Skip to main content

Astrocytes Can Act as Permissive Substrates for the Growth of NGF-Sensitive Axons in Vivo

  • Chapter
Book cover Biology and Pathology of Astrocyte-Neuron Interactions

Part of the book series: Altschul Symposia Series ((ALSS,volume 2))

  • 92 Accesses

Abstract

The degree to which damaged axons successfully regenerate in the adult mammalian nervous system differs dramatically between the peripheral and central environments. In peripheral nerves, perturbed axons can regrow past the site of damage and extend through the nerve tube to reach denervated target sites. Schwann cells appear to be the predominant reason for this robust regeneration peripherally. These cells support neurite extension of most types of neurons in vitro (Noble et al., 1984; Fallon, 1985), since they express a varied array of surface molecules that are important for cell-cell adhesion (Seilheimer and Schachner, 1987). Schwann cells also produce nerve growth factor (NGF), the most potent growth-promoting substance found within the nervous system (Heumann et al., 1987; Matsuoka et al., 1991). In marked contrast, axon regeneration within the central nervous system (CNS) is impaired due to one or more of the following: the formation of glial scars in the immediate area of damage (Ramon y Cajal, 1928; Reier et al., 1983; Liuzzi and Lasek, 1987; Reier et al., 1987), the presence of myelin-associated inhibitory molecules (Schwab, 1990; Schwab and Caroni, 1988), and inadequate expression of growth-promoting factors and/or cell-cell adhesion molecules among neurons and glia. These features, acting alone or in concert with one another, contribute to the non-conducive nature of the adult CNS environment for axon regrowth in response to damage. Lesioned neurons, however, are able to extend new axons over considerable distances within a non-CNS milieu, including grafts of sciatic nerve (Richardson et al., 1980; David and Aguayo, 1981; Benfry and Aguayo, 1982, Hagg et al., 1990), amniotic membrane (Davis et al., 1987; Gage et al., 1988b) and fetal neural tissue (Kromer et al., 1981; Tuszynski et al., 1990a). Such tissues, therefore, must possess unique properties conducive for axon regrowth that are not available within the adult CNS. In fact, all three types of tissues have a number of permissive substrates for axon growth, e.g., Schwann cells in sciatic nerve, laminin in amniotic membrane, and immature astrocytes in fetal hippocampus. Furthermore, these materials contain variable levels of growth-promoting factors. Because tissues such as sciatic nerve possess both conducive substrates and trophic molecules, it is difficult to access the minimum requirement for the regeneration of adult CNS axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benfry, M., and Aguayo, A., 1982, Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296: 150–152.

    Article  Google Scholar 

  • Caramia, F., Angeletti, P.U., Levi-Montalcini, R., 1962, Experimental analysis of the mouse sub-maxillary salivary gland in relationship to its nerve growth factor content. Endocrinology 70: 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, R., Levi-Montalcini, R., and Hamburger, V., 1954, A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc. Natl. Acad. Sci. USA 40: 1014–1018.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, L.A., Hansen, J.T., Short, M.P., and Bohn, M.C., 1991a, Rat astrocytes containing a mouse NGF transgene enhance the survival of both young postnatal and adult adrenal chromaffin cells grafted into the adult rat striatum. Soc. Neurosci. Abstr. 17: 570.

    Google Scholar 

  • Cunningham, L.A., Short, M.P., Vielkind, U., Breakefield, X.O., and Bohn, M.C., 1991b, Survival and differentiation within the adult mouse striatum of grafted rat pheochromocytoma (PC12) genetically modified to express recombinant 13-NGF. Exp. Neurol. 112: 174–182.

    Article  PubMed  CAS  Google Scholar 

  • David, S., and Aguayo, A., 1981, Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214: 931–933.

    Article  PubMed  CAS  Google Scholar 

  • Davis, G.E., Blaker, S.N., Engvall, E., Varon, S., Manthorpe, M., and Gage, F.H., 1987, Human amnion membrane serves as a substratum for growing axons in vitro and in vivo. Science 236: 1106–1109.

    CAS  Google Scholar 

  • Evercooren, A, B-V., Kleinman, H.K., Olmo, S., Marangos, P., Schwartz, J.P., and Dubois-Dalcq, M.E., 1982, Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures. J.Neurosci. Res. 8: 179–193.

    Article  Google Scholar 

  • Fallon, J.R., 1985, Preferential outgrowth of central nervous system neurites on astrocytes and Schwann cells as compared with nonglial cells in vitro. J. Cell Biol. 100: 198–207.

    Article  CAS  Google Scholar 

  • Fischer, W., Wictorin, K., Björklund, A., Williams, L.R., Varon, S., and Gage, F.H., 1987, Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329: 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., Wolff, J.A., Rosenberg, M.B., Xu, L., Yee, J.L., Shults, C., and Friedmann, T., 1987

    Google Scholar 

  • Grafting genetically modified cells to the brain: possibilities for the future. Neuroscience 23:795–807.

    Google Scholar 

  • Gage, F.H., Armstrong, D.M., Williams, L.R., and Varon, S., 1988a, Morphologic response of axotomized septal neurons to nerve growth factor. J. Comp. Neurol. 269: 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., Blaker, S.N., Davis, G.E., Engvall, E., Varon, S., and Manthorpe, M., 1988b, Human amnion membrane matrix as a substratum for axonal regeneration in the central nervous system. Exp.Brain Res. 72: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., Batchelor, P., Chen, K.S., Chin, D., Higgins, G.A., Koh, S., Deputy, S., Rosenberg, M.B., Fischer, W., and Björklund, A., 1989, NGF-receptor re-expression and NGF-mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron 2: 1177–1184.

    Article  PubMed  CAS  Google Scholar 

  • Hagg, T., Vahlsing, H.L., Manthorpe, M., and Varon, S., 1990, Septohippocampal cholinergic axonal regeneration through peripheral nerve bridges: Quantification and temporal development. Exp. Neurol. 109: 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., 1986, Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 8: 2155–2162.

    Google Scholar 

  • Heumann, R., Korsching, S., Bandtlow, C., and Thoenen, H., 1987, Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J. Cell Biol. 104: 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, G.A., Koh, S., Chen, KC., and Gage, F.H., 1989, NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 3: 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Kawaja, M.D., Fagan, A.M., Firestein, B.L., and Gage, F.H., 1991, Intracerebral grafting of cultured autologous skin fibroblasts into the rat striatum: An assessment of graft size and ultrastructure. J. Comp. Neurol. 307, 695–706.

    Article  PubMed  CAS  Google Scholar 

  • Kawaja, M.D., and Gage, F.H., 1991, Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor. Neuron 7: 1019–1030.

    Article  PubMed  CAS  Google Scholar 

  • Kawaja, M.D., and Gage, F.H., 1992, Morphological and neurochemical features of cultured primary skin fibroblasts of Fischer 344 rats following striatal implantation. J. Comp. Neurol. 317: 102–116.

    Article  PubMed  CAS  Google Scholar 

  • Kawaja, M.D., Rosenberg, M.B., Yoshida, K., and Gage, F.H., 1992, Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats. J. Neurosci. 12: 2849–2864.

    PubMed  CAS  Google Scholar 

  • Koliatsos, V.E., Nauta, H.J.W., Clatterbuck, R.E., Holtzman, D.M., Mobley, W.C., and Price, D.L., 1990, Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J. Neurosci. 10: 3801–3813.

    PubMed  CAS  Google Scholar 

  • Kromer, L.F., 1987, Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Kromer, L.F., Bjiirklund, A., and Stenevi, U., 1981, Innervation of embryonic hippocampal implants by regenerating axons of cholinergic septal neurons in the adult rat. Brain Res. 210: 153–171.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., and Cohen, S., 1960, Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Ann. NY Acad. Sci. 85: 324–341.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., Meyer, H., and Hamburger, V., 1954, In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 14: 49–57.

    CAS  Google Scholar 

  • Liuzzi, F.J., and Lasek, R.J., 1987, Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237: 642–645.

    Article  PubMed  CAS  Google Scholar 

  • Manthorpe, M., Engvall, E., Ruoslahti, E., Longo, F.M., Davis, G.E., and Varon, S., 1983, Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J.Cell Biol. 97: 1882–1890.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, I., Meyer, M., and Thoenen, H., 1991, Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: Comparison of Schwann cells with other cell types. J. Neurosci. 11: 3165–3177.

    PubMed  CAS  Google Scholar 

  • Noble, M., Fok-Seang, J., and Cohen, J., 1984, Glia are a unique substrate for the in vitro growth of central nervous system neurons. J. Neurosci. 4: 1892–1903.

    PubMed  CAS  Google Scholar 

  • Palmer, T.D., Rosman, G.J., Osbounre, W.R.A., and Miller, A.D., 1991, Genetically modified skin fibroblasts persist long after transplantation but gradually inactive introduced genes. Proc. Natl. Acad. Sci. USA 88: 1330–1334.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S., 1928, “Degeneration and Regeneration of the Nervous System,” Oxford University Press, London.

    Google Scholar 

  • Refer, P.J., Stensaas, L.J., and Guth, L., 1983, The astrocytic scar as an impediment to regeneration in the central nervous system, in: “Spinal Cord Reconstruction,” C.C. Kao, R.P. Bunge, and P.J. Reier, eds., Raven, New York.

    Google Scholar 

  • Reier, P.J., Eng, L.F., and Jakeman, L., 1989, Reactive astrocyte and axonal outgrowth in the injured CNS: Is gliosis really an impediment to regeneration? in: “Neural Regeneration and Transplantation,” F.J. Seil, ed., Alan R. Liss, New York.

    Google Scholar 

  • Richardson, P.M., and Ebendal, T., 1982, Nerve growth activities in rat peripheral nerve. Brain Res. 246: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, P.M., McGuiness, U.M., and Aguayo, A.J., 1980, Axons from CNS neurons regenerate into PNS grafts. Nature 284: 264–265.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S.L., Letourneau, P.C., Palm, S.L., McCarthy, J., and Furcht, L.T., 1983, Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev.Biol. 98: 212–220.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, M.B., Friedmann, T., Robertson, R.C., Tuszynski, M., Wolff, J.A., Breakefield, X.O., and Gage, F.H., 1988, Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242: 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  • Scharfmann, R., Axelrod, J.H., Verma, I.M., 1991, Long-term in vivo expression of retrovirusmediated gene transfer in mouse fibroblast implants. Proc. Natl. Acad. Sci. USA 88: 4626–4630.

    Article  PubMed  CAS  Google Scholar 

  • Schinstine, M., and Cornbrooks, C.J., 1990, Axotomy enhances the outgrowth of neuntes from embryonic rat septal-basal-forebrain neurons on a laminin substratum. Exp.Neurol. 108: 10–22.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, J.M., Short, M.P., Hyman, B.T., Breakefield, X.O., and Isacson, 0., 1991, Intracerebral implantation of nerve growth factor-producing fibroblasts protects striatum against neurotoxic levels of excitatory amino acids. Neuroscience 45: 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M., 1990 Myelin-associated inhibitors of neurite growth and regeneration in the CNS. Trends Neurosci. 13: 452–456.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M.E., and Caroni, P., 1988, Oligodendrocytes and CNS myelin are non-permissive sub- strates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8: 2381–2393.

    CAS  Google Scholar 

  • Seilheimer, B., and Schachner, M., 1987, Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor. EMBO J. 6: 1611–1616.

    PubMed  CAS  Google Scholar 

  • Stromberg, L, Wetmore, C.J., Ebendal, T., Ernfors, P., Persson, H., and Olson, L., 1990, Rescue of basal forebrain cholinergic neurons after implantation of genetically modified cells producing recombinant NGF. J. Neurosci. Res. 25: 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski, M.H., Buzsaki, G., and Gage, F.H., 1990, NGF infusions combined with fetal hippocampal grafts enhance reconstruction of the lesioned septo-hippocampal projection. Neuroscience 36: 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski, M.H., U, H.S., Amaral, D.G., and Gage, F.H., 1990b, Nerve growth factor infusion in primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci. 10: 3604–3614.

    CAS  Google Scholar 

  • Williams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fischer, W., Björklund, A., and Gage, F.H., 1986, Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection. Proc. Natl. Acad. Sci. USA 83: 9231–9235.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D., Richter-Landsberg, C., Short, M.P., Cepko, C., and Breakefield, X.O., 1988, Retrovirusmediated gene transfer of ß-nerve growth factor into mouse pituitary line AtT-20. Mol. Biol. Med. 5: 43–59.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kawaja, M.D., Gage, F.H. (1993). Astrocytes Can Act as Permissive Substrates for the Growth of NGF-Sensitive Axons in Vivo . In: Fedoroff, S., Juurlink, B.H.J., Doucette, R. (eds) Biology and Pathology of Astrocyte-Neuron Interactions. Altschul Symposia Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9486-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9486-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9488-5

  • Online ISBN: 978-1-4757-9486-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics