Random Heteropolymers Folding

  • Giorgio Parisi
Part of the NATO ASI Series book series (NSSB, volume 263)


In these recent years many progresses have been done in the study of the behavior of disordered systems, focusing on those features which are proper of disorder. The most interesting results have been obtained when the laws which control the evolution of the system are themselves disordered, i. e., chosen at random (see for example refs. 1, 2, 3, 4, 5).


Spin Glass Free Energy Barrier Replica Symmetry Peculiar Chemical Real Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parisi G., Field Theory and Statistical Mechanics, ed. by Zuber J. B. and Stora R. North Holland, Amsterdam (1984).Google Scholar
  2. 2.
    Rammal R., Toulouse G. and Virasoro M. A., Ultrametricity for physicists, Rev. Mod. Phys. 58: 765 (1986).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Mezard M., Parisi G. and M. Virasoro, Spin Glass Theory and beyond, Word Scientific, Singapore (1987).zbMATHGoogle Scholar
  4. 4.
    Peliti L. and Vulpiani A. Eds., Measures of Complexity, Springer Verlag Berlin (1988).zbMATHGoogle Scholar
  5. 5.
    Parisi G., On the natural emergence of tree-like structures in complex systems, in Solbrig et al. to be published.Google Scholar
  6. 6.
    Garel T. and Orland H., Mean-Field Model for Protein Folding, Europhys. Lett. 6: 307 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    Stein D. L., Proc. Nat. Acad. Sci. USA 82: 3670 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E. T., Sauke T. B., Shyamsunder E. and Young R., Protein states and proteinquakes, Proc. Natl. Acad. Usa 82: 5000 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    Frauenfelder H., Steinbach P. J. and Young R. D. Conformational relaxation in Proteins, Chemical Scripta 29A: 1878 (1989).Google Scholar
  10. 10.
    Iben I. E. T., Braunstein D., Doster W., Frauenfelder H., Hong M. K., Johnson J. B., Luck S., Ormos P., Schulte A., Steinbach P. J., Xie A. H. and Young R. D., Glassy Behaviour of a Protein, Phys. Rev. Lett. 62: 1916 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    Shaknovich E. I. and Gutin A. M., The Nonergodic (Spin Glass Like) Phase of Het-eropolymer with Quenched Disordered Sequence of Links, Europhys. Lett. 8: 327 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    Kardar M. and Zhang Y.-C., Phys. Rev. Lett. 58: 2087 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    Derrida B. and Spon H., J. Stat. Phys. 51: 817 (1988).ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Parisi G., On the replica approach to random directed polymers in two dimensions, J. Phys. France 51: 1595 (1990).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mezard M., J. Physique France 51: 1423 (1990).Google Scholar
  16. 16.
    Mezard M., Parisi G., Interfaces in a random medium and replica symmetry breaking J. Phys. A in press.Google Scholar
  17. 17.
    Mezard M. and Parisi G., in preparation.Google Scholar
  18. 18.
    Vertechi A. and Virasoro M. A., Energy barriers in SK spin-glass model, J. Phys. France 50: 2325 (1989).CrossRefGoogle Scholar
  19. 19.
    Macken C. and Perelson A., Protein evolution on rugged landscape, Proc. Natl. Acad. Sci. Usa. 86: 666 (1989).MathSciNetCrossRefGoogle Scholar
  20. 20.
    Iori G., Marinari V. and Parisi G., in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Giorgio Parisi
    • 1
    • 2
  1. 1.Dipartimento di Fisica IIUniversità di Roma, Tor VergataItaly
  2. 2.INFN, sezione di Roma, Tor VergataRomaItaly

Personalised recommendations