Selective Constraints over DNA Sequence

  • G. Cocho
  • L. Medrano
  • P. Miramontes
  • J. L. Rius
Part of the NATO ASI Series book series (NSSB, volume 263)

Abstract

After the progress derived from Watson and Crick’s DNA structural model [1953], DNA has frequently been thought as a static and rigid polymer rarely disturbed by random mutations. However, the discovery of processes as transposition, hyper-mutability, genetic drive and gene conversion, shows that DNA is genetically more active than our first notion as being only the heredity keeping guard. From a physical point of view, studies of molecular dynamics and molecular structure have shown that DNA is far from being a rigid molecule. Indeed, there do exist several fluctuations in the molecule and the structure is not homogeneous along the polymer. At the evolutive level, the analysis of nucleotide sequence data has shown regularities that make evident selective constraints other than the protein function derived from amino acid sequence. Other selective constraints acting over the genome include protein synthesis kinetics, tRNA availability, mRNA secondary structure and DNA stability. Thus, genome evolution can be conceived as a dynamical and complex system which might be understood by the search of regularities in genomic nucleotide sequences.

Keywords

Selective Constraint mRNA Secondary Structure Deoxyribose Nucleic Acid Eukaryotic Sequence Genomic Nucleotide Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.-
    Barrie PA, Jeffreys AJ, Scott AF (1981) Evolution of the β-globin gene cluster in man and the primates. J Mol Biol 149: 319–336CrossRefGoogle Scholar
  2. 2.-
    Bilofsky HS, Burks C, Fickett JW, Goad WR, Lewitter FI, Rindone WP, Swindell CD, Tung CS (1986) The GenBank genetic sequence databank. Nucleic Acid Res 14: 1–4CrossRefGoogle Scholar
  3. 3.-
    Breslauer KJ, Frank R, Blöcker H, Marky L (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83: 3746–3750ADSCrossRefGoogle Scholar
  4. 4.-
    Dickerson RE (1983) Base sequence and helix structure variation in B and A DNA. J Mol Biol 166: 419–441CrossRefGoogle Scholar
  5. 5.-
    Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O’Conell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human β-globin gene family. Cell 21: 653–668CrossRefGoogle Scholar
  6. 6.-
    Freier SM, Kicrzec R, Jaeger JA, Sugimoto N, Caruthers H (1986) Improved free energy parameters for the prediction of RNA duplex stability. Proc Natl Acad Sci USA 83: 9373–9377ADSCrossRefGoogle Scholar
  7. 7.-
    Grosjean H, Fiers W (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18: 199–209CrossRefGoogle Scholar
  8. 8.-
    Medrano L (1989) Consideraciones biofísicas sobre las mutaciones puntuales. M. Sc. Thesis. Facultad de Ciencias, Universidad Nacional Autónoma de México.Google Scholar
  9. 9.-
    Watson JD, Crick FHC (1953) Molecular structure of nucleic acid. A structure for deoxyribose nucleic acid. Nature 171: 737–738ADSCrossRefGoogle Scholar
  10. 10.-
    Wilson AC, Steven SC, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46: 573–639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. Cocho
    • 1
  • L. Medrano
    • 2
  • P. Miramontes
    • 2
  • J. L. Rius
    • 1
  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxicoD. F. Mexico
  2. 2.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxicoD. F. Mexico

Personalised recommendations