Crystallography of Composite Flowers: Mode Locking and Dynamical Maps

  • N. Rivier
  • A. J. Koch
  • F. Rothen
Part of the NATO ASI Series book series (NSSB, volume 263)


Compositae (daisies, pinecones, asters, sunflowers) have a structure shown in Fig.1. Understanding this structure -one aspect of the field of phyllotaxis (leaf or floret arrangement)1–6- is a problem of crystallography: A surface is tiled with florets (the “atoms”) of roughly the same size, the majority of which are hexagonal (daisy) or rhombus-shaped (sunflower). The unusual feature as far as crystallography is concerned, is that the pattern has cylindrical symmetry. Florets sprout from the central stem (strictly, from a circle, the meristem, surrounding the geometrical center), one after the other, the younger ones pushing out their older siblings. We are dealing therefore with close-packing of deformable florets in cylindrical symmetry.


Convection Cell Cylindrical Symmetry Regular Transition Composite Flower Lucas Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    d’A. W. Thompson, “On Growth and Form,” Cambridge Univ. Press (1942).Google Scholar
  2. 2.
    H. S. M. Coxeter, “Introduction to Geometry,” Wiley, New York (1961).zbMATHGoogle Scholar
  3. 3.
    R. V. Jean, “Phytomathématique,” Presses Univ. du Québec, Montréal (1978); “Mathematical Approach to Pattern and Form in Plant Growth,” Wiley, NY (1984); Nomothetical modeling of spiral symmetry in biology, Symmetry 1: 81 (1990).Google Scholar
  4. 4.
    N. Rivier, Crystallography of spiral lattices, Mod. Phys. Lett. B 2: 953 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    A. J. Koch, “Des Cristaux Colloidaux à la Phyllotaxie, deux Exemples de Réseaux Cristallins en Géométrie Cylindrique,” Thèse, Université de Lausanne (1989).Google Scholar
  6. 6.
    N. Rivier, R. Occelli, J. Pantaloni and A. Lissowski, Structure of Bénard convection cells, phyllotaxis and crystallography in cylindrical symmetry, J. de Physique 45: 49 (1984).CrossRefGoogle Scholar
  7. 7.
    N. Rivier, A botanical quasicrystal, J. de Physique (Coll.) 47: C3–299 (1986).MathSciNetGoogle Scholar
  8. 8.
    D. Weaire and N. Rivier, Soap, cells and statistics — Random patterns in two dimensions, Contemp. Phys. 25: 59 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    R. Occelli, “Transitions Ordre-Désordre dans les Structures Convectives Bidimensionelles,” Thèse, Université de Provence, Marseille (1985).Google Scholar
  10. 10.
    F. Rothen and A. J. Koch, Phyllotaxis, or the properties of spiral lattices. II. Packing of circles along logarithmic spirals, J. de Physique 50: 1603 (1989).MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. S. M. Coxeter, The role of intermediate convergents in Tait’s explanation for phyllotaxis, J. of Algebra 20: 167 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    F. Rothen and A. J. Koch, Phyllotaxis, or the properties of spiral lattices. I. Shape invariance under compression, J. de Physique 50: 633 (1989).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. B. Pippard, “The Physics of Vibration,” vol.11, pp. 391-413. (Cambridge Univ. Press, 1978, 1989)Google Scholar
  14. D. Baums, W. Elsässer and E. O. Göbel, Farey tree and devil’s staircase of a modulated external-cavity semiconductor laser, Phys. Rev. Letters 63: 155 (1989).ADSCrossRefGoogle Scholar
  15. 14.
    C. Mazrec and J. Kappraff, Properties of maximal spacing on a circle related to phyllotaxis and to the golden mean, J. Theor. Biol. 103: 201 (1983).CrossRefGoogle Scholar
  16. 15.
    J. Guerreiro, A. J. Koch and F. Rothen, in preparation. 16 N. Rivier, The structure and dynamics of patterns of Bénard convection cells, IUTAM Symp. on Fluid Mechanics of Stirring and Mixing, UCSD (1990), to appear.Google Scholar
  17. 17.
    L. S. Levitov, Phyllotaxis of flux lattices in layered superconductors, Landau Institute preprint (1990).Google Scholar
  18. 18.
    L. S. Levitov, Hamiltonian approach to phyllotaxis, Landau Inst. preprint (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • N. Rivier
    • 1
    • 2
  • A. J. Koch
    • 1
  • F. Rothen
    • 1
  1. 1.Institut de Physique ExperimentaleUniversité de LausanneDorigny-LausanneSwitzerland
  2. 2.Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations