cells and promotes neuron survival in vivo, J. Neurobiol. 23: 451–466.PubMedCrossRefGoogle Scholar
  20. Biemat, J., Mandelkow, E.M., Schroter, C., Lichtenberg-Kraag, B., Steiner, B., Berling, B., Meyer, H., Mercken, M., Vandenneeren, A., Goedert, M. and Mandelkow, E., 1992, The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine proline motifs upstream of the microtubule binding region, EMBO.1 11: 1593–1597.Google Scholar
  21. Bi nanú, A. and Dahl, D., 1976, The astroglial response to stabbing. hnnuiofluo-rescence studies with antibodies to astrocyte-specific protein (GFA) in mannnalian and submanunalian vertebrates, Neuropathol. Appl. Neurobiol. 2: 99–110.CrossRefGoogle Scholar
  22. Blume, A.J. and Vitek, M.P., 1989, Focusing on IL-1-promotion of beta-amyloid precursor protein synthesis as an early event in Alzheimer’s disease, Neurobiol. Aging 10: 406–408PubMedCrossRefGoogle Scholar
  23. Boultwood, J., Breckon, G., Birch, D. and Cox, R., 1989, Chromosomal localization of murine interleuki -1 alpha and beta genes, Genomics 5: 481–485.PubMedCrossRefGoogle Scholar
  24. Breder, C.D., Dinarello, C.A. and Saper, C.B., 1988, I nterleuki -I innunoreactive innervation of the human hypothalamus, Science 240: 321–324.PubMedCrossRefGoogle Scholar
  25. Brenneman, D.E., Schultzberg, M., Bartfai, T. and Gozes, I., 1992, Cytokine regulation of neuronal survival, J. Neurochem. 58: 454–460.PubMedCrossRefGoogle Scholar
  26. Budka, H., Costanzi, G., Cristina, S., Lechi, A., Parravicini, C., Trabattoni, R. and Vago, L., 1987, Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical and electronmicroscopical study of 100 autopsy cases, Acta Neuropathol. (Berl) 75: 185–198.CrossRefGoogle Scholar
  27. Budka, H., 1989, Human immunodeficiency virus (HIV)-induced disease of the central nervous system: Pathology and implications for pathogenesis, Acta Neuropathol. (Berl.) 77: 225–236.CrossRefGoogle Scholar
  28. Burger, P.C. and Vogel, F.S., 1973, The development of the pathological changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome, Am. J. Pathol. 73: 457–476.PubMedGoogle Scholar
  29. Cacabelos, R., Franco-Maside, A. and Alvarez, X.A., 1991, lnterleukin-1 in Alzheimer’s disease and multi-infarct dementia: Neuropsychological correlations, Alzheimer Dis. Assoc. Disord. 5: 194–196.Google Scholar
  30. Cannan-Krzan, M., Vige, X. and Wise, B.C., 1991, Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglial cultures, J. Neurochem. 56: 636–643.CrossRefGoogle Scholar
  31. Cavanaugh, J.B., 1970, The proliferation of astrocytes around a needle wound in the rat brain, J Anat. 106: 471–487.Google Scholar
  32. Cicero, T.J., Ferrendelli, JA, Suntzeff, V and Moore, B.W., 1972, Regional changes in CNS levels of the S100 and 14–3–2 proteins during development and aging of the mouse, J. Neurochem. 19: 2119 – 2125.PubMedCrossRefGoogle Scholar
  33. Colvi, R.A., Bennett, J.W., Colvin, S.L., Allen, R.A. and Martinez, J, 1991, Na’/Ca2+ exchange activity is increased in Alzheimer’s disease brain tissues, Brain Res: 543: 139–147.CrossRefGoogle Scholar
  34. Condorelli, D.F., Dell’Albani, P., Kaczmarek, L., Messina, L., Spampinato, G., Avola, R., Messina, A. and Giuffrida Stella, A.M., 1990, Glial fibrillary acidic protein messenger RNA and glutamine synthetase activity after nervous system injury, J. Neurosci. Res. 26: 251–257.PubMedCrossRefGoogle Scholar
  35. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S. and Smith, S.J., 1990, Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling, Science 247: 470–473.PubMedCrossRefGoogle Scholar
  36. Corsellis, J.A.N., Bruton, C.J. and Freeman-Browne, D., 1973, The aftermath of boxing, Psycho. 3: 270–273.Google Scholar
  37. Corvalan, V, Cole, R., de Vellis, J. and Hagiwara, S., 1990, Neuronal modulation of calcium channel activity in cultured rat astrocytes, Proc. Natl Acad. Sci. USA. 87: 4345–4348.PubMedCrossRefGoogle Scholar
  38. Cross, A.J., Cros, T.J., Ferrier, I.N., Johnson, J.A., Bloom, S.R. and Corsellis, J.A.N., 1984, Serotonin receptor changes in dementia of Alzheimer type, J. Neurochem. 43: 1574–1581.PubMedCrossRefGoogle Scholar
  39. Crowe, A., Ksiezak-Reding, H., Liu, W.K., Dickson, D.W. and Yen, S.H., 1991, The terminal region of human tau is present in Alzheimer’s disease protein A68 and isincorporated into paired helical filaments, Am. J. Pathol. 139: 1463–1470.PubMedGoogle Scholar
  40. Dale, G.E., Leigh, P.N., Luthert, P., Anderton, B.H. and Roberts, G.W., 1991, Neurofibrillary tangles in dementia pugilistica are ubiquitinated, J. Neurol. Neurosurg. Psychiatry 54: 116–118.PubMedCrossRefGoogle Scholar
  41. D’Amato, R.J., Zweig, R.M., Whitehouse, P.J., Wenk, J.C., Singer, H.S., Mayeux, R., Price, D.L. and Snyder, S.H., 1987, Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann. Neurol. 22: 229–236.PubMedCrossRefGoogle Scholar
  42. Dani, J.W., Chemjaysky, A. and Smith, S.J., 1992, Neuronal activity triggers calcium waves in hippocampal astrocyte networks, Neuron 8: 429–440.PubMedCrossRefGoogle Scholar
  43. Davis, K.L., Davis, B.M., Greenwald, B.S., Mohs, R.C., Mathe, A.A., Johns, C.A. and Horvath, T.B., 1986, Cortisol and Alzheimer’s disease, I: Basal Studies, Am. J. Psychiatry 143: 300–305PubMedGoogle Scholar
  44. Delacourte, A., 1990, General and dramatic glial reaction in Alzheimer brains, Neurol. 40: 33–37CrossRefGoogle Scholar
  45. Delacourte, A. and Defossez, A., 1986, Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments, J. Neurolog. Sci. 76: 173–186.CrossRefGoogle Scholar
  46. Diedrich, J.F., Duguid, J.R. and Haase, A.T., 1991, The role of astrocytes in the neuropathology of Scrapie and Alzheimer’s disease, Seminars Virol. Vol. 2.Google Scholar
  47. Dinarello, C.A., 1989, Interleukin-1 and its biologically related cytokines, Adv. Immunol. 44: 153–205PubMedCrossRefGoogle Scholar
  48. Donato, R., 1991, Perspectives in S100 protein biology, Cell Calcium 12: 713–726.PubMedCrossRefGoogle Scholar
  49. Dodt, C., Dittmann, J., Hruby, J., Spath-Schwalbe, E., Born, J., Schuttler, R. and Fehm, H.L., 1991, Different regulation of adrenocorticotropin and cortisol secretion in young, mentally healthy elderly and patients with senile dementia of Alzheimer’s type, J. Clin. Endocrinol. Metab. 72: 272–276.PubMedCrossRefGoogle Scholar
  50. Doebler, J.A., Markesbery, W.R., Anthony, A., Davies, P., Scheff, S.W. and Rhoads, R.E., 1988, Neuronal RNA in relation to Alz-50 immunoreactivity in Alzheimer’s disease, Ann. Neurol. 23: 20–24.PubMedCrossRefGoogle Scholar
  51. Donnelly, R.J., Friedhoff, A.J., Beer, B., Blume, A.J. and Vitek, M.P., 1990, hrterleukim-1 stimlulates the beta-amyloid precursor protein promoter, Cell Malec. Neurobiol. 10: 485–495.Google Scholar
  52. Fedoroff, S. and Vemadakis, A., (eds) 1986a, “Astrocytes: Development, Morphology, and Regional Specialization of Astrocytes,” Academic Press, Orlando.Google Scholar
  53. Fedoroff, S. and Vemadakis, A., (eds) 1986b, “Astrocytes: Biochemistry, Physiology, and Pharmacology of Astrocytes,” Academic Press Inc., Orlando. Fedoroff, S. and Vemadakis, A., (eds) 1986e, “Astrocytes: Biochemistry, Cell Biology and Pathology of Astrocytes.” Academic Press Inc., Orlando.Google Scholar
  54. Fedoroff, S., McAuley, W.A., Houle, J.D. and Devon, R.M., 1984, Astrocyte cell lineage. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo, J. Neurosci. Res. 12: 14–27.PubMedCrossRefGoogle Scholar
  55. Fedoroff, S., Alined, I. and Wang, E., 1990, The relationship of expression of statiro, the nuclear protein of nonproliferating cells, to the differentiation and cell cycle of astroglia in cultures and in situ, J. Neurosci. Res. 26: 1–15.PubMedCrossRefGoogle Scholar
  56. Ferrier, I.M., Pascual, J., Charlton, B.G., Wright, C., Leake, A., Griffiths, H.W., Fairbaim, A.F. and Edwardson, J.A., 1988, Cortisol, ACTH, and dexamethasone concentrations in a psychogeriatric population, Biol. Psychiatry 23: 252–260.PubMedCrossRefGoogle Scholar
  57. Flament, S., Delacourte, A. and Mann, D.M., 1990, Phosphorylation of tau proteins: a major event during the process of neurofibrillary degeneration. A comparative study between Alzheimer’s disease and Down’s syndrome, Brain Res. 516: 15–19.PubMedCrossRefGoogle Scholar
  58. Flament, S. and Delacourte, A., 1989, Abnormal tau species are produced during Alzheimer’s disease neurodegenerating process, FEES Letts 247: 213–216.CrossRefGoogle Scholar
  59. Flament, S., Delacourte, A., Vemy, M., Hauw, J.J. and Javoy-Agid, F., 1991, Abnormal tau proteins in progressive supranuclear palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type, Acta Neuropathol. 81: 591–596.PubMedCrossRefGoogle Scholar
  60. Fontana, A., Kristensen, F., Dubs, R., Gemsa, D. and Weber, E., 1982, Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells, J. Iminunol. 129: 2413–2419.Google Scholar
  61. Frederickson, R.C.A., 1992, Astroglia in Alzheimer’s Disease, Neurobiol. Aging 13: 239–253.PubMedCrossRefGoogle Scholar
  62. Frei, K., Bodmer, S., Schwerdel, C. and Fontana, A., 1986, Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages, J. Immunol. 137: 3521–3527.PubMedGoogle Scholar
  63. Frei, K., Siepl, C., Groscurth, P., Bodmer, S., Schwerdel, C. and Fontana, A., 1987, Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells, Euro. 17: 1271–1278.Google Scholar
  64. Frei, K., Siepl, C., Groscurth, P., Bodmer, S. and Fontana, A., 1988, hnumunobiology of microglial cells, Ann. NYAcad. Sci. 540: 218–227.Google Scholar
  65. Garcia, J.H., 1992, The evolution of brain infarcts: A review, J. Neuropathol. Exp. Neurol. 1: 387–393CrossRefGoogle Scholar
  66. Giaccone, G., Tagliavini, F., Linoli, G., Bouras, C., Frigerior, L., Frangione, B. and Bugiani, O., 1989, Down patients: Extracellular preamyloid deposits precede neuritic degeneration and senile plaques, Neurosei. Letts 97: 232–238.CrossRefGoogle Scholar
  67. Gilmore, S.A., Sims, T.J. and Leiting, J.E., 1990, Astrocytic reactions in spinal gray matter following sciatic axotomy, Glia 3: 342–349.PubMedCrossRefGoogle Scholar
  68. Giulian, D., Baker, T.J., Shih, L.N. and Lachman, L.B., 1986, hnterleukim 1 of the central nervous system is produced by ameboid microglia, J. Exp. Med. 164: 594–604.Google Scholar
  69. Giulian, D. and Baker, T.J., 1985, Peptides released by ameboid microglia regulate astroglial proliferation,.L Cell Biol. 101: 2411–2415.Google Scholar
  70. Giulian, D. and Lachman, L., 1985, hnterleukin-1 stimulation of astroglial proliferation after brain injury, Science 228: 497–499.Google Scholar
  71. Giulian, D., J. Woodward, J., Young, D.G., Krebs, J.F. and Lachman, L.B., 1988, I nterleukim-1 injected into mammalian brain stimulates astrogliosis and neovascularization, J. Neurosei. 8: 2485–2490.Google Scholar
  72. Gleaner, G.G. and Wong, C.W., 1984, Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 122: 885–890.CrossRefGoogle Scholar
  73. Gleaner, G.G. and Wong, C.W., 1984, Alzheimer’s disease and Down’s syndrome: Sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun. 122: 1131–1135.CrossRefGoogle Scholar
  74. Gregory, L., Williams, R. and Thompson, E., 1972, Leucocyte function in Down’s syndrome and acute leukemia, Lancet 11: 1359–1361.CrossRefGoogle Scholar
  75. Goldgaber, D., Harris, H.W., Hla, T., Maciag, T., Donnelly, R.G., Jacobsen, J.S., Vitek, M.P. and Gajdusek, D.C., 1989, Interleukin 1 regulates synthesis of amyloid B-protein precursor mRNA in human endothelial cells, Proc. Natl Acad. Sci. USA 86: 7606–7610.PubMedCrossRefGoogle Scholar
  76. Goldgaber, D., Lerman, M.I., McBride, W.O., Saffiotti, U. and Gajdusek, D.C., 1987, Solation, characterization, and chromosomal localization of human brain cDNA clones coding for the precursor of the amyloid of brain in Alzheimer’s disease, Down’s syndrome and aging, J. Neural Transm. [Supp1.] 24: 23–28.Google Scholar
  77. Graeber, M.B. and Streit, W.J., 1990, Microglia: Immune network in the CNS, Brain Path. 1: 2–5.CrossRefGoogle Scholar
  78. Graeber, M.B., Streit, W.J., Kiefer, R., Schoen, S W and Kreutzberg, G.W., 1990, New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury, J. Neuroimmunol. 27: 121–132.PubMedCrossRefGoogle Scholar
  79. Griffin, W.S.T., Stanley, L.C., Ling, C., White, L., MacLeod, V., Perrot, L.J., White III, C.L. and Araoz, C., 1989, Brain interleukin 1 and S-100 inimunoreactivity are elevated in Down syndrome and Alzheimer disease, Proc. Natl Acad. Sci. USA 86: 7611–7615.Google Scholar
  80. Griffin, W S T, Stanley, L.C., Mrak, R.M. and Perrot, L.J., 1991, S 100(3 is elevated in brain cells of AIDS patients, Abs. Soc. Neurosci. 17: 1273.Google Scholar
  81. Griffin, W.S.T., Ling, C., White III, C.L. and Morrison-Bogorad, M., 1990, Poly-adenylated messenger RNA in paired helical filament-immunoreactive neurons in Alzheimer’s Disease, Alzheimer Dis. Assoc. Disord. 4: 69–78.Google Scholar
  82. Gnndke-Iqbal, I., Igbal, K., Quinlan, M., Tung, Y.-C., Zaidi, M.S. and Wisniewski, H.M., 1986, Microtubule-associated protein tau: A component of Alzheimer paired helical filaments, J Biol. Chem. 261: 6084–6089.Google Scholar
  83. Grundke-Igbal, I., Igbal, K., Tung, Y.-C., Quinlan, M., Wisniewski, H.M., and Binder, L.I., 1986, Abnormal phosphorylation of the microtubule-associated protein t (tau) in Alzheimercytoskeletal pathology, Proc. Natl Acad. Sci. USA 83: 4913–4917.CrossRefGoogle Scholar
  84. Hanger, D.P., Brion, J.P., Gallo, J.M., Cairns, N.J., Luthert, P.J. and Anderton, B.H., 1991, Tau in Alzheimer’s disease and Down’s syndrome is insoluble and abnormally phosphorylated, Biochem. J. 275: 99–104.Google Scholar
  85. Hao, C., Guilbert, L.J. and Fedoroff, S., 1990, Production of colony-stimulating factor-1 (CSF-1) by mouse astroglia in vitro, J. Neurosci. Res. 27: 314–323.PubMedCrossRefGoogle Scholar
  86. Heizmann, C.W. and Braun, K., 1992, Changes in Cat+-binding proteins in human neurodegenerative disorders, TINS 15: 259–264.PubMedGoogle Scholar
  87. Hetier, E., Ayala, J., Denefle, P., Bousseau, A., Rouget, P., Mallat, M. and Prochiantz, A., 1988, Brain macrophages synthesize Interleukin-1 and Interleukin-1 mRNAs in vitro, J.Neurosci.Res. 21: 391–397.PubMedCrossRefGoogle Scholar
  88. Hertz, L., 1991, Neuronal-astrocytic interactions in brain development, brain function and brain disease, Adv. Exp. Med Biol. 296: 143–159.PubMedCrossRefGoogle Scholar
  89. Hertz, L., 1989, Is Alzheimer’s disease an anterograde degeneration, originating in the brainstem, and disrupting metabolic and functional interactions between neurons and glial cells?, Brain Res. Rev. 14: 335–353.PubMedCrossRefGoogle Scholar
  90. Hertz, L., McFarlin, D.E. and Waksman, B.H., 1990, Astrocytes: auxiliary cells for immune responses in the central nervous system?, Immunol. Today 11: 265–268.PubMedCrossRefGoogle Scholar
  91. Hozumi, I., Aquino, D.A and Norton, W.T., 1990, GFAP mRNA levels following stab wounds in rat brain, Brain Res. 534: 291–294.PubMedCrossRefGoogle Scholar
  92. Hulette, C.M. and Walford, R.L., 1987, Immunological aspects of Alzheimer disease: A review, Alzheimer Dis. Assoc. Disord. 1: 72–82.PubMedCrossRefGoogle Scholar
  93. Hyman, B.T., Van Horsen, G.W., Danmasio, A.R. and Barnes, C.L., 1984, Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation, Science 225: 1168–1170.PubMedCrossRefGoogle Scholar
  94. ihara, Y., Nukina, N., Miura, R. and Ogawara, M., 1986, Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease, J Biochem. 99: 1807–1810.PubMedGoogle Scholar
  95. Itagaki, S., McGeer, P.L., Akiyanma, H., Zhu, S. and Selkoe, D., 1989, Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease, J. Neuroimmunol. 24: 173–182.PubMedCrossRefGoogle Scholar
  96. Khachaturian, Z.S., Cotman, C.W. and Pettegrew, J.W., 1989, Calcium, membranes, aging, and Alzheimer’s disease, Ann. IVYAcad. Sci. 568: 1–292.CrossRefGoogle Scholar
  97. Khachaturian, Z.S., 1991, Overview of basic research on Alzheimer disease: hnplications for cognition, Alzheimer Dis. Assoc. Disord. 1: S1 - S6.CrossRefGoogle Scholar
  98. Khansari, N., Whitten, H.D., Chou, Y.K. and Fudenberg, H.H., 1985, Immunological dysfunction in Alzheimer’s disease, J. Neuroimmunol. 7: 279–285.PubMedCrossRefGoogle Scholar
  99. Kimura, T. and Budka, H., 1986, Glial fibrillary acidic protein and S-100 protein in human hepatic encephalopathy: hmnunocytochemical demonstration of dissociation of two glia-associated proteins, Acta Neuropathol. (Berl.) 70: 17–21.CrossRefGoogle Scholar
  100. Kligman, D. and Marshak, D.R., 1985, Purification and characterization of a neurite extension factor from bovine brain, Proc. Natl Acad Sci. USA 82: 7136–7139.PubMedCrossRefGoogle Scholar
  101. Koh, J.-Y., Yang, L.L. and Cotman, C.W., 1990, l3-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage, Brain Res. 533: 315–320.Google Scholar
  102. Koo, E.H., Sisodia, S.S., Cork, L.C., Unterbeck, A., Bayney, R.M. and Price, D.L., 1990, Differential expression of amyloid precursor protein mRNAs in cases of Alzheimer’s disease and in aged nonhuman primates, Neuron 4: 97–104.PubMedCrossRefGoogle Scholar
  103. Kosik, K.S., Orecchio, L.D., Binder, L., Trojanowski, J.Q., Lee, V.M. and Lee, G., 1988, Epitopes that span the tau molecule are shared with paired helical filaments, Neuron 1: 817–825.PubMedCrossRefGoogle Scholar
  104. Kraig„ R.P., 1989, Astroglial W and Ca“ changes-signals for cell activation?, Acta Physiol. Scand. 582: 32.Google Scholar
  105. Landfield, P.W. and Eldridge, J.C., 1991, The glucocorticoid hypothesis of brain aging and neurodegeneration: Recent modifications, Acta Endocrinol. 1: 54–64.Google Scholar
  106. Latov, N., Nilaver.G., Zimmerman, E.A., Johnson, W.G., Silverman, A.J., Defendini, R. and Cote, L., 1979, Fbbrillary astrocytes proliferate in response to brain injury, a study combining imnunoperoxidase technique for glial fibrillary acidic protein and radioautography of tritiated thymidine, Develop. Biol. 72: 381–384.Google Scholar
  107. Lawlor, B.A.,Tsuboyanma, G., Ryan, T., Mobs, R.C., Davis, B.M., Davidson, M., Gabriel, S. and K.L.Davis, K.L.,1992. Agitation and postdexamethasonc cortisol levels in Alzheimer’s disease, Am. J Psychiatry 149: 546–548.Google Scholar
  108. Leake, A., Charlton, B.G., Lowry, P.J., Jackson, S., Fairbairn, A. and Ferrier, I.M., 1990, Plasma N-POMC, ACTH and cortisol concentrations in a psychogeriatric population, Br. J. Psychiatry 156: 676–679.PubMedCrossRefGoogle Scholar
  109. Lee, V.M-Y., Balin, B.J., Otvos Jr.,L. and Trojanowski, J.Q., 1991, A68: A major subunit of paired helical filaments and derivatized forms of normal tau, Science 251: 675–678.PubMedCrossRefGoogle Scholar
  110. Lesch, K.P., lhl, R., Frolich, L., Rupprecht, R., Muller, U., Schulte, H.M. and Maurer, K., 1990, Endocrine responses to growth hormone releasing hormone and corticotropin releasing hormone in early-onset Alzheimer’s disease, Psych. Res. 33: 107–112.CrossRefGoogle Scholar
  111. Mancardi, G.L., Liwmcz, B.H. and Mandybur, T.I., 1983, Fibrous astrocytes in Alzheimer’s disease and senile dementia of Alzheimer’s type, Acta Neuropathol. (Berl.) 61: 76–80.CrossRefGoogle Scholar
  112. Mandybur, T.I. and Chuirai, C C, 1990, Astrocytes and the plaques of Alzheimer’s disease, Neural. 40: 635–639.Google Scholar
  113. Mann, D.M.A., Yates, P.O., Marcyniuk, B. and Ravindra, C.R., 1987, Loss of neurons from cortical and subcortical areas in Down’s syndrome patients at middle age, J. Neurolog. Sci. 80: 79–89.CrossRefGoogle Scholar
  114. Mann, D.M.A., 1988, The pathological association between Down’s syndrome and Alzheimer’s disease. Mech. Ageing Dev. 43: 99–136.PubMedCrossRefGoogle Scholar
  115. March, C.J., Mosley, B., Larsen, A., Corretti, D.P., Braedt, G., Price, V., Gillis, V.S., Heaney, C.S., Kronheim, S.R., Grabstein, K., Conlon, P.J., Hopp, T.P. and Cosman, D., 1985, Cloning, sequence and expression of two distinct human interleukim-1 complementary DNAs, Nature 315: 641–647.PubMedCrossRefGoogle Scholar
  116. Marshak, D.R., Pesce, S.A., Stanley, L.C. and Griffin, W.S.T., 1992, Increased SI003 neurotrophic activity in Alzheimer disease temporal lobe, Neurohiol. Aging 13: 1–7.CrossRefGoogle Scholar
  117. Marshak, D.R., 1992, S l00ß as a neurotrophic factor, Frog. Brain Res. 86: 169–181.CrossRefGoogle Scholar
  118. Marks, J., 1992, A new link in the brain’s defenses, Science 256: 1278–1280.CrossRefGoogle Scholar
  119. Masliah, E., Terry, R.D., Mallory, M., Alford, M. and Hansen, L.A., 1990, Diffuse plaques do not accentuate synapse loss in Alzheimer’s disease, Am. J. Pathol. 137: 1293–1297.PubMedGoogle Scholar
  120. Masters, C.L., Multhaup, G., Simms, G., Pottgieser, J., Martins, R.N. and Beyreuther, K., 1985Google Scholar
  121. Neuronal origin of a cerebral amyloid; neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels, EMBO J. 4:2757–2763.Google Scholar
  122. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L. and Beyreuther, K., 1985, Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Nall Acad Sci. USA 82: 4245–4249.CrossRefGoogle Scholar
  123. Masugi, F., Ogihara, T., Sakaguchi, K., Otsuka, A., Tsuchiya, Y., Morimoto, S., Kumahara, Y., Saeki, S. and Nishide, M., 1989, High plasma levels of cortisol in patients with senile dementia of the Alzheimer’s type, Methods Find Exp. Clin. Pharinacol. 11: 707–710.Google Scholar
  124. Mattiace, L.A., Davies, P. and Dickson, D.W., 1990, Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors, Am. J. Pathol. 136: 1101–1114.PubMedGoogle Scholar
  125. McGeer, P.L., McGeer, E.G., Kawannata, T., Yamada, T. and Akiyama, H., 1991, Reactions of the immune system in chronic degenerative neurological diseases, Can. J. Neurol. Sci. 18: 376–379.PubMedGoogle Scholar
  126. McGeer, P.L. and Rogers, J., 1992, Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease, Neurol. 42: 447–449.CrossRefGoogle Scholar
  127. McGeer, P.L., Itagaki, S., Tago, H. and McGeer, E.G., 1987, Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR, Neurosci. Letts 79: 195–200.CrossRefGoogle Scholar
  128. Meyer, A., Bonn, M.D., Jones, T.B., 1939, Histological changes in the brain in mongolism, J Mental Sci. 85: 206–221.Google Scholar
  129. Meyer, F.B., 1989, Calcium, neuronal hyperexcitability and ischemic injury, Brain Res. Rev. 14: 227–243.PubMedCrossRefGoogle Scholar
  130. Miyakawa, T., Shimoji, A., Kuranioto, R. and Higuchi,Y. 1982, The relationship between senile plaques and cerebral blood vessels in Alzheimer’s disease and senile dementia, Virchows Arch. 40: 121–129.CrossRefGoogle Scholar
  131. Mori, H., Hamada, Y., Kawaguchi, M., Honda, T., Kondo, J. and Ihara, Y., 1989, A distinct form of tau is selectively incorporated into Alzheimer’s paired helical filaments, Biochem. Biophys. Res. Commun. 159: 1221–1226.PubMedCrossRefGoogle Scholar
  132. Morii, R., Tanaka, Y., Takahashi, S., Minoshima, R., Fukuyama, N., Shimizu and Kuwano, R., 1989, Structure and chromosome assignment of human S100 alpha and beta subunit genes, Biochem. Biophys. Res. Commun. 175: 185–191.Google Scholar
  133. Mossakowski, M.J. and Weinrauder, H., 1986, Glial fibrillary acidic protein and S 100 protein in abnormal astrocytes in Wilson’s disease, Neuropatol. Pol. 24: 365–376.PubMedGoogle Scholar
  134. Mossner, R., Sedgwick, J., Flory, E., Komer, H., Wege, H. and Meulen, V. ter., 1990, Astrocytes as antigen presenting cells for primary and secondary T cell responses: Effect of astrocyte infection by murine hepatitis virus, Adv. Exp. Med Biol. 276: 647–654.PubMedCrossRefGoogle Scholar
  135. Murphy, G.M. and Ellis, W.G, 1991, The annygdala in Down’s syndrome and familial Alzheimer’s disease: four clinicopathological case reports, Biolog. Psychiatry 30: 92–106.CrossRefGoogle Scholar
  136. Navia, B.A., Cho, E-S., Petito, C.K. and Price, R.W., 1986, The AIDS dementia complex: II. Neuropathology, Ann. Neural. 19: 525–535.CrossRefGoogle Scholar
  137. Niebulr, E., 1974, Down’s syndrome. The possibility of a pathogenetic segment on chromosome no. 21, Humangenetik 21: 99–101.CrossRefGoogle Scholar
  138. Noble R.L. and Warren, R.P., 1987, Altered T-cell subsets and defective T-cell fimction in young children with Down syndrome, Immunol. Invest. 16: 371–382.PubMedCrossRefGoogle Scholar
  139. Novak, M., Jakes, R., Edwards, P.C., Milstein, C. and Wischik, C.M., 1991, Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51, Proc. Nall Acad. Sci. USA 13: 5837–5841.CrossRefGoogle Scholar
  140. Nukina N. and Ihara, Y., 1986, One of the antigenic determinants of paired helical filaments is related to tau protein, J Biochem. 99: 1541–1544.PubMedGoogle Scholar
  141. Oppenheim, J.J., Kovacs, E.J., Matsushima, K. and Dumm, S.K., 1986, There is more than one i terleukin-1, Immunol. Today 7: 45–56.CrossRefGoogle Scholar
  142. Packan D.R. and Sapolsky, R.M., 1990, Glucocorticoid endangerment of the hippo-campus: Tissue, steroid and receptor specificity, Neuroendocrin. 51: 613–618.CrossRefGoogle Scholar
  143. Palmer, A.M., Francis, P.T., Benton, J.S., Sims, N.R., Mann, D.M., Neary, D., Snowden, J.M. and Bowen, D.M., 1987, Presynaptic serotonergic dysfunction in patients with Alzheimer’s disease, J. Neurochem. 48: 8–15.PubMedCrossRefGoogle Scholar
  144. Papasozomenos, S.C., 1989, tau protein immunoreactivity in dementia of the Alzheimer type, Lab. Invest. 60: 123–138.Google Scholar
  145. Papasozomenos, S.C., Binder, L.I.,. Bender, P.K. and Payne, M.R., 1985, Microtubule associated protein 2 within axons of spinal motor neurons: Associations with microtubules and neurofilaments in nonnal and b-iminodipropio-nitrile-treated axons, J. Cell Biol. 100: 74.PubMedCrossRefGoogle Scholar
  146. Perlmutter, D.H., Dinarello, C.A., Punsal, P.I. and Cohen, H.R., 1986, Cachectin/tumor necrosis factor regulates hepatic acute-phase gene expression, J. Clin. Invest. 78: 1349–1354.PubMedCrossRefGoogle Scholar
  147. Pirttila, T., Mattinen, and Frey, H., 1992, The decrease of CD8-positive lymphocytes in Alzheimer’s disease, J. Neurol. Sci. 107: 160–165.Google Scholar
  148. Poirier, J., Hess, M., May, P.C. and Finch, C.E., 1991, Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning, Brain Res. 11: 97–106.Google Scholar
  149. Powers, R.E., Walker, L.C., De Sousa, E.B., Vale, W.W., Struble, R.G., Whitehouse, P.J. and Price, D.L., 1987, Immunohistochemical study of neurons containing corticotropin-releasing factor in Alzheimer’s disease, Synapse 1: 405–410.PubMedCrossRefGoogle Scholar
  150. Price, J.L., Davis, P.B., Morris, J.C. and White, D.L., 1991, The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease, Neurobiol. Aging 12: 295–312.PubMedCrossRefGoogle Scholar
  151. Purpura, D.P., 1979, Neurons in metabolic and unclassified amentias, in: “Congenital and Acquired Cognitive Disorders,” R. Katzman, ed., Raven Press, New York.Google Scholar
  152. Ransom, B.R. and Sontheimer, H., 1992, The ncurophysiology of glial cells, J. Clin. Neurophysiol. 9: 224–251.PubMedCrossRefGoogle Scholar
  153. Reicr, P.J., 1986, Gliosis following CNS injury: The anatomy of astrocytic scars and their influences on axonal elongation, in: “Astrocytes: Cell Biology and Pathology of Astrocytes,” Academic Press, Inc.Google Scholar
  154. Righi, M., Mori, L., DeLibero, G., Sironi, M., Biondi, A., Mantovani, A., Donini, S.D. and Ricciardi-Castagonoli, P., 1989, Monokine production by microglial cell clones, Eur. J. Immunol. 19: 1443–1448.PubMedCrossRefGoogle Scholar
  155. Rio-Hortega, P.D and Penfield, W., 1927, Cerebral cicatrix, Bull. Johns Hopkins Hasp. 41: 278–303.Google Scholar
  156. Roberts, G.W., Allsop, D. and Bruton, C., 1990, The occult aftermath of boxing, J. Neurol. Neurosurg. Psychiatry 53: 373–378.PubMedCrossRefGoogle Scholar
  157. Roberts, G.W., Lofthouse, R., Allsop, D., Landon, M., Kidd, M., Prusiner, S.B. and Crow, Ti.,. 1988, CNS amyloid proteins in neurodegenerative diseases, Neurol. 38: 1534–1540.CrossRefGoogle Scholar
  158. Rogers J. and Mufson, E.J., 1990, Demonstrating immune-related antigens in Alzheimer’s disease brain tissue, Neurobiol. Aging 11: 477–9.PubMedCrossRefGoogle Scholar
  159. Rozemuller, J.M., Stain, F.C. and Eikelenboorn, P., 1990, Acute phase proteins are present in amorphous plaques in the cerebral but not cerebellar cortex of patients with Alzheimer’s disease, Neurosci. Letts 119: 75–78.CrossRefGoogle Scholar
  160. Rozemuller, J.M., Eikelenboom, P., Stain, F.C., Beyreuther, K. and Masters, C.L., 1989, A4 protein in Alzheimer’s disease: Primary and secondary cellular events in extracellular amyloid deposition, J Neuropathol. Exp. Neurol. 48: 674–691.PubMedCrossRefGoogle Scholar
  161. Rumble, B., Retallack, R., Hilbich, C., Simms, G., Multhaup, G., Martins, R., Hockey, A., Montgomery, P., Beyreuthcr, K. and Masters, C., 1989, Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease, N. Engl.1 Med. 320: 1446–1452.CrossRefGoogle Scholar
  162. Sapolsky, R.M., Rivier, C., Yamamoto, G., Plotsky, P. and Vale, W., 1987, Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor, Science 238: 522–524.PubMedCrossRefGoogle Scholar
  163. Sapolsky, R.M., Stein-Behrens, B.A. and Armani ni, M.P., 1991, Long-terni adrenalectomy causes loss of dentate gyrus and pyramidal neurons in the adult hippocampus, Exp. Neurol. 114: 246–249PubMedCrossRefGoogle Scholar
  164. Schechter, R., Yen, S-H.C. and Terry, R.D., 1981, Fibrous astrocytes in senile dementia of the Alzheimer type, J. Neuropathol. Exp. Neurol XL: 95–101.Google Scholar
  165. Schiffer, D., Giordana, M.T., Migheli, A., Giaccone, G., Pezzotta, S. and Mauro, A., 1987, Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain, Brain Res. 374: 110–118.CrossRefGoogle Scholar
  166. Schubert, D., Cole, G., Saitoh, T. and Oltersdorf, T., 1989, Amyloid beta protein precursor is a nútogen, Biochem. Biophys. Res. Commun. 162: 83–88.CrossRefGoogle Scholar
  167. Selinfreund, R.H., Barger, S.W., Welsh, M.J. and Van Eldik, L.J., 1990, Antisense inhibition of glial S 100ß production results in alterations in cell morphology, cytoskeletal organization, and cell proliferation, 191989J Cell Biol. 111: 2021–2028.CrossRefGoogle Scholar
  168. Selinfreund, R.H., Barger, S.W., Pledger, W.J. and Van Eldik, L.J., 1991, Neurotrophic protein S10013 stimulates glial cell proliferation, Proc. Natl Acad Sci. USA 88: 3554–3558.CrossRefGoogle Scholar
  169. Selkoe, D.J., 1991, The molecular pathology of Alzheimer’s disease, Neuron 6: 487–498.PubMedCrossRefGoogle Scholar
  170. Shashoua, V.E., Hesse, G.W. and Moore, B.W., 1984, Proteins of the brain extracellular fluid: Evidence for release of S-100 protein, J. Neurochem. 42: 1536–1541.PubMedCrossRefGoogle Scholar
  171. Singh,V.K., Fudenberg, H.H. and Brown III, F.R., 1986–87, Immunologic dysfunction: simultaneous study of Alzheimer’s and older Down’s patients, Mech. Ageing Dev. 37: 257–264.Google Scholar
  172. Sparks, D.L. and Hunsaker II, J.C., 1992, Down’s syndrome: Occurrence of ALZ-50 reactive neurons and the formation of senile plaques, J Neurolog. Sci. 109: 77–82.Google Scholar
  173. Stanley, L.C. and Griffin, W.S.T., 1990, Localization of IL-la and IL-lb in diseases with gliosis, dementia, and immune suppression, Soc. Neurosci. Abstr. 16: 1345.Google Scholar
  174. Stanley, L.C., Perrot, L.J. and Griffin, W.S.T., 1988, Microglia responses during development in Down’s syndrome, Soc. Neurosci. Abstr. 114: 1172.Google Scholar
  175. Stanley, L.C., Mrak, R.E., Perrot, L.J. and Griffin, W.S.T., 1991, IL-1a and 1L-113 arc elevated in brain cells of AIDS patients, Soc. Neurosci. Abstr. 17: 1273.Google Scholar
  176. Steward,O., Torre, E.R., Phillips, L.L. and Trimmer, P.A., 1991, The process of rei nervation in the dentate gyms of adult rats: Time course of increases in mRNA for glial fibrillary acidic protein, J. Neurosci. 10: 2373–2384.Google Scholar
  177. Streit,W.J., Graeber, M.B. and Kreutzberg, G.W., 1980, Expression of la antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury, Exp. Neurobiol. 105: 115–126CrossRefGoogle Scholar
  178. Suetsugu, M. and Meharein, P., 1980, Spine distribution along the apical dendrites of the pyramidal neurons in Down’s syndrome, Acta Neuropathol. (Berl.) 50: 207–210.CrossRefGoogle Scholar
  179. Supattapone, S., Simpson, A.W. and Ashley, C.C., 1989, Free calcium rise and mitogenesis in glial cells caused by endothelin, Biochem. Biophys. Res. Commun. 165: 1115–1122.PubMedCrossRefGoogle Scholar
  180. Suttles, J., Giri, J.G. and Mizel, S.B., 1990, IL-1 Secretion by macrophages: Enhancement of IL-1 secretion and processing by calcium ionophores, J. Immunol. 144: 175–182.PubMedGoogle Scholar
  181. Tagliavini, F., Giaccone, G., Frangione, B. and Bugiani, O., 1988, Preamyloid deposits in the cerebral cortex of patients with Alzheimer’s disease and nondemented individuals, Neurosci. Letts 93: 191–196.CrossRefGoogle Scholar
  182. Takamiya,Y., Kohsaka, S., Toya, S., Otani, M. and Tsukada,Y., 1988, Inununohisto-chemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats, Dey. Brain Res. 38: 201–210.CrossRefGoogle Scholar
  183. Takao,T., Tracey, D.E., Mitchell, W.M. and De Souza, E.B., 1990, Interleukin-1 receptors in mouse brain: Characterization and neuronal localization, Endocrinol. 127: 3070–3078.CrossRefGoogle Scholar
  184. Tanzi, R.E., Gusella, J.F., Watkins, P.C., Bruns, G.A., George-Hyslop, P. St., Van Keuren, M.L., Patterson, D., Pagan, S., Kumit, D.M. and Neve, R.L., 1987, Amyloid b protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science 235: 880–884.PubMedCrossRefGoogle Scholar
  185. Terry,R.D. and Katzman, R., 1983, Senile dementia of the Alzheimer type, Ann. Neurol. 14: 497–505.PubMedCrossRefGoogle Scholar
  186. Tokuda, T., Ikeda, S., Yanagisawa, N., Ihara, Y. and Glenner, G.G., 1991, Re-examination of ex-boxers’ brains using immunohistochemistry with antibodies to amyloid beta-protein and tau protein, Acta Neuropathol. 82: 280–285.PubMedCrossRefGoogle Scholar
  187. Ueda, K., Masliah, E., Saitoh, T., Bakalis, S.L., Scoble, H. and Kosik, K.S., 1990, Alz 50 recognizes a phosphorylated epitope of tau protein, J. Neurosci. 10: 3295–3304.PubMedGoogle Scholar
  188. Uehara, A., Gottschall, P.E., Dahl, R.R. and Arimura, A., 1987, I nterleukii-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor, Endocrinol. 121: 1580–1582.CrossRefGoogle Scholar
  189. Vandenabeele, P. and Fiers, W., 1991, Is amyloidogenesis during Alzheimer’s disease due to an IL-1-/IL-6-mediated `acute phase response’ in the brain?, Immunol. Today 12: 217–219.PubMedCrossRefGoogle Scholar
  190. Van Eldik, L.J., and Zimmer, D.B., 1987, Secretion of S-100 from rat C6 glioma cells, Brain Res. 436: 367–370.PubMedCrossRefGoogle Scholar
  191. Van Hartesveldt, C., Moore, B. and Hartman, B.K., 1986, Transient midline raphe glial structure in the developing rat, J. Comp. Neurol. 253: 174–184.PubMedGoogle Scholar
  192. Virgin Jr., C.E., Ha, T.P., Packan, D.R., Tombaugh, G.C., Yang, S.H., Homer, H.C., and Sapolsky, R.M., 1991, Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: Implications for glucocorticoid neurotoxicity, J. Neurochem. 57: 1422–1428.PubMedCrossRefGoogle Scholar
  193. Wahl, S.M., Allen, J.B., McCartney-Francis, N., Morganti-Kossmann, M.C., Kossmann,T., Ellingsworth, L., Mai, U.E., Mergenhagen, S.E. and Orenstein, J.M., 1991, Macrophage-and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome, J. Exp. Med 173: 981–991.Google Scholar
  194. Watanabe, N., Takio, K., Hasegawa, M., Arai, T., Titani, K., 1992, and Y. Mara, tau 2: A probe for a Ser conformation in the amino terminus of tau, J. Neurochem. 58:960–966.Google Scholar
  195. Whitaker-Azmitia, P.M., Murphy, R.and Azmitia, E.C., 1990, Stimulation of astroglial 5-HT IA receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology, Brain Res. 528: 155–158.Google Scholar
  196. Wiley, C.A., Masliah, E., Morey, M., Lemere, C., De Teresa, R., Grafe, M., Hansen, L. and Terry R., 1991, Neocortical damage during HIV infection, Am. J. Neurol. 29: 651–657.CrossRefGoogle Scholar
  197. Winningham-Major, F., Staecker, J.L., Barger, S.W., Coats, S. and Van Eldik, L.J., 1989, Neurite extension and neuronal survival activities of recombinant S 100(3 proteins that differ in the content and position of cysteine residues, J. Cell Biol. 109: 3063–3071.PubMedCrossRefGoogle Scholar
  198. Wisniewski, K.E., Wisniewski, H.M. and Wen, G.Y., 1985, Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome, Ann. Neurol. 17: 278–282.PubMedCrossRefGoogle Scholar
  199. Wisniewski, H.M., Vorbrodt, A.W., Wegiel, J., Morys, J. and Lossinsky, A.S., 1990, Ultrastructure of the cells forming amyloid fibers in Alzheimer Disease and Scrapie, Am. J. Med Genet. 7: 287–297.Google Scholar
  200. Wolozin, B., Scicutella, A. and Davies, P., 1988, Re-expression of a developmentally regulated antigen in Down syndrome and Alzheimer disease, Proc. Nail Acad. Sci. USA 85: 6202–6206.CrossRefGoogle Scholar
  201. Woody, R.C., Stanley, L.C., Roberts, G.W. and Griffin, W S T, 1989, ß-amyloid immunoreactivity in hippocampus from fetal, neonatal, infant, adolescent, and adult Down’s syndrome, Ann. Neurol. 26: 485.Google Scholar
  202. Yanker, B.A., Duffy, L.K. and Kirschner, D.A,. 1990, Neurotrophic and neurotoxic effects of amyloid 13 protein: Reversal by tachykinin neuropeptides, Science 250: 279–282.CrossRefGoogle Scholar
  203. Yarowsky, P.J., Krugerm, B.K., Michal, T., Gearhart, J.D., Reeves, R.H. and Hilt, D.C., 1991, Astroglial proliferation in vivo in S100[3 transgenic mouse, J. Cell Biol. 115: 217A.Google Scholar
  204. Yeralan, O., Rovnagbi, C., Boop, F.A., Van Eldik, L.J., Bean, P.E. and Griffin, W.S.T., 1992, Levels of S10013 protein in post-operative brain tissue from epileptic patients, Soc. Neuro. Abs. in press.Google Scholar
  205. Zuckerman, J.E., Herschman, H.R. and Levine,L., 1970, Appearance of a brain specific antigen (the S-100 protein) during human foetal development, J. Neurochein. 17:247–251.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • W. Sue
    • 1
  • T. Griffin
    • 1
  • Laura C. Stanley
    • 1
  1. 1.Pediatrics Department and Anatomy DepartmentUniversity of Arkansas for Medical Sciences Arkansas Children’s Hospital Research CenterLittle RockUSA

Personalised recommendations