Skip to main content

Problems in Theoretical Immunology

  • Chapter
Biologically Inspired Physics

Part of the book series: NATO ASI Series ((NSSB,volume 263))

  • 210 Accesses

Abstract

Immunology1 is not a new field of research: the first vaccinations against smallpox were done by the end of the seventeenth century by Jenner. But the practice of vaccination, although much more intricate than described in elementary textbooks, remained largely empirical. The important successes of experimental methods derived from immunology in molecular biology never had much counterpart from the theoretical point of view. Only a few models of infection, based on population dynamics, have been proposed. Until quite recently most immunologists considered that clinical conditions could be explained by the presence or absence of some specific macromolecules or cell types. Such simple approaches have in fact been sufficient to handle efficiently a number of clinical and experimental problems. It is only quite recently that the self /non-self recognition problem led N. Jerne2 to formulate his network hypothesis, and that people realized that the consequences of the hypothesis could only be checked through some effort in theoretical modeling3, 4. Before presenting our contribution let us review the important characteristics of the immune response that are indispensable to the understanding of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hood, Weissman, Wood and Wilson, Immunology, Benjamin, Menlo Park (1984).

    Google Scholar 

  2. Jerne, N. K. Towards a network theory of the immune system Ann. Immunol. (Inst. Pasteur) 125C, 373–389 (1974).

    Google Scholar 

  3. A. S. Perelson, Ed., Theoretical Immunology. SFI Studies in the Science of Complexity, Vol. III, Addison-Wesley, Redwood City, CA (1988).

    Google Scholar 

  4. Immunol. Rev., 110, issue on Immune network theory (1989).

    Google Scholar 

  5. Weisbuch G., R. de Boer and Perelson, A. S., J. Theo. Biol., to appear (1990).

    Google Scholar 

  6. A. S. Perelson, in: Cell Surface Dynamics: Concepts and Models. (Perelson, A. S., DeLisi, C. and Wiegel, F. W., Eds.) pp. 223–275. Marcel Dekker, New York (1984).

    Google Scholar 

  7. R. J. De Boer and Hogeweg, P., Bull. Math. Biol. 51, 223–246 (1989).

    Article  MATH  Google Scholar 

  8. J. F Kearny and Vakil, M., Immunol. Rev. 94, 39–50 (1986).

    Article  Google Scholar 

  9. D. S. Holmberg, Forgren, S., Ivars, F. and Coutinho, A., Eur. J. Imunol. 14, 435–441 (1984).

    Article  Google Scholar 

  10. L. A. Segel and Perelson, A. S. pp. 321-344, in: Theoretical Immunology, Part Two, ed. by A. S. Perelson, Addison Wesley (1988).

    Google Scholar 

  11. Weisbuch G., J. Theor. Biol., 143(4), 507–522 (1990).

    Article  MathSciNet  Google Scholar 

  12. J. D. Farmer, Packard, N. H. and Perelson, A. S. Physica 22D, 187–204 (1986).

    MathSciNet  Google Scholar 

  13. G. Parisi, pp.394-406, in: Chaos and Complexity, ed. R. Livi, S. Ruffo, S. Ciliberto and M. Buiatti, World Scientific (1988).

    Google Scholar 

  14. G. Weisbuch, pp. 53–62, in: Theories of immune networks, (Atlan, H. Ed.). Springer, Berlin (1989).

    Chapter  Google Scholar 

  15. R. J. De Boer and Hogeweg, P., Bull. Math. Biol., 51, 381–408 (1989b).

    Article  MATH  Google Scholar 

  16. A. Neumann and G. Weisbuch, submitted to Bull. Math. Biol.(1990).

    Google Scholar 

  17. J. Stewart and F. Varela, Immunol. Rev., 110, 37–61 (1989).

    Article  Google Scholar 

  18. R. De Boer, I. G. Kevrekidis and A. S. Perelson (1990).

    Google Scholar 

  19. A. S. Perelson and G. Weisbuch (1990).

    Google Scholar 

  20. J. J. Hopfield, Proc. Natl. Acad. Sci. USA. 79, 2554–2558 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  21. I. R. Cohen pp. 6–12, in: Theories of immune networks, (Atlan, H. Ed.). Springer, Berlin (1989).

    Chapter  Google Scholar 

  22. R. J. De Boer, GRIND: Great Integrator Differential Equations, Bioinformatics Group, University of Utrecht, The Netherlands (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weisbuch, G. (1991). Problems in Theoretical Immunology. In: Peliti, L. (eds) Biologically Inspired Physics. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9483-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9483-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9485-4

  • Online ISBN: 978-1-4757-9483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics