Skip to main content

A Possible Correlation between Fluctuations and Function of a Membrane Protein

  • Chapter
Biologically Inspired Physics

Part of the book series: NATO ASI Series ((NSSB,volume 263))

  • 202 Accesses

Abstract

It is well known that proteins are not static structures but dynamic entities which undergo conformational transitions in fulfillment of their catalytic function. The characteristic times of such transitions are given by the turnover numbers of the proteins and range from below milliseconds to seconds. In addition to these large and slow conformational transitions, proteins undergo small and fast conformational fluctuations, their characteristic times extending from picoseconds to microseconds. This implies that each of the few conformational states consists of a large number of substates and transitions between substates occur frequently. The existence of substates and fluctuations has been demonstrated by a number of different techniques1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Frauenfelder, F. Parak and R. D. Young, Conformational substates in proteins, Ann. Rev. Biophys. Chem. 17: 451 (1988).

    Article  Google Scholar 

  2. A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder and R. D. Young, Protein states and proteinquakes, Proc. Natl. Acad. Sci. USA 82: 5000 (1985).

    Article  ADS  Google Scholar 

  3. K. Dornmair and F. Jähnig, Internal dynamics of lactose permease, Proc. Natl. Acad. Sci. USA 86: 9827 (1989).

    Article  ADS  Google Scholar 

  4. J. K. Wright, R. Seckler and P. Overath, Molecular aspects of sugar: ion cotransport, Ann. Rev. Biochem. 55: 225 (1986).

    Article  Google Scholar 

  5. H. R. Kaback, E. Bibi and P. D. Roepe, ß-Galactoside transport in E. coli: a functional dissection of lac permease, Trends Biochem. Sci. 15: 309 (1990).

    Article  Google Scholar 

  6. K. Dornmair, A. F. Corin, J. K. Wright and F. Jähnig, The size of the lactose permease derived from rotational diffusion measurements, EMBO J. 4: 3633 (1985).

    Google Scholar 

  7. D. L. Foster, M. Boublik and H. R. Kaback, Structure of the lac carrier protein of E. coli, J. Biol. Chem. 258: 31 (1983).

    Google Scholar 

  8. H. Vogel, J. K. Wright and F. Jähnig, The structure of the lactose permease derived from Raman spectroscopy and prediction methods, EMBO J. 4: 3625 (1985).

    Google Scholar 

  9. J. Calamia and C. Manoil, lac permease of E. coli: Topology and sequence elements promoting membrane insertion, Proc. Natl. Acad. Sci. USA 87: 4937 (1990).

    Article  ADS  Google Scholar 

  10. J. M. Beecham and L. Brand, Time-resolved fluorescence of proteins, Ann. Rev. Biochem. 54: 43 (1985).

    Article  Google Scholar 

  11. E. John and F. Jähnig, Dynamics of melittin in water and membranes as determined by fluorescence anisotropy decay, Biophys. J. 54: 817 (1988).

    Article  ADS  Google Scholar 

  12. H. Vogel, L. Nilsson, R. Rigler, K. P. Voges and G. Jung, Structural fluctuations of a helical polypeptide traversing a lipid bilayer, Proc. Natl. Acad. Sci. USA 85: 5067 (1988).

    Article  ADS  Google Scholar 

  13. K. Dornmair, P. Overath and F. Jähnig, Fast measurement of galactoside transport by lactose permease, J. Biol. Chem. 264: 342 (1989).

    Google Scholar 

  14. H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7: 284 (1940).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. J. K. Wright, I. Riede and P. Overath, Lactose carrier protein of E. coli: Interaction with galactosides and protons, Biochemistry 20: 6404 (1981).

    Article  Google Scholar 

  16. P. Overath, U. Weigel, J. M. Neuhaus, J. Soppa, R. Seckler, I. Riede, H. Bocklage, B. Müller-Hill, G. Aichele and J. K. Wright, Lactose permease of E. coli: Properties of mutants defective in substrate translocation, Proc. Natl. Acad. Sci. USA 84: 5535 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jähnig, F., Dornmair, K. (1991). A Possible Correlation between Fluctuations and Function of a Membrane Protein. In: Peliti, L. (eds) Biologically Inspired Physics. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9483-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9483-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9485-4

  • Online ISBN: 978-1-4757-9483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics