Morphology of Astroglial Swelling in Culture and in the Edematous Brain: An Adaptive Response to a Disturbed Microenvironment

  • Marc R. Del Bigio
Part of the Altschul Symposia Series book series (ALSS, volume 2)


The brain is enclosed in an unyielding container. Any process that causes expansion of one intracranial component necessarily causes compression of the other components. When there is rapid expansion of an intracranial space-occupying lesion, for example edema in the area of injured brain parenchyma, cerebrospinal fluid and venous blood are displaced from the intracranial compartment and the brain is distorted. Ultimately intracranial pressure rises and, when it exceeds the arterial perfusion pressure, blood flow to the brain is impaired. Thereafter neurons die and the opportunity for functional recovery is lost. Because we are currently incapable of resurrecting neurons which die during the initial ischemic or traumatic insult, we must concentrate our therapeutic efforts on the prevention of secondary neuronal injury. This is most often the consequence of brain swelling due to edema and in order to control brain swelling it is imperative that we understand the pathophysiology of brain edema.


Glial Fibrillary Acidic Protein Brain Edema Astroglial Cell Regulatory Volume Decrease Colloid Osmotic Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht-Buehler, G., and Bushnell, A. 1982, Reversible compression of cytoplasm. Exp. Cell Res. 140: 173–189.PubMedCrossRefGoogle Scholar
  2. Andrew, R.D. 1991, Seizure and acute osmotic change: clinical and neurophysiological aspects. J. Neurol. Sci. 101: 7–18.PubMedCrossRefGoogle Scholar
  3. Baethmann, A., Maier-Hauff, K., Kempski, O., Unterberg, A., Wahl, M., and Schurer, L. 1988, Mediators of brain edema and secondary brain damage. Crit. Care Med. 16: 972–978.PubMedCrossRefGoogle Scholar
  4. Baethmann, A., Maier-Hauff, K., Schurer, L., Lange, M., Guggenbichler, C., Vogt, W., Jacob, K., and Kempski, O. 1989, Release of glutamate and of free fatty acids in vasogenic brain edema. J. Neurosurg 70: 578–591.PubMedCrossRefGoogle Scholar
  5. Bender, A.S., Near. J.T., Blicharska, J., Norenberg, L.O.B., and Norenberg, M.D. 1992, Role of calmodulin and protein kinase C in astrocyte cell volume regulation. J. Neurochem 58: 1874–1882.Google Scholar
  6. Blakemore, W.F. 1969, The fate of escaped plasma protein after thermal necrosis of the rat brain: an electron microscopic study. J. Neuropathol. Exp. Neurol. 28: 139–152.PubMedCrossRefGoogle Scholar
  7. Canady, K.S., Ali-Osman, F., and Rubel, E.W. 1990, Extracellular potassium influences DNA and protein syntheses and glial fibrillary acidic protein expression in cultured glial cells. Glia 3: 368–374.PubMedCrossRefGoogle Scholar
  8. Cavanaugh, J.B. 1970, The proliferation of astrocytes around a needle wound in the rat brain. J. Anal. 106: 471–487.Google Scholar
  9. Chester, M., Sakatani, K., and Hasson, A.Z. 1991, Elevation and clearance of extracellular K+ following contusion of the rat spinal cord. Brain Res. 556: 71–77.CrossRefGoogle Scholar
  10. Chow, S.Y., Yen-Chow, Y.C., White, H.S., Hertz, L., and Woodbury, D.M. 1991, Effects of potassium ion on the anion and cation content of primary cultures of mouse astrocytes and neurons. Neurochem. Res. 16: 1275–1283.PubMedCrossRefGoogle Scholar
  11. Del Bigio, M.R., Fedoroff, S., and Qualtiere, L.F. 1992, Morphology of astroglia in colony cultures following transient exposure to potassium ion, hypoosmolarity and vasopressin. J. Neurocytol. 21: 7–18.PubMedCrossRefGoogle Scholar
  12. Devon, R.M., and Juurlink, B.H.J. 1989, Dynamic morphological responses of mouse astrocytes in primary culture following medium changes. Glia 2: 266–272.PubMedCrossRefGoogle Scholar
  13. Dutton, G.R., Barr, M., Simmons, M.L., and Philibert, R.A. 1991, Astrocyte taurine. Ann. N.Y. Acad. Sci. 633: 489–500.PubMedCrossRefGoogle Scholar
  14. Farinelli, S.E., and Nicklas, W.J. 1992, Glutamate metabolism in rat cortical astrocyte cultures. J. Neurochem. 58: 1905–1915.PubMedCrossRefGoogle Scholar
  15. Fedoroff, S., Ahmed, I., and Wang, E. 1990, The relationship of the expression of statin, the nuclear protein of nonproliferating cells, to the differentiation and cell cycle of astroglia in cultures and in situ. J. Neurosci. Res. 26: 1–15.CrossRefGoogle Scholar
  16. Fishman, R.A., and Chan, P.H. 1980, Metabolic basis of brain edema. Adv. Neurol. 28: 207–215.PubMedGoogle Scholar
  17. Friede, R.L. 1989, Developmental Neuropathology. Springer-Verlag, Berlin, pp. 23–24.CrossRefGoogle Scholar
  18. Gazendam, J., Go, K.G., and Van Zanten, A.K. 1979, Composition of isolated edema fluid in cold-induced brain edema. J. Neurosurg 51: 70–77.PubMedCrossRefGoogle Scholar
  19. Geering, K. 1986, Intracellular ionic changes and cell activation: regulation of DNA, RNA, and protein synthesis. Curr. Topics Membrane Transport 27: 221–259.CrossRefGoogle Scholar
  20. Groeger, V., and Marmarou, A. 1989, The importance of protein content in the oedema fluid for the resolution of brain oedema. Acta Neurochir. 101: 134–140.PubMedCrossRefGoogle Scholar
  21. Hertz, L., Dittmann, L., and Mandel, P. 1973, K+ -induced stimulation of oxygen uptake in cultured cerebral glial cells. Brain Res. 60: 517–520.PubMedCrossRefGoogle Scholar
  22. Hertz, L. 1981, Feature of astrocyte function apparently involved in the response of central nervous tissue to ischemia-hypoxia. J. Cereb. Blood Flow Metabol. 1: 143–153.CrossRefGoogle Scholar
  23. Hirano, A. 1969, The fine structure of brain in edema. in: The Structure and Function of Nervous Tissue, Volume 2, Bourne,G.H. (ed). Academic Press, New York, pp. 69–135.Google Scholar
  24. Joo, F. 1987, A unifying concept on the pathogenesis of brain edemas. Neuropathol. Appt. Neurobiol. 13: 161–176.CrossRefGoogle Scholar
  25. Kempski, O., von Rosen, S., Weigt, H., Staub, F., Peters, J., and Baethmann, A. 1991, Glial ion transport and volume control. Ann. N.Y. Acad. Sci. 633: 306–317.PubMedCrossRefGoogle Scholar
  26. Kimelberg, H.K. 1987, Anisotonic media and glutamate-induced ion transport and volume responses in primary astrocyte cultures. J. Physiol. (Paris) 82: 294–303.Google Scholar
  27. Kimelberg, H.K. 1992, Astrocyte edema in CNS trauma. J. Neurotrauma 9, Suppl. 1: S71–S81. Kimelberg, H.K., and O’Connor,E. 1988, Swelling of astrocytes causes membrane potential depolarization. Glia 1: 219–224.Google Scholar
  28. Kimelberg, H.K., and Ransom, B.R. 1986, Physiological and pathological aspects of astrocyte swelling. in: Astrocytes. Cell Biology and Pathology of Astrocytes. Volume 3, Fedoroff, S. Vernadakis, A. (eds), Academic Press, Orlando, pp. 129–166.Google Scholar
  29. Klatzo, I., Chui, E., Fujiwara, K., and Spatz, M. 1980, Resolution of vasogenic brain edema. Adv. Neurol. 28: 359–373.PubMedGoogle Scholar
  30. Koyama, Y., Sugimoto, T., Shigenaga, Y., Baba, A., and Iwata, H. 1991, A morphological study on glutamate-induced swelling of cultured astrocytes: involvement of calcium and chloride ion mechanisms. Neurosci. Lett. 124: 235–238.PubMedCrossRefGoogle Scholar
  31. Lodin, Z., Hartman, J., Kage, M.P., Korinkova, P., and Booher, J. 1971, Potassium-induced hydration in cultured neural tissue. Neurobiology 1: 69–85.Google Scholar
  32. Meyer, R.A., Zaruba, M.E., and McKhann, G.M. 1980, Flow cytometry of isolated cells from the brain. Anal. Quantitative Cytol. 2: 66–74.Google Scholar
  33. Miyake, T., Hattori, T., Fukuda, M., Kitamura, T., and Fujita, S. 1988, Quantitative studies on proliferative change of reactive astrocytes in mouse cerebral cortex. Brain Res. 451: 133–138.PubMedCrossRefGoogle Scholar
  34. Moller, M., Lund-Anderson, H., Mollgard, K., and Hertz, L. 1974, Concordance between morphological and biochemical estimate of fluid spaces in rat brain cortex slices. Exp. Brain Res. 22: 299–314.Google Scholar
  35. Nitta, T., Okamura, K., and Sato, K. 1992, Lysosomal enzymatic activity of astroglial cells. Pathobiology 60: 42–44.PubMedCrossRefGoogle Scholar
  36. Ogata, J., Budzilovich, G., and Feigin, I. 1971, Edema of gray matter of the human brain. J. Neuropathol. Exp. Neurol. 30: 206–215.PubMedCrossRefGoogle Scholar
  37. Parsons, D.F., Cole, R.W., and Kimelberg, H.K. 1989, Shape, size, and distribution of cell structures by 3-D graphic reconstruction and stereology. I. The regulatory volume decrease of astroglial cells. Cell Biophysics 14: 27–42.PubMedGoogle Scholar
  38. Petito, C.K., Chung, M.C., Verkhovsk. L.M., and Cooper, A.J. 1992, Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res. 569: 275–280.Google Scholar
  39. Petito, C.K., Juurlink, B.H.J., and Hertz, L. 1991, In vitro models differentiating between direct and indirect effects of ischemia on astrocytes. Exp. Neural. 113: 364–372.Google Scholar
  40. Philibert, R.A., Rogers, K.L., Allen, A.J., and Dutton, G.R. 1988, Dose-dependent K+-stimulated efflux of endogenous taurine from primary astrocyte cultures is Cat+-dependent. J. Neurochem. 51: 122–126.PubMedCrossRefGoogle Scholar
  41. Reichelt, W., Dettmer, D., Bruckner, G., Brust, P., Eberhardt, W., and Reichenbach, A. 1989, Potassium as a signal for both proliferation and differentiation of rabbit retinal (Muller) glia growing in cell culture. Cellular Signal 1: 187–194.CrossRefGoogle Scholar
  42. Reichenbach, A. 1989, Glia: neuron index: review and hypothesis to account for different values in various animals. Glia 2: 71–77.PubMedCrossRefGoogle Scholar
  43. Reichenbach, A. 1991, Glial K+ permeability and CNS K+ clearance by diffusion and spatial buffering. Ann. N.Y. Acad. Sci. 633: 272–286.PubMedCrossRefGoogle Scholar
  44. Reulen, H.J., Graham, R., Spatz, M., and Klatzo, I. 1977, Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J. Neurosurg. 46: 24–35.PubMedCrossRefGoogle Scholar
  45. Rozengurt, E., and Mendoza, S.A. 1986, Early stimulation of Na+-H+ antiport, Na.-K+ pump activity and Cat+ fluxes in fibroblast mitogenesis. Curr. Topics Membrane Transport 27: 163–191.CrossRefGoogle Scholar
  46. Saubermann, A.J., Castiglia, C.M., and Foster, M.C. 1992, Preferential uptake of rubidium from extracellular space by glial cells compared to neurons in leech ganglia. Brain Res. 577: 64–72.PubMedCrossRefGoogle Scholar
  47. Schielke, G.P., Moises, H.C., and Betz, A.L. 1991, Blood to brain sodium transport and interstitial fluid potassium concentration during early focal ischemia in the rat. J. Cerebral Blood Flow Metabol. 11: 466–471.CrossRefGoogle Scholar
  48. Stewart, P.A., and Coomber, B.L. 1986, Astrocytes and the blood-brain barrier. in: Astrocytes. Cell Biology and Pathology of Astrocytes. Volume 3, Fedoroff,S. Vernadakis,A. (eds), Academic Press, Orlando, pp. 311–328.Google Scholar
  49. Sugiyama, K., Brunori, A., and Mayer, M.L. 1989, Glial uptake of excitatory amino acids in fluences neuronal survival in cultures of mouse hippocampus. Neuroscience 32: 779–791.PubMedCrossRefGoogle Scholar
  50. Sykova, E. 1983, Extracellular K+ accumulation in the central nervous system. Prog. Biophys. Molec. Biol. 42: 135–189.CrossRefGoogle Scholar
  51. Todd, N.V., and Graham, D.I. Blood-brain barrier damage in traumatic brain contusions. Acta Neurochir. Suppl. 51: 296–299.Google Scholar
  52. Van De Winkel, M., Maes, E., and Pipeleers, D. 1982, Islet cell analysis and purification by light scatter and autofluorescence. Biochem. Biophys. Res. Comm. 107: 525–532.CrossRefGoogle Scholar
  53. Vernadakis, A., and Mangoura, D.A. Factors affecting glia growth in culture: nutrients and cell-secreted factors. Progy Clin. Biol. Res. 259: 57–79.Google Scholar
  54. Vorbrodt, A.W., Lossinsky, A.S., Wisniewski, H.M., Suzuki, R. Yamaguchi, T., Masaoka, H., and Klatzo, I. 1985, Ultrastructural observation on the transvascular route of protein removal in vasogenic brain edema. Acta Neuropathol. 66: 265–273.Google Scholar
  55. Walz, W. 1988, The role of potassium in cytotoxic brain edema. in: The Biochemical Pathology of Astrocytes. Norenberg, M.D. (ed), Alan R. Liss, New York, pp. 315–326.Google Scholar
  56. Walz, W., 1989, Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 33: 309–333.PubMedCrossRefGoogle Scholar
  57. Walz, W., 1992, Mechanism of rapid K+-induced swelling in mouse astrocytes. Neurosci. Lett. 135: 243–246.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Marc R. Del Bigio
    • 1
  1. 1.Division of NeuropathologyUniversity of TorontoTorontoCanada

Personalised recommendations