Observation of Surface Undulations on the Mesoscopic Length Scale by NMR

  • Myer Bloom
  • Evan Evans
Part of the NATO ASI Series book series (NSSB, volume 263)

Abstract

One of the striking systematic differences between materials “designed by nature” via the processes of evolution and those designed by engineers and physicists using well established principles of condensed matter physics is the predominance of ultra-soft materials in the organization of natural condensed matter structures as compared with hard materials in man-made materials. An example is that the lipid bilayer component of the membranes of virtually all cells, be they procaryotic (bacterial) or eucaryotic (animal, vegetable or fungal), are very compressible “fluids” under physiological conditions1–3. The word “fluid” here means, to those of the macroscopic-continuum intuitive persuasion (the “MACROS”), that the membrane does not support shear restoring forces. To those having a predominantly microscopic-molecular intuition (the “MICROS”), “fluidity” means that those spectroscopic measurements on molecules in membranes that are sensitive to translational and rotational diffusive molecular motions indicate that the membrane medium has a viscosity of moderately thick oil (≈ 1 poise).

Keywords

Nuclear Magnetic Resonance Correlation Time Surface Undulation Adiabatic Motion Short Correlation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bloom, E. Evans and O. G. Mouritsen, Q. Rev. Biophys. (to be published).Google Scholar
  2. 2.
    M. Bloom and O. G. Mouritsen, Can. J. Chem. 66, 705–712 (1988).CrossRefGoogle Scholar
  3. 3.
    S. Leibler, in Statistical Mechanics of Membranes and Surfaces, Proc. of the Jerusalem Winter School for Theoretical Physics, eds. D. R. Nelson, T. Piran and S. Weinberg (World Scientific, Singapore, 1989).Google Scholar
  4. 4.
    E. Evans and R. M. Hochmuth, J. Memhr. Biol. 30, 351–362 (1977).CrossRefGoogle Scholar
  5. A. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, Molecular Biology of the Cell, Second Edition. (Garland, New York, 1989).Google Scholar
  6. 5.
    E. Evans and W. Rawicz, Phys. Rev. Lett. 64, 2094–2097 (1990).ADSCrossRefGoogle Scholar
  7. 6.
    W. Helfrich and R.-M. Servuss, Nuovo Cimento D3, 137–151 (1984).ADSCrossRefGoogle Scholar
  8. 7.
    A. Abragam, The Principles of Nuclear Magnetism. Oxford University Press, London, 1961.Google Scholar
  9. 8.
    J. H. Davis, Biochim. Biophys. Acta 737, 117–171 (1983).CrossRefGoogle Scholar
  10. 9.
    M. Bloom, in Physics of NMR Spectroscopy in Biology and Medicine, Ed. B. Maraviglia. pp 121–157. (North Holland, Amsterdam, 1988).Google Scholar
  11. 10.
    J. F. Faucon, M. D. Mitov, P. Meleard, I Bivas and P. Botherel, J. Phys. France 50, 2389–2413 (1989).CrossRefGoogle Scholar
  12. 11.
    F. Brochard and J. F. Lennon, J. Phys. France 36, 1035 (1975).CrossRefGoogle Scholar
  13. 12.
    S. T. Milner and S. A. Safran, Phys. Rev. A36. 4371–4379 (1987).ADSGoogle Scholar
  14. 13.
    M. Bloom and E. Sternin, Biochemistry 26, 2101–2105 (1987).CrossRefGoogle Scholar
  15. 14.
    J. Stohrer, G. Grobner, D. Reimer, K. Weisz, C. Mayer and G. Kothe, J. Chem. Phys. (submitted).Google Scholar
  16. 15.
    P. I. Watnick, P. Dea and S. I. Chan, Proc. Natl. Acad. Sci. U.S.A. 87, 2082–2086 (1990).ADSCrossRefGoogle Scholar
  17. 16.
    J. S. Blicharski, Can. J. Phys. 64, 733–45, (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Myer Bloom
    • 1
  • Evan Evans
    • 1
  1. 1.Department of PhysicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations