Skip to main content

Part of the book series: Altschul Symposia Series ((ALSS,volume 2))

Abstract

Astroglial cells, which constitute the most numerous cellular population of the central nervous system (CNS) (Pope, 1978), exert a wide variety of functions (for a review, see (Fedoroff and Vernadakis, 1986)) including: i) a connective tissue-like role, ii) the ensheathment and hence the isolation of synaptic complexes, iii) the regulation of local extracellular ionic concentration and pH level, iv) the uptake, metabolism and compartmentalization of neurotransmitters, v) the control of blood-CNS exchanges through the astrocyte capillary investment and vi) the control of developmental neuronal migration through neuronal guidance. Given the variety and the importance of the functions devoted to astrocytes, it is likely that the proliferation of these cells during development and in adulthood must be under tight control in order to allow an harmonious ontogenesis and functioning of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney, E.R., Bartlett, P.P., and Raff, M.C., 1981, Astrocytes, ependymal cells and oligodendrocytes develop on schedule in dissociated cell cultures of embryonnic rat brain, Dey. Biol. 83: 301.

    Article  CAS  Google Scholar 

  • Baird, A. and Bohlen, P., 1989, Fibroblast Growth Factors, in: “Peptides Growth Factor and their receptor”, M.B. Sporn and A.B. Roberts, eds., Springer Verlag, Berlin, pp. 369.

    Google Scholar 

  • Barotte, C., Eclancher, F., Ebel, A., Labourdette, G., Sensenbrenner, M., and Will, B., 1989, Effects of basic Fibroblast Growth Factor (bFGF) on choline acetyltransferase activity and astroglial reaction in adult rats after partial fimbria transection, Neurosci. Lett. 101: 197.

    Article  PubMed  CAS  Google Scholar 

  • Behar, T., McMorris, F.A., Novotny, E.A., Barker, J.L., and Dubois-Dalcq, M., 1988, Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres, J. Neurosci. Res. 21: 168.

    Article  PubMed  CAS  Google Scholar 

  • Beutler, B., 1990, Cachectin/tumor Necrosis Factor and Lymphotoxin, in: “Peptides Growth Factors and their Receptors”, M.B. Sporn and A.B. Roberts, eds., Springer-Verlag, Berlin, pp. 39.

    Chapter  Google Scholar 

  • Birchmeier, C., Sharma, S., and Wigler, M., 1987, Expression and rearrangement of the Ros I gene in human glioblastoma cells, Proc. Natl. Acad. Sci. USA. 84: 9270.

    Article  PubMed  CAS  Google Scholar 

  • Birecree, E., King, L.E.Jr., and Nanney, L.B., 1991, Epidermal Growth Factor and its receptor in the developing nervous system, Del,. Brain Res. 60: 145.

    Article  CAS  Google Scholar 

  • Cameron, R.S. and Rakic, P., 1991, Glial cell lineage in the cerebral cortex: a review and a synthesis, Glia 4: 124.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, G. and Wahl, M.I., 1989, The Epidermal Growth Factor family, in: “Peptides Growth Factor and their receptor”, M.B. Sporn and A.B. Roberts, eds., Springer Verlag, Berlin, pp. 69.

    Google Scholar 

  • David, S., Bouchard, C., Tsatas, O., and Giftochristos, N., 1990, Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system, Neuron 5: 463.

    Article  PubMed  CAS  Google Scholar 

  • Delaunoy, J.P., Langui, D., Ghandour, S., Labourdette, G., and Sensenbrenner, M., 1988, Influence of basic fibroblast growth factor on carbonic anhydrase expression by rat glial cells in primary culture, Int. J. Dey. Neurosci. 6: 129.

    Article  CAS  Google Scholar 

  • Fedoroff, S. and Vernadakis, A., 1986, “Astrocytes. Vol. 1, 2, 3”, Acad.Press, Orlando. Ferrara, N., Ousley, F., and Gospodarowicz, D., 1988, Bovine Brain astrocytes express basic fibroblast growth factor, a neuronotrophic and angiogenic mitogen, Brain Res. 462: 223.

    Google Scholar 

  • Fujimoto, M., Sheridan, P.J., Sharp, Z.D., Weaker, F.J., Kagan-Hallet, K.S., and Story, J.L., 1989, Proto-oncogene analysis in brain tumors, J. Neurosurg. 70: 910.

    Article  PubMed  CAS  Google Scholar 

  • Galileo, D.S., Gray, G.E., Owens, G.L., Majors, J., and Sanes, J.R., 1990, Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies, Proc. Natl. Acad. Sci. USA 87: 458.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., Young, D.G., Woodward, J., Brown, D.C., and Lachman, L.B., 1988, Interleukin 1 is an astroglial growth factor in the developing brain, J. Neurosci. 8: 709.

    PubMed  CAS  Google Scholar 

  • Gomez-Pinilla, F., Knauer, D.J., and Nieto-Sampedro, M., 1988, Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization, Brain Res. 438: 385.

    Article  PubMed  CAS  Google Scholar 

  • Guentert-Lauber, B. and Honneger, P., 1985, Responsiveness of astrocytes in serum-free aggregate cultures to epidermal growth factor: dependance on the cell cycle and the epidermal growth factor concentration, Dev. Neurosci. 7: 286.

    Article  PubMed  CAS  Google Scholar 

  • Hatten, M.E., 1987, Neuronal inhibition of astroglial cell proliferation is membrane mediated, J. Cell Biol. 104: 1353.

    Article  PubMed  CAS  Google Scholar 

  • Heymann, J. and Unsicker, K., 1987, Neuroblastoma cells contain a trophic factor sharing biological and molecular properties with ciliary neurotrophic factor, Proc. Natl. Acad. Sci. USA 84: 7758.

    Article  Google Scholar 

  • Hirata, Y., Uchihashi, M., Nakajima, H., Fujita, T., and Matsukura, S., 1982, Presence of human epidermal growth factor in human cerebrospinal fluid, J. Clin. Endocrinol. Metab. 55: 1174.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, S.M., Lilien, L.E., Raff, M.C., Rohrer, H., and Sendtner, M., 1988, Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture, Nature 335: 70.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, S.M. and Raff, M.C., 1987, An inducer protein may control the timing of fate switching in a bipotential glial progenitor cell in rat optic nerve, Development 101: 157.

    PubMed  CAS  Google Scholar 

  • Hunter, S.F. and Bottenstein, J.E., 1989, Bipotential glial progenitors are targets of neuronal cell line-derved growth factors, Dev. Brain Res. 49: 33.

    Article  CAS  Google Scholar 

  • Hunter, S.F. and Bottenstein, J.E., 1991, O-2A glial progenitors from mature brain respond to CNS neuronal cell-line-derived Growth Factors, J. Neurosc. Res. 28: 574.

    Article  CAS  Google Scholar 

  • Ingraham, C.A. and McCarthy, K.D., 1989, Plasticity of process-bearing glial cell cultures of neonatal rat cerebral cortical tissue, J. Neurosc. 9: 63.

    CAS  Google Scholar 

  • James, C.D., Carlbom, E., Dumanski, J.P., Hansen, M., Nordenskjord, M., Collins, V.P., and Cavanee, W.K., 1988, Clonal genomic alterations in glioma malignancy stages, Cancer Res. 48: 5546.

    PubMed  CAS  Google Scholar 

  • Janzer, R.C. and Raff, M.C., 1988, Astrocytes induce blood-brain barrier properties in endothelial cells, Nature 325: 253.

    Article  Google Scholar 

  • Kinzler, K.W., Bigner, S.H., Bigner, D.D., Trent, J.M., Law, M.L., O’Brien, J.J., Wong, A.J., and Vogelstein, B., 1987, Identification of an highly expressed gene in a human glioma, Science 236: 70.

    Article  PubMed  CAS  Google Scholar 

  • Kniss, D.A. and Burry, R.W., 1988, Serum and Fibroblast Growth Factor stimulate quiescent astrocytes to re-enter the cell cycle, Brain Res. 439: 281.

    Article  PubMed  CAS  Google Scholar 

  • Knott, J.C.A. and Pilkington, G.J., 1990, A2B5 surface ganglioside binding distinguishes between two GFAP-positive clones from a human glioma derived cell line, Neurosci. Len. 118: 52.

    Article  CAS  Google Scholar 

  • Laiho, M., De Capprio, J.A., Ludlow, J.W., Livingston, D.M., and Massague, J., 1990, Growth inhibition by TGFf3 linked to suppression of retinoblastoma protein phosphorylation, Cell 62: 175.

    Article  PubMed  CAS  Google Scholar 

  • Lemke, G.E. and Brockes, J.P., 1984, Identification and purification of glial growth factor, J. Neurosci. 4: 75.

    PubMed  CAS  Google Scholar 

  • Leutz, A. and Schachner, M., 1981, Epidermal growth factor stimulates DNA synthesis of astrocytes in primary cerebellar cultures, Cell Tissue Res. 220: 393.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G., Gallo, V., and Ciotti, M.T., 1986, Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface proteins and “neuron-like” gamma-aminobutyric acid transport, Proc. Natl. Acad. Sci. USA 83: 1504.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J.M., 1989, Neuronal influences on glial progenitor cell development, Neuron 3: 103.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, T.A., Nusbaum, H.R., Razon, N., Kris, R., Lax, I., Soreq, H., Whittle, N., Waterfield, M.D., Ullrich, A., and Schlessinger, J., 1984, Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin, Nature 310: 144.

    Google Scholar 

  • Lillien, L.E., Sendtner, M., Rohrer, H., Hughes, S.M., and Raff, M.C., 1988, Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes, Neuron 1: 485.

    Article  PubMed  CAS  Google Scholar 

  • Lillien, L.E., Sendtner, M., and Raff, M.C., 1990, Extracellular matrix associated molecules collaborate with ciliary neuronotrophic factor to induce type 2 astrocyte development, J. Cell. Biol. 111: 635.

    Article  PubMed  CAS  Google Scholar 

  • Lim, R., Miller, J.F., Hicklin, D.J., and Andresen, A.A., 1985, Purification of bovine glia maturation factor and characterization with monoclonal antibody, Biochem. 24: 8070.

    Article  CAS  Google Scholar 

  • Lindholm, D., Hengerem, B., Zafra, F., and Thoenen, H., 1990, Transforming growth factor ßl stimulates expression of nerve growth factor in the rat CNS, Neuroreport 1: 9.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D., Detree, P., Schoenen, J., Rogister, B., Rigo, J.M., Leprince, P., Stevenaert, A., and Moonen, G., 1991a, Transplants of syngeneic adult dorsal root ganglion neurons to the spinal cord of rats with acute traumatic paraplegia: morphological analyses, Rest. Neurol. Neurosci. 2: 303.

    CAS  Google Scholar 

  • Martin, D., Schoenen, J., Delree, P., Leprince, P., Rogister, B., and Moonen, G., 1991b, Grafts of syngenic cultured, adult DRG-derived Schwann cells to the injured spinal cord of adult rats: preliminary morphological studies, Neurosci. Lett. 124: 44.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D., Schoenen, J., Delree, P., Gilson, V., Rogister, B., Leprince, P., Stevenaert, A., and Moonen, G., 1992, Experimental acute traumatic injury of the adult rat spinal cord by a subdural inflatable balloon, J. Neurosci. Res. (In Press)

    Google Scholar 

  • Metcalf, D., 1989, The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells, Nature 329: 585.

    Google Scholar 

  • Mikkelsen, T. and Cavanee, W.K., 1990, Suppressors of the malignant phenotype, Cell Growth and Differentiation 1: 201.

    PubMed  CAS  Google Scholar 

  • Miller, R.H., Abney, E.R., David, S., ffrench-Constant, C., Lindsay, F., Patel, R., Stone, J., and Raff, M.C., 1986, Is reactive gliosis a property of a distinct subpopulation of astrocytes? J. Neurosci. 6: 22.

    PubMed  CAS  Google Scholar 

  • Morrison, R.S., de Vellis, J., Lee, Y.L., Bradshaw, R., and Eng, L.F., 1985, Hormones and Growth Factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes, J. Neurosci. Res. 14: 167.

    Article  PubMed  CAS  Google Scholar 

  • Nielsch, U. and Keen, P., 1989, Reciprocal regulation of tachykinin-and vasoactive intestinal peptide-gene expression in rat sensory neurones following cut and crush injury, Brain Res. 481: 25.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro, M., 1988, Astrocyte mitogen inhibitor related to Epidermal Growth Factor Receptor, Science 240: 1784.

    Article  PubMed  CAS  Google Scholar 

  • Nister, M., Heldin, C.H., and Westermark, B., 1986, Clonal variation in the production of plateletderived growth factor-like protein and expression of corresponding receptors in a human malignant glioma, Cancer Res. 46: 332.

    PubMed  CAS  Google Scholar 

  • Noble, M., Murray, K., Stroobant, P., Waterfield, M., and Riddle, D., 1988, Platelet-derived Growth Factor promotes division and motility, and inhibits premature differentiation of the oligodendrocyte-type-2 astrocyte progenitor cell, Nature 333: 560.

    Article  PubMed  CAS  Google Scholar 

  • Noble, M. and Murray, K., 1984, Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell, EMBO J. 3: 2243.

    PubMed  CAS  Google Scholar 

  • O’Callaghan, J.P., Miller, D.B., and Reinhard, J.F., 1990, Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4phenyl-1,2,3,6,-tetrahydropyridine, Brain Res. 521: 73.

    Article  PubMed  Google Scholar 

  • Perraud, F., Besnard, F., Pettmann, B., Sensenbrenner, M., and Labourdette, G., 1988a, Effect of acidic and basic Fibroblast Growth Factor (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblasts in culture, Glia 1: 124.

    Article  PubMed  CAS  Google Scholar 

  • Perraud, F., Labourdette, G., Miehe, M., Loret, C., and Sensenbrenner, M., 1988b, Comparison of morphological effects of acidic and basic Fibroblast Growth Factors on rat astroblasts in culture, J. Neurosc. Res. 20: 1.

    Article  CAS  Google Scholar 

  • Pettmann, B., Weibel, M., Daune, G., Sensenbrenner, M., and Labourdette, G., 1982, Stimulation of proliferation and maturation of rat astrocytes in serum free culture by an astroglial growth factor, J. Neurosci. Res. 8: 463.

    Article  PubMed  CAS  Google Scholar 

  • Pettmann, B., Labourdette, G., Weibel, M., and Sensenbrenner, M., 1986, The brain basic fibroblast growth factor FGF and localization in neurons, Neurosci. Lett. 68: 175.

    Article  PubMed  CAS  Google Scholar 

  • Pope, A., 1978, Neuroglia: quantitative aspects, in: “Dynamic properties of Glia cells”

    Google Scholar 

  • E. Schoffeniels, G. Franck, D.B. Tower, and L. Hertz, eds., Pergamon Press, Oxford, pp. 13.

    Google Scholar 

  • Raff, M.C., Miller, R.H., and Noble, M., 1983, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium, Nature 303: 390.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M.C., Abney, E.R., and Fok-Seang, J., 1985, Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation, Cell 42: 61.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M.C., Lilien, L.E., Richardson, W.D., Burnes, J., and Noble, M., 1988, Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture, Nature 333: 562.

    Article  PubMed  CAS  Google Scholar 

  • Reier, P.J., Eng, L.F., and Jakemen, L., 1989, Reactive astrocyte and axonal outgrowth in the injured CNS, in: “Neural regeneration and transplantation, Frontiers of Clinical Neuroscience, Vol.6”, F.J. Seil, ed., Alan R. Liss, New York, pp. 183.

    Google Scholar 

  • Reynolds, B.A. and Weiss, S., 1992, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science 255: 1707.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, W.D., Pringle, N., Mosley, M., Westermark, B., and Dubois-Dalcq, M., 1988, A role for platelet-derived growth factor in normal gliogenesis in the central nervous system, Cell 53: 309.

    Article  PubMed  CAS  Google Scholar 

  • Rogister, B., Leprince, P., Pettman, B., Labourdette, G., Sensenbrenner, M., and Moonen, G., 1988, Brain basic fibroblast growth factor stimulates the release of plasminogen activators by cultured astroglial cells, Neurosci. Lett. 91: 321.

    Article  PubMed  CAS  Google Scholar 

  • Rogister, B., Leprince, P., Bonhomme, V., Rigo, J.M., Delree, P., Colige, A., and Moonen, G., 1990, Cultured neurons release an inhibitor of astroglia proliferation (astrostatine), J. Neurosci. Res. 25 (1): 58.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum, M.L. and Wilson, C.B., 1984, “Progress in experimental tumor research: brain tumor therapy”, Karger, Basel.

    Google Scholar 

  • Schaudies, R.P., Christian, E.L., and Savage, C.R., 1989, Epidermal Growth Factor (EGF) immunoreactive material in the rat brain: localization and identification of multiple species, J. Biol. Chem. 264: 10447.

    PubMed  CAS  Google Scholar 

  • Schubert, D., Heinemann, S., Carlisle, W., Parikas, H., Kines, B., Patrick, J., Steinbach, J.H., Culp

    Google Scholar 

  • W., and Brandt, B.L., 1974, Clonal cell lines from the rat central nervous system, Nature 249: 224.

    Article  Google Scholar 

  • Sharifi, B.G., Johnson, J.C., Kuurana, V.K., Bascom, C.C., Fleenor, T.J., and Chou, H.H., 1986, Purification and characterization of a bovine cerebral cortex cell surface sialoglycopeptide that inhibits cell proliferation and metabolism, J. Neurochem. 46 (2): 461.

    Article  PubMed  CAS  Google Scholar 

  • Spranger, M., Lindholm, D., Bandtlow, C., Heumann, R., Gnahn, H., Naher-Noe, M., and Thoenen, H., 1990, Regulation of nerve growth factor (NGF) synthesis in the rat central nervous system: comparison between the effects of interleukin-1 and various growth factors in astrocyte cultures and in vivo, Eur. J. Neurosci. 2: 69.

    Article  PubMed  Google Scholar 

  • Tourbah, A., Olivier, L., Jeanny, J.C., and Gumpel, M., 1991, Acidic Fibroblast Growth Factor (aFGF) is expressed in the neuronal and glial spinal cord cells of adult mice, J. Neurosc. Res. 29: 560.

    Article  CAS  Google Scholar 

  • Trent, J., Meltzer, P., Rosenblum, M., Harsh, G., Kinzer, K., Mashhal, R., Feinberg, A., and Vogelstein, B., 1986, Evidence for rearrangement, amplification and expression of c-Myc in a human glioblastoma, Proc. Natl. Acad. Sci. USA. 83: 470.

    Article  PubMed  CAS  Google Scholar 

  • Van Den Eijden-Van Raaij, A.J.M., Koorneef, I., Van Oostwaard, T.M.J., Feyen, A., Kruijer, W., De Laat, S.W., and Van Zoelen, E.J.J., 1989, Purification of a growth factor related to platelet derived growth factor and a type ß transforming growth factor secreted by mouse neuroblastoma cells, Biochem. J. 257: 375.

    Google Scholar 

  • Vilcek, J., 1990, Interferons, in: “Peptide Growth Factors and their Receptors”, M.B. Sporn and A.B. Roberts, eds., Springer-Verlag, Berlin, pp. 3.

    Chapter  Google Scholar 

  • Walicke, P., Cowan, W.M., Ueno, N., Baird, A., and Guillemin, R., 1986, Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension, Proc. Natl. Acad. Sci. USA 83: 3012.

    Article  PubMed  CAS  Google Scholar 

  • Walicke, P.A. and Baird, A., 1989, Neuronotrophic effects of basic and acidic fibroblast growth factors are not mediated through glial cells, Dev. Brain Res. 40: 71.

    Article  Google Scholar 

  • Walker, A.E., Robins, M., and Wainfeld, F.D., 1985, Epidemiology of brain tumors: the national survey of intracranial neoplasms, Neurology 35: 219.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., Nagai, M., Wakai, S., Frai, T., and Kawashima, K., 1990, Loss of constitutionnal heterozygoty in chromosome 10 in human glioblastoma, Acta Neuropathol. (Berl) 80: 251.

    Article  CAS  Google Scholar 

  • Weibel, M., Pettmann, B., Labourdette, G., Miehe, M., Bock, E., and Sensenbrenner, M., 1985, Morphological and Biochemical maturation of rat astroglial cells grown in a chemically defined medium: influence of an astroglial growth factor, Devel. Neurosci. 3: 617.

    Article  CAS  Google Scholar 

  • Williams, B.P., Abney, E.R., and Raff, M.C., 1985, Macroglial cell development in embryonnic rat brain: studies using monoclonal antibodies, flurescence activated cell sorting, and cell culture, Devel. Biol. 112: 126.

    Article  CAS  Google Scholar 

  • Wolburg, H., Neuhaus, J., Pettmann, B., Labourdette, G., and Sensenbrenner, M., 1986, Decrease of the density of orthogonal arrays of particules in membrane of cultured rat astroglial cells by the brain Fibroblast Growth Factor, Neurosci. Lett. 72: 25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogister, B., Leprince, P., Martin, D., Schoenen, J., Moonen, G. (1993). Neuronal Control of Astrocyte Proliferation. In: Fedoroff, S., Juurlink, B.H.J., Doucette, R. (eds) Biology and Pathology of Astrocyte-Neuron Interactions. Altschul Symposia Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9486-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9486-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9488-5

  • Online ISBN: 978-1-4757-9486-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics