Skip to main content

Mechanisms of Biological Pattern Formation

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 263))

Abstract

The development of a higher organism with all its differentiated cells in complex but precise spatial arrangement is one of the most spectacular events in living systems. This process must be encoded in the genes. The similarity of identical twins provides some intuition about how precisely the final pattern is determined. The reference to the genes, however, does not provide an explanation of how spatial pattern of an organism is generated, since during cell division, as the rule, both daughter cells obtain the same genetic information. The question is then how different genetic information can be activated in different regions of the (originally more or less homogeneous) mass of cells that differently programmed cells arise in a controlled spatial neighborhood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artavanis-Tsakonas, S. (1988). The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genetics 4: 95–100.

    Article  Google Scholar 

  2. Bohn, H. (1970). Interkalare Regeneration und segmentale Gradienten bei den Extremitäten von Leucophaea-Larven (Blattari). I. Femur und Tibia. Roux Arch. Dev. Biol. 165: 303–341.

    Article  Google Scholar 

  3. Bohn, H. (1974). Extent and properties of the regeneration field in the larval legs of cockroaches (Leucophaea maderae). I. Extirpation experiments. J. Embryol. exp. Morph. Vol. 31: 3, 557–572.

    Google Scholar 

  4. Campos-Ortega, J. (1988). Cellular interactions during early neurogenesis of Drosophila melanogaster. TINS 11: 400–405.

    Google Scholar 

  5. Doe, C. Q. and Goodman, C. S. (1985). Early Events in Insect Neurogenesis. II. The Role of Cell Interactions and Cell Lineage in the Determination of Neuronal Precursor Cells. Devi. Biol. 111: 206–219.

    Article  Google Scholar 

  6. Eigen, M. and Schuster, P. (1977). The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64: 541–565.

    Article  ADS  Google Scholar 

  7. Gierer, A. (1981). Generation of biological patterns and form: Some physical, mathematical, and logical aspects. Prog. Biophys. molec. Biol. 37: 1–47.

    Article  MathSciNet  Google Scholar 

  8. Gierer, A. and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik 12: 30–39.

    Article  Google Scholar 

  9. Kay, R. R., Berks, M. and Traynor, D. (1989). Morphogen hunting in Dictyostelium. Development Suppl. 107: 81–90.

    Google Scholar 

  10. Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

    Article  ADS  Google Scholar 

  11. Martinez-Arias, A., Baker, N. E. and Ingham, P. W. (1988). Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103: 151–17

    Google Scholar 

  12. Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation 6: 117–123.

    Article  Google Scholar 

  13. Meinhardt, H. (1977). A model of pattern formation in insect embryogenesis. J. Cell Sci. 23: 117–139.

    Google Scholar 

  14. Meinhardt, H. (1978). Space-dependent Cell Determination under the control of a morphogen gradient. J. theor. Biol. 74: 307–321.

    Article  Google Scholar 

  15. Meinhardt, H. (1980). Cooperation of Compartments for the Generation of Positional Information. Z. Naturforsch. 35c: 1086–1091.

    Google Scholar 

  16. Meinhardt, H. (1982). Models of biological pattern formation. Academic Press, London.

    Google Scholar 

  17. Meinhardt, H. (1983a). A boundary model for pattern formation in vertebrate limbs. J. Embryol. exp. Morph. 76: 115–137.

    Google Scholar 

  18. Meinhardt, H. (1983b). Cell determination boundaries as organizing regions for secondary embryonic fields. Devi. Biol. 96: 375–385.

    Article  Google Scholar 

  19. Meinhardt, H. (1983c). A model for the prestalk/prespore patterning in the slug of the slime mold Dictyostelium discoideum. Differentiation 24: 191–202.

    Article  Google Scholar 

  20. Meinhardt, H. (1984). Models for positional signalling, the threefold subdivision of segments and the pigmentation pattern of molluscs. J. Embryol. exp. Morph. 83: (Sup-plement) 289–311.

    Google Scholar 

  21. Meinhardt, H. (1986). Hierarchical inductions of cell states: a model for segmentation in Drosophila. J. Cell Sci. Suppl. 4: 357–381.

    Article  Google Scholar 

  22. Meinhardt, H. (1986). The threefold subdivision of segments and the initiation of legs and wings in insects. Trends Genetics 2: 36–41.

    Article  Google Scholar 

  23. Meinhardt, H. (1988). Models for maternally supplied positional information and the activation of segmentation genes in Drosophila embryogenesis. Development 104: (Supplement), 95–110.

    Google Scholar 

  24. Meinhardt, H. and Gierer, A. (1980). Generation and regeneration of sequences of structures during morphogenesis. J. theor. Biol. 85: 429–450.

    Article  MathSciNet  Google Scholar 

  25. Nüsslein-Volhard, C. and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.

    Article  ADS  Google Scholar 

  26. Ptashne, M., Jeffrey, A., Johnson, A. D., Maurer, R., Meyer, B. J., Pabo, CO., Roberts, T. M. and Sauer, R. T. (1980). How the lambda repressor and Cro work. Cell 19: 1–11.

    Article  Google Scholar 

  27. Serfling, E. (1989). Autoregulation, a common property of eucaryotic transcription factors? Trend Genetics 5: 131–133.

    Article  Google Scholar 

  28. Technau, G. M. and Campos-Ortega, J. A. (1985). Fate-mapping in wild-type Drosophila melanogaster. II. Injections of horseradish peroxidase in cells of the early gastrula stage. Roux’s Arch. Dev. Biol. 194: 196–212.

    Google Scholar 

  29. Tickle, C, Summerbell, D. and Wolpert, L. (1975). Positional signalling and specification of digits in chick limb morphogenesis. Nature 254: 199f.

    Article  ADS  Google Scholar 

  30. Williams, J. G., Jermyn, K. A. and Duffy, K. T. (1989). Formation and anatomy of prestalk zone of Dictyostelium. Development Suppl. 107: 91–97.

    Google Scholar 

  31. Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. theor. Biol. 25: 1–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meinhardt, H. (1991). Mechanisms of Biological Pattern Formation. In: Peliti, L. (eds) Biologically Inspired Physics. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9483-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9483-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9485-4

  • Online ISBN: 978-1-4757-9483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics