Problems in Theoretical Immunology

  • Gérard Weisbuch
Part of the NATO ASI Series book series (NSSB, volume 263)


Immunology1 is not a new field of research: the first vaccinations against smallpox were done by the end of the seventeenth century by Jenner. But the practice of vaccination, although much more intricate than described in elementary textbooks, remained largely empirical. The important successes of experimental methods derived from immunology in molecular biology never had much counterpart from the theoretical point of view. Only a few models of infection, based on population dynamics, have been proposed. Until quite recently most immunologists considered that clinical conditions could be explained by the presence or absence of some specific macromolecules or cell types. Such simple approaches have in fact been sufficient to handle efficiently a number of clinical and experimental problems. It is only quite recently that the self /non-self recognition problem led N. Jerne2 to formulate his network hypothesis, and that people realized that the consequences of the hypothesis could only be checked through some effort in theoretical modeling3, 4. Before presenting our contribution let us review the important characteristics of the immune response that are indispensable to the understanding of our model.


Antigen Presentation Cayley Tree Localize Attractor Immune Network Proliferation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hood, Weissman, Wood and Wilson, Immunology, Benjamin, Menlo Park (1984).Google Scholar
  2. 2.
    Jerne, N. K. Towards a network theory of the immune system Ann. Immunol. (Inst. Pasteur) 125C, 373–389 (1974).Google Scholar
  3. 3.
    A. S. Perelson, Ed., Theoretical Immunology. SFI Studies in the Science of Complexity, Vol. III, Addison-Wesley, Redwood City, CA (1988).Google Scholar
  4. 4.
    Immunol. Rev., 110, issue on Immune network theory (1989).Google Scholar
  5. 5.
    Weisbuch G., R. de Boer and Perelson, A. S., J. Theo. Biol., to appear (1990).Google Scholar
  6. 6.
    A. S. Perelson, in: Cell Surface Dynamics: Concepts and Models. (Perelson, A. S., DeLisi, C. and Wiegel, F. W., Eds.) pp. 223–275. Marcel Dekker, New York (1984).Google Scholar
  7. 7.
    R. J. De Boer and Hogeweg, P., Bull. Math. Biol. 51, 223–246 (1989).zbMATHCrossRefGoogle Scholar
  8. 8.
    J. F Kearny and Vakil, M., Immunol. Rev. 94, 39–50 (1986).CrossRefGoogle Scholar
  9. 9.
    D. S. Holmberg, Forgren, S., Ivars, F. and Coutinho, A., Eur. J. Imunol. 14, 435–441 (1984).CrossRefGoogle Scholar
  10. 10.
    L. A. Segel and Perelson, A. S. pp. 321-344, in: Theoretical Immunology, Part Two, ed. by A. S. Perelson, Addison Wesley (1988).Google Scholar
  11. 11.
    Weisbuch G., J. Theor. Biol., 143(4), 507–522 (1990).MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. D. Farmer, Packard, N. H. and Perelson, A. S. Physica 22D, 187–204 (1986).MathSciNetGoogle Scholar
  13. 13.
    G. Parisi, pp.394-406, in: Chaos and Complexity, ed. R. Livi, S. Ruffo, S. Ciliberto and M. Buiatti, World Scientific (1988).Google Scholar
  14. 14.
    G. Weisbuch, pp. 53–62, in: Theories of immune networks, (Atlan, H. Ed.). Springer, Berlin (1989).CrossRefGoogle Scholar
  15. 15.
    R. J. De Boer and Hogeweg, P., Bull. Math. Biol., 51, 381–408 (1989b).zbMATHCrossRefGoogle Scholar
  16. 16.
    A. Neumann and G. Weisbuch, submitted to Bull. Math. Biol.(1990).Google Scholar
  17. 17.
    J. Stewart and F. Varela, Immunol. Rev., 110, 37–61 (1989).CrossRefGoogle Scholar
  18. 18.
    R. De Boer, I. G. Kevrekidis and A. S. Perelson (1990).Google Scholar
  19. 19.
    A. S. Perelson and G. Weisbuch (1990).Google Scholar
  20. 20.
    J. J. Hopfield, Proc. Natl. Acad. Sci. USA. 79, 2554–2558 (1982).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    I. R. Cohen pp. 6–12, in: Theories of immune networks, (Atlan, H. Ed.). Springer, Berlin (1989).CrossRefGoogle Scholar
  22. 22.
    R. J. De Boer, GRIND: Great Integrator Differential Equations, Bioinformatics Group, University of Utrecht, The Netherlands (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gérard Weisbuch
    • 1
  1. 1.Laboratoire de Physique StatistiqueEcole Normale SupérieureParis Cedex 5France

Personalised recommendations