DNA Topology

  • Maxim Frank-Kamenetskii
Part of the NATO ASI Series book series (NSSB, volume 263)


The fundamental stimulus for the development of the theory to be presented in this paper was the discovery of circular DNAs. We recall that DNA molecules, which contain all the information on the structure of living organisms, consist of two polymer chains attached to one another by weak, noncovalent interactions. These chains form a double helix in which γo = 10 monomer links (base pairs) occur per turn. Actual DNAs contain from several thousand to billions of monomer links. Initially the main attention was focused on studying the properties of linear DNA molecules, since this is precisely the form of DNA that could be extracted from cells and virus particles.


Polymer Chain Double Helix Torsional Rigidity Alexander Polynomial Wormlike Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delbruck, M., 1962, in: “Mathematical Problems in the Biological Sciences”, Amer. Math. Soc.Google Scholar
  2. 2.
    Depew, R. E., and Wang, J. C., 1975, Conformational fluctuating of DNA helix, Proc. Natl. Acad. Sci. USA, 72: 4275.ADSCrossRefGoogle Scholar
  3. 3.
    Frank-Kamenetskii, M. D., Likashin, A. V., and Vologodskii, A. V., 1975, Statistical mechanics and topology of polymer chains, Nature, 258: 398.ADSCrossRefGoogle Scholar
  4. 4.
    Frank-Kamenetskii, M. D., and Vologodskii, A. V., 1981, Topological aspects of the physics of polymers: the theory and its biophysical applications, Sov. Phys.-Usp., 24: 679.ADSCrossRefGoogle Scholar
  5. 5.
    Frank-Kamenetskii, M. D., Lukashin, A. V., Anshelevich, V. V., and Vologodskii, A. V., 1985, Torsional and bending rigidity of the double helix from data on small DNA rings, J. Biomol. Struct. Dyn., 2: 1005.CrossRefGoogle Scholar
  6. 6.
    Fuller. F. B., 1971, The writhing number of a space curve, Proc. Natl. Acad. Sci. USA, 68: 815.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Horowitz, D. S., and Wang, J. C., 1984, The torsional rigidity of DNA and the length dependence of the free energy of DNA supercoiling J. Mol. Biol., 173: 75.CrossRefGoogle Scholar
  8. 8.
    Klenin, K. V., Vologodskii, A. V., Anshelevich, V. V., Dykhne, A. M., and Frank-Kamenetskii, M. D., 1988, Effect of excluded volume on topological properties of circular DNA, J. Biomol. Struct. Dyn., 6: 1173.CrossRefGoogle Scholar
  9. 9.
    Klenin, K. V., Vologodskii, A. V., Anshelevich, V. V., Dykhne, A. M., and Frank-Kamenetskii, M. D., 1990, Computer simulation of DNA supercoiling, J. Mol. Biol., in press.Google Scholar
  10. 10.
    Klenin, R. V., Vologodskii, A. V., Anghelevich, A. V., Klighko, V. Y., Dykhne, A. M., and Frank-Kamenetskii, M. D., 1989, Variance of writhe of wormlike DNA rings with excluded volume, J. Biomol. Struct. Dyn., 6: 707.CrossRefGoogle Scholar
  11. 11.
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., 1953, J. Chem. Phys., 21: 1087.ADSCrossRefGoogle Scholar
  12. 12.
    Pulleyblank, D. E., Shure, D. E., Tang, D., Vinograd, J., and Vosberg, H.-P., 1975, Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: Formation of a Boltzmann distribution of topological isomers, Proc. Natl. Acad. Sci. USA, 72: 4280.ADSCrossRefGoogle Scholar
  13. 13.
    Shure, M., Pulleyblank, D. E., and Vinograd, J., 1977, The problem of eukaryotic and prokaryotic DNA packaging and in vivo confomation posed by supehelix density heterogeneity, Nucleic Acids Res., 4: 1183.CrossRefGoogle Scholar
  14. 14.
    Vologodskii, M. D., Lukashin, A. V., Frank-Kamenetskii, M. D., and Anshelevich, V. V., 1974, The knot problem in statistical mechanics of polymer chains, Sov. Phys. JETP 39: 1059.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Maxim Frank-Kamenetskii
    • 1
  1. 1.Institute of Molecular GeneticsAcademy of Sciences of USSRMoscowUSSR

Personalised recommendations