Theoretical Analysis of Phospholipid Vesicles and Red Blood Cell Shapes and the Effect of External Electric Field

  • Boštjan Žekš
  • Saša Svetina
Part of the NATO ASI Series book series (NSSB, volume 263)


Phospholipid vesicles and biological cells display a variety of different shapes and the question can be asked what determines the equilibrium shape of a cell and its shape changes. As the inner solutions of red blood cells (RBC) and phospholipid vesicles (PV) do not involve any structure, the shapes of these objects depend solely on the physical and chemical state of their membranes. It is commonly believed that for a given membrane the shapes that are formed correspond to the minimum value of the membrane elastic energy. This energy can, in general, be decomposed into the sum of the stretching, shear and bending energy terms1. It is also a general property of membranes that relatively much more energy is needed to stretch them than to cause shear deformation or bending. Consequently, the shape established by a flaccid cell or vesicle corresponds to the minimum value of the sum of the shear and bending energy terms, where its membrane area is practically constant. In particular, phospholipid membranes are two-dimensional liquids and as such do not exhibit shear elasticity. Thus their shape is determined only by the membrane bending energy. The RBC membrane is structurally more complex than the PV membrane, involving, for example, a cytoplasmic protein network and can therefore exhibit shear elasticity2. However, which of the above two elastic deformations is the main determinant of the RBC shape still cannot be definitely established. At least some of the shapes observed in PV and RBC systems are alike3 which indicates a possible dominant role of the membrane bending energy. It is therefore of interest to investigate the RBC shape behavior under the assumption of a minimum value of membrane bending energy as a possible limiting case of a more general situation.


Membrane Area Phospholipid Vesicle Neutral Surface Spontaneous Curvature Vesicle Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, FL (1980).Google Scholar
  2. 2.
    R. M. Hochmuth and R. E. Waugh, Annu. Rev. Physiol. 49, 209 (1987).CrossRefGoogle Scholar
  3. 3.
    E. Sackmann, H.-P. Duwe and H. Engelhardt, Faraday Discuss. Chem. Soc. 81, 281 (1986).CrossRefGoogle Scholar
  4. 4.
    P. B. Canham, J. Theor. Biol. 26, 61 (1970).CrossRefGoogle Scholar
  5. 5.
    J. T. Jenkins, J. Math. Biol. 4, 149 (1977).zbMATHCrossRefGoogle Scholar
  6. 6.
    W. Helfrich and H. J. Deuling, J. Phys. (Paris) Colloq. 36, 327 (1975).CrossRefGoogle Scholar
  7. 7.
    H. J. Deuling and W. Helfrich, J. Phys. (Paris) 37, 1335 (1976).CrossRefGoogle Scholar
  8. 8.
    H. J. Deuling and W. Helfrich, Biophys. J. 16, 861 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    J. C. Luke, SIAM J. Appl. Math. 42, 333 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J. C. Luke and J. I. Kaplan, Biophys. J. 25, 107 (1979).CrossRefGoogle Scholar
  11. 11.
    M. A. Peterson, J. Appl. Phys. 57, 1739 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    E. A. Evans, Biophys. J. 14, 923 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    M. P. Sheetz and S. J. Singer, Proc. Natl. Acad. Sci. USA 71., 4457 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    S. Svetina, A. Ottova-Leitmannova and R. Glaser, J. Theor. Biol. 94, 13 (1982).CrossRefGoogle Scholar
  15. 15.
    S. Svetina and B. Žekš, Biomed. Biochim. Acta 44, 979 (1985).Google Scholar
  16. 16.
    S. Svetina and B. Žekš, Eur. Biophys. J. 17, 101 (1989).CrossRefGoogle Scholar
  17. 17.
    V. Pastushenko, A. Sokirko, S. Svetina and B. Žekš, in preparation.Google Scholar
  18. 18.
    B. Žekš, S. Svetina and V. Pastushenko, Stud. Biophys., to be published.Google Scholar
  19. 19.
    K. Berndl, J. Käs, R. Lipowsky, E. Sackmann and U. Seifert, to be published.Google Scholar
  20. 20.
    S. Svetina, V. Kral j-Iglič and B. Žekš, Proceedings of the 10th School on Biophysics of Membrane Transport, Poland, May 1990, J. Kuczera, S. Przestalski, Eds., Wroclaw (1990) Vol. II, 139.Google Scholar
  21. 21.
    S. Svetina and B. Žekš, J. Theor. Biol., to be published.Google Scholar
  22. 22.
    W. Helfrich, Z. Naturforsch. C 29, 182 (1974).Google Scholar
  23. 23.
    M. Winterhalter and W. Helfrich, J. Colloid Interface Sci. 122, 583 (1988).CrossRefGoogle Scholar
  24. 24.
    G. Bryant and J. Wolfe, J. Membrane Biol. 96, 129 (1987).CrossRefGoogle Scholar
  25. 25.
    S. Svetina, M. Brumen and B. Žekš, in Biomembranes: Basic and Medical Research, G. Benga, J. M. Tager, Eds., Springer Verlag (1988) 177.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Boštjan Žekš
    • 1
  • Saša Svetina
    • 1
  1. 1.Institute of Biophysics, Medical Faculty, Lipičeva 2 and J. Stefan InstituteUniversity of LjubljanaLjubljanaYugoslavia

Personalised recommendations