Physical Approaches to Biological Evolution

  • M. V. Volkenstein
Part of the NATO ASI Series book series (NSSB, volume 263)


There are physicists and biologists who consider physics and biology as incompatible fields of knowledge. Some years ago B.-O. Küppers edited a collection of papers1. This interesting book contains an old paper of Niels Bohr, who wrote about the complementarity of studies of an organism based on atomicmolecular treatment and of the studies of an organism as a whole entity. However at the end of his life Bohr considered this complementarity not as a fundamental principle but only as a practical one2. Polanyi emphasized the important role of information in biological phenomena but considered this notion as something alien to physics3. Heitler wrote about complementarity of living and non-living matter4, Elsässer5 and Wigner6 tried to introduce the so-called biotonic laws, which have nothing to do with physics, but are characteristic of life.


Natural Selection Sequence Space Multicellular Organism Dissipative System Fitness Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.-O. Küppers, ed. Leben=Physik+Chemie? Piper; München, Zurich 1987.Google Scholar
  2. 2.
    N. Bohr, Naturwissenschaften, 50, 21, 1963.ADSCrossRefGoogle Scholar
  3. 3.
    M. Polanyi, Science, 160, 1308–1313, 1968.ADSCrossRefGoogle Scholar
  4. 4.
    W. Heitler, Abhandlungen der Mat.-Naturwiss. Klasse der Akademie der Wissenschaften und Literatur in Mainz, 1, 3–21, 1976.Google Scholar
  5. 5.
    W. Elsässer, The Phisical Foundation of Biology. Pergamon, Oxford, 1958.Google Scholar
  6. 6.
    E. Wigner, Symmetries and Reflexions. Indiana Univ. Press. Bloomington, Indiana, 1987.Google Scholar
  7. 7.
    B.-O. Küppers, Information and the Origin of Life. The MIT Press; Cambridge Mass., London 1990.Google Scholar
  8. 8.
    E. Mayr, The Growth of Biological Thought. Harvard Univ. Press, Cambridge Mass. 1982.Google Scholar
  9. 9.
    C. Anfinsen, The Molecular Basis of Evolution. John Wiley and Sons, N. Y. 1959.Google Scholar
  10. 10.
    R. Dickerson, L. Geis, The Structure and Action of Proteins. Harper and Row, N. Y., Evanston, London, 1969.Google Scholar
  11. 11.
    M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, London, N. Y., Melbourne, Sidney, 1983.CrossRefGoogle Scholar
  12. 12.
    M. Volkenstein, Biophysics, Mir, Moscow, 1983.Google Scholar
  13. 13.
    M. Volkenstein in: The Fluctuating Enzyme. G. Welsh ed. J. Wiley and Sons. N. Y. etc., 403–419, 1986.Google Scholar
  14. 14.
    A. Lesk, S. Chothla. J. Mol. Biol. 136, 225–270, 1980.CrossRefGoogle Scholar
  15. 15.
    O. Ptitsyn in Conformations in Biology, Eds. R. Srinivasan, R. Sarma, Adenine Press, N. Y., 49–60, 1983.Google Scholar
  16. 16.
    Kit Fan Lan, Ken Dill. Theory for Protein Mutability and Biogenesis. Proc. Nat. Acad. Sci. US 87, 638–642, 1990.ADSCrossRefGoogle Scholar
  17. 17.
    E. Shakhnovich, A. Gutin. Proteins, 1990, in press.Google Scholar
  18. 18.
    O. Ptitsyn, M. Volkenstein. J. Biomol. Structure and Dynamics, 4, 137–156, 1986.CrossRefGoogle Scholar
  19. 19.
    M. Volkenstein, Mol. Biol. (Russian), 19, 55–66, 1985.Google Scholar
  20. 20.
    M. Kimura, J. Genet. (India), 64, 7–19, 1985.CrossRefGoogle Scholar
  21. 21.
    V. Volkenstein, T. Rass. Doklady Acad. Sci. USSR, 295, 1513–1517, 1987.Google Scholar
  22. 22.
    M. King, T. Jukes, Science, 164, 788–793, 1969.ADSCrossRefGoogle Scholar
  23. 23.
    E. Trifonov, Bull. Math. Biol., 51, 417–431, 1989.zbMATHGoogle Scholar
  24. 24.
    G. Dover, Nature, 299, 111–117, 1982.ADSCrossRefGoogle Scholar
  25. 25.
    G. Dover, Trends Genet., 2, 159–165, 1986.CrossRefGoogle Scholar
  26. 26.
    M. Eigen, Naturwissenschaften, 58, Heft 10, 1971.Google Scholar
  27. 27.
    M. Eigen, P. Schuster, The Hypercycle. Springer-Verlag, Berlin, Heidelberg, N. Y., 1979.CrossRefGoogle Scholar
  28. 28.
    B.-O. Küppers, Molecular Theory of Evolution. Springer-Verlag, Berlin, Heidelberg, N. Y., 1985.Google Scholar
  29. 29.
    M. Eigen, Chemica Scripta, 26B, 13–26, 1986.Google Scholar
  30. 30.
    M. Eigen, Stufen zum Leben. Piper. München, Zürich, 1987.Google Scholar
  31. 31.
    M. Eigen, Cold Spring Harbor Symposia on Quant. Biology, 52, 307–320, 1987.CrossRefGoogle Scholar
  32. 32.
    M. Eigen, R. Winkler-Oswatitsch, A. Dress. Science, 85, 5913–5917, 1988.MathSciNetGoogle Scholar
  33. 33.
    M. Eigen, J. McCaskill, P. Schuster. Adv. Chem. Phys., 75, 149–263, 1989.CrossRefGoogle Scholar
  34. 34.
    C. Biebricher, Cold Spring Harbor Symposia on Quant. Biology, 52, 299–306, 1987.CrossRefGoogle Scholar
  35. 35.
    C. Biebricher-the paper at this conference.Google Scholar
  36. 36.
    L. Berg, Nomogenesis or Evolution Determined by Law. MIT Press, Cambridge Mass., 1969.Google Scholar
  37. 37.
    B. Belintsev, M. Volkenstein, Doklady Acad. Sci. USSR, 225, 205–210, 1977.Google Scholar
  38. 38.
    S. Gould, N. Eldredge, Paleobiology, 3, 115–151.Google Scholar
  39. 39.
    N. Eldredge, S. Gould, Nature, 332, 211–212, 1988.ADSCrossRefGoogle Scholar
  40. 40.
    M. Volkenstein, Bio Systems, 20, 289–304, 1987.CrossRefGoogle Scholar
  41. 41.
    M. Volkenstein, M. Livshits, Bio Systems, 23, 1–5, 1989.CrossRefGoogle Scholar
  42. 42.
    M. Livshits, M. Volkenstein, Bio Systems, in press.Google Scholar
  43. 43.
    Ch. Darwin, The Origin of Species. The final words of the first section of the first chapter.Google Scholar
  44. 44.
    S. Gould, Paleobiology, 6, 119–130, 1980.Google Scholar
  45. 45.
    S. Gould, Science, 216, 380–387, 1982.ADSCrossRefGoogle Scholar
  46. 46.
    P. Alberch, American Zoologist, 20, 653–667, 1980.Google Scholar
  47. 47.
    R. Feistel, W. Ebeling, Bio Systems, 15, 291–296, 1982.CrossRefGoogle Scholar
  48. 48.
    W. Ebeling, A. Engel, B. Esser, R. Feistel, J. Stat. Phys., 37, 369–384, 1984.MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    M. Volkenstein, M. Livshits, Doklady Acad. Sci. USSR, 301, 731–734, 1988; Bio Systems-in preparation.Google Scholar
  50. 50.
    M. Volkenstein, Entropy and Information, Verlag Harry Deutsch, Frankfurt am Main, 1990.Google Scholar
  51. 51.
    W. Ebeling, M. Volkenstein, Physica A, 163, 398–402, 1990.ADSCrossRefGoogle Scholar
  52. 52.
    C. von Weizsäcker. Vorword to 53.Google Scholar
  53. 53.
    B. Küppers, Information and the Origin of Life, MIT Press, Cambridge Mass., London, 1990.Google Scholar
  54. 54.
    G. Quastler, The Emergence of Biological Organization. Yale Univ. Press, New Haven, 1964.Google Scholar
  55. 55.
    I. Schmalhausen, Cybernetical Problems of Biology (Russian), Nauka, Novosibirsk, 1967.Google Scholar
  56. 56.
    M. Volkenstein, D. Chernavsky, J. Soc. Biol. Struct., 1, 95–108, 1978.CrossRefGoogle Scholar
  57. 57.
    M. Volkenstein, D. Chernavsky in Self-Organization, Autowaves and Structure far from Equilibrium, V. Krinsky ed., Springer-Verlag, B., Heidelberg, N. Y., Tokyo, pp. 252–261, 1984.CrossRefGoogle Scholar
  58. 58.
    M. Volkenstein, J. Theor. Biology, 92, 293–299, 1981.CrossRefGoogle Scholar
  59. 59.
    M. Conrad, M. Volkenstein, J. Theor. Biol., 92, 293–299, 1981.CrossRefGoogle Scholar
  60. 60.
    L. Gatlin, Information Theory and the Living Systems. Columbia Univ. Press, N. Y., London, 1972.Google Scholar
  61. 61.
    J. Wicken, Evolution, Thermodynamics and Information. Oxford Univ. Press, N. Y., Oxford, 1987.Google Scholar
  62. 62.
    D. Brooks, E. Wiley, Evolution as Entropy, Univ. of Chicago Press, Chicago, London, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. V. Volkenstein
    • 1
  1. 1.Inst. Molecular BiologyAcad. Scienc. USSRMoscowURSS

Personalised recommendations