Comparative Estimation of the Neurotoxic Risks of N-Hexane and N-Heptane in Rats and Humans Based on the Formation of the Metabolites 2,5-Hexanedione and 2,5-Heptanedione

  • J. G. Filser
  • Gy. A. Csanády
  • W. Dietz
  • W. Kessler
  • P. E. Kreuzer
  • M. Richter
  • A. Stömer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 387)


In rats and humans, inhalation kinetics of n-hexane (HEX) and n-heptane (HEP) were compared with urinary excretion of 2,5-hexanedione (HDO) and 2,5-heptanedione (HPDO), respectively. Furthermore, the reactivities of HDO and HPDO with Nα-acetyl-L-lysine towards the formation of pyrrolyc adducts was studied. By means of the data gained, the potency of HEP for inducing peripheral neuropathy is compared with the well known one of HEX. In rats, kinetic analysis revealed two different metabolic processes for HEX and HEP, one process characterized by high affinity and low capacity (maximal rate of metabolism Vmaxl: HEX 84, HEP 112 μmol/h/kg) and one by low affinity and high capacity (Vmax2: HEX 456 μmol/h/kg). For HEP, Vmax2 cannot be given, since the deviation from linearity of the curve representing the rate of metabolism versus the exposure concentration was too small within the concentration range studied of up to 10000 ppm. Urinary excretion of HDO resulting from exposure to HEX correlated with the first process, whereas the corresponding excretion of HPDO as a metabolite of HEP correlated with the second process. In humans, rates of metabolism of HEX and HEP increased linearly with the exposure concentrations up to the tested values of 300 ppm (HEX) and 500 ppm (HEP), the pulmonary retention at steady state being 23% (HEX) and 35% (HEP) at rest. Of totally metabolized HEX during and after HEX exposure to 300 ppm, about 0.5% was excreted as HDO in urine. Of totally metabolized HEP during and after HEP exposure up to 500 ppm, only about 0.01% was excreted as HPDO in urine. Background excretion of HPDO was found in urine of rats and of both γ-diketones in urine of humans; the sources are still unknown. In rats, urinary excretion of HPDO resulting from exposure to 500 ppm HEP was about 7 times less and in humans about 4 times less than that of HDO resulting from exposure to 50 ppm HEX over the same time span. In vitro, the rate of pyrrole formation from the reaction of HPDO with Na-acetyl-L-lysine was about half that obtained with HDO. This indicates a lower neurotoxic potency of HPDO. From our findings it becomes intelligible that HEP was not neurotoxic in rats in contrast to HEX. Furthermore, for humans we also conclude the neurotoxic potency of HEP to be significantly lower than that of HEX.


Toxicokinetic Model Toxicokinetic Parameter Closed Chamber Technique Background Excretion Pulmonary Retention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony D. C, Boekelheide K., and Graham D. G., 1983a, The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. I. Accelerated clinical neuropathy is accompanied by more proximal axonal swellings, Toxicol. Appl. Pharmacol. 71: 362–371.PubMedCrossRefGoogle Scholar
  2. Anthony D. C, Boekelheide K., Anderson C. W., and Graham D. G., 1983b, The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. II. Dimethyl substitution accelerates pyrrole formation and protein crosslinking, Toxicol. Appl. Pharmacol. 71: 372–382.PubMedCrossRefGoogle Scholar
  3. API, 1978, 26 week inhalation toxicity study of n-hexane in the rat, Washington DC, American Petroleum Institute, API Medical Research Report No 28-30077.Google Scholar
  4. Bahima J., Cert A., and Menéndez-Gallego M. 1984, Identification of volatile metabolites of inhaled n-heptane in rat urine, Toxicol. Appl. Pharmacol. 76: 473–482.PubMedCrossRefGoogle Scholar
  5. Bio/dynamics Inc., 1980, A 26-week inhalation toxicity study of heptane in the rat, Project No 78-7233, Bio/dynamics Inc., Division of Biology and Safety Evaluation, East Millstone, NJ, USA.Google Scholar
  6. Cardona A., Marhuenda D., Marti J., Brugnone F., Roel J., and Perbellini L. 1993, Biological monitoring of occupational exposure to n-hexane by measurement of urinary 2,5-hexanedione, Int. Arch. Occup. Environ. Health 65: 71–74.PubMedCrossRefGoogle Scholar
  7. Couri D., and Milks M. 1982, Toxicity and metabolism of the neurotoxic hexacarbons n-hexane, 2-hexanone, and 2,5-hexanedione, Ann. Rev. Pharmacol. Toxicol. 22: 145–166.CrossRefGoogle Scholar
  8. Csanády G. A., and Filser J. G., 1990, SOLVEKIN: a new program for solving pharmaco-and toxicokinetic problems. Presented on the International Workshop on Pharmacokinetic Modelling in Occupational Health, March 4–8, Leysin, Switzerland.Google Scholar
  9. Csanády Gy., Kessler W., and Filser J. G., 1992. Inhalationskinetik von n-Heptan bei Ratte und Mensch, Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e. K, 32. Jahrestagung, Genter Verlag, Stuttgart, 613–616.Google Scholar
  10. DeCaprio A. P., and Weber P., 1980, In vitro studies on the amino group reactivity of a neurotoxic hexacarbon solvent, Pharmacologist 22: 222.Google Scholar
  11. DeCaprio A. P., Olajas E. J., and Weber P. 1982, Covalent binding of a neurotoxic n-hexane metabolite: Conversion of primary amines to substituted pyrrole adducts by 2,5-hexanedione, Toxicol. Appl. Pharmacol. 65: 440–450.PubMedCrossRefGoogle Scholar
  12. DeCaprio A. P., Strominger N. L., and Weber P. 1983, Neurotoxicity and protein binding of 2,5-hexanedione in the hen, Toxicol. Appl. Pharmacol. 68: 297–307.PubMedCrossRefGoogle Scholar
  13. DeCaprio A. P., Briggs R. G., Jackowski S. J., and Kim J. C. S. 1988, Comparative neurotoxicity and pyrrole-forming potential of 2,5-hexanedione and perdeuterio-2,5-hexanedione in the rat, Toxicol. Appl. Pharmacol. 92: 75–85.PubMedCrossRefGoogle Scholar
  14. Deutsche Forschungsgemeinschaft, 1982, n-Hexan, in: Gesundheitsschädliche Arbeitsstoffe. Toxikologisch-Arbeitsmedizinische Begründungen von MAK-Werten. 11. Lieferung (ed.: D. Henschler), VCH Verlagsgesellschaft Weinheim.Google Scholar
  15. Deutsche Forschungsgemeinschaft, 1994, List of MAK and BAT values 1994: Maximum concentrations and biological tolerance values at the workplace, VCH Verlagsgesellschaft Weinheim.Google Scholar
  16. DGMK (Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e. V), 1986, Effects of n-heptane on man and animals, DGMK-Project 174-3, Hamburg.Google Scholar
  17. Dietz W. G., 1994, 2,5-Hexandion und Pyrrole im Urin des Menschen: Analytische Bestimmung und Untersuchung der Ausscheidung nach Exposition gegen n-Hexan, GSF-Bericht 7/94, (ed.: GSF — Forschungszentrum für Umwelt und Gesundheit, GmbH), Neuherberg, FRG.Google Scholar
  18. Doerffel K., 1990, Statistik in der analytischen Chemie, 5th ed., Dt. Verlag f. Grundstoffind., Leipzig.Google Scholar
  19. Fedtke N., and Bolt H. M. 1986, Detection of 2,5-hexanedione in the urine of persons not exposed to n-hexane, Int. Arch. Occup. Environ. Health 57: 143–148.PubMedCrossRefGoogle Scholar
  20. Fedtke N., and Bolt H. M. 1987, The relevance of 4,5-dihydroxy-2-hexanone in the excretion kinetics of n-hexane metabolites in rat and man, Arch. Toxicol. 61: 131–137.PubMedCrossRefGoogle Scholar
  21. Filser J. G., Bolt H. M., Muliawan H., and Kappus H. 1983, Quantitative evaluation of ethane and n-pentane as indicators of lipid peroxidation in vivo, Arch. Toxicol. 52: 135–147.PubMedCrossRefGoogle Scholar
  22. Filser J. G., Peter H., Bolt H.M., and Fedtke N. 1987, Pharmacokinetics of the neurotoxin n-hexane in rat and man, Arch. Toxicol. 60: 77–80.PubMedCrossRefGoogle Scholar
  23. Filser J. G. 1992, The closed chamber technique — uptake, endogenous production, excretion, steady-state kinetics and rates of metabolism of gases and vapors, Arch. Toxicol. 66: 1–10.PubMedCrossRefGoogle Scholar
  24. Filser J. G., Schwegler U., Csanády Gy. A., Greim H., Kreuzer P. E., and Kessler W. 1993, Species-specific pharmacokinetics of styrene in rat and man, Arch. Toxicol 67: 517–530.PubMedCrossRefGoogle Scholar
  25. Filser J. G., Csanády Gy. A., Kessler W., Kreuzer P. E., Stömer A., and Greim H., 1994, Interspecies extrapolation from rodents to humans demonstrated on selected industrial chemicals. ISSX Proceedings 6: 38.Google Scholar
  26. Fiserova-Bergerova V., 1983, Modeling of metabolism and excretion in vivo. In: Modeling of inhalation exposure to vapors: Uptake, distribution, and elimination. Vol. I (ed. V. Fiserova-Bergerova), CRC Press, Boca Raton Florida.Google Scholar
  27. Frommer U., Ullrich V, and Staudinger H. 1970, Hydroxylation of aliphatic compounds by liver microsomes I. The distribution pattern of isomeric alcohols, Hoppe-Seyler’s Z. Physiol. Chem. 351: 903–912.PubMedCrossRefGoogle Scholar
  28. Frommer U., Ullrich V, Staudinger H., and Orrenius S. 1972, The monooxygenation of n-heptane by rat liver microsomes, Biochim. Biophys. Acta 280: 487–494.PubMedCrossRefGoogle Scholar
  29. Frommer U., Ullrich V, and Orrenius S. 1974, Influence of inducers and inhibitors on the hydroxylation pattern of n-hexane in rat liver microsomes, FEBS Letters 41: 14–16.PubMedCrossRefGoogle Scholar
  30. Frontali N., Amantini M. C, Spagnolo A., Guarcini A. M., Saltari M. C, Brugnone F., and Perbellini L. 1981, Experimental neurotoxicity and urinary metabolites of the C5-C7 aliphatic hydrocarbons used as glue solvents in shoe manufacture, Clin. Toxicol. 18: 1357–1367.PubMedCrossRefGoogle Scholar
  31. Fühner H. 1921, Die narkotische Wirkung des Benzins und seiner Bestandteile (Pentan, Hexan, Heptan, Oktan), Biochem. Z. 115: 235–261.Google Scholar
  32. Genter M. B., Szakal-Quin G., Anderson C. W., Anthony D. C, and Graham D. G. 1987, Evidence that pyrrole formation is a pathogenic step in gamma-diketone neuropathy, Toxicol. Appl. Pharmacol. 87, 351–362.PubMedCrossRefGoogle Scholar
  33. Genter St. Clair M. B., Amarnath V, Moody M. A., Anthony D. C, Anderson C. W., and Graham D. G. 1988, Pyrrole oxidation and protein cross-linking as necessary steps in the development of γ-diketone neuropathy, Chem. Res. Toxicol. 1: 179–185.CrossRefGoogle Scholar
  34. Graham D. G., Anthony D. C, Boekelheide K., Maschmann N. A., Richards R. G., Wolfram J. W., and Shaw B. R. 1982, Studies of the molecular pathogenesis of hexane neuropathy. II. Evidence that pyrrole derivatization of lysyl residues leads to protein crosslinking, Toxicol. Appl. Pharmacol. 64: 415–422.PubMedCrossRefGoogle Scholar
  35. Graham D. G., Amarnath V, Valentine W. M., Pyle S. J., and Anthony D. C 1995, Pathogenetic studies of hexane and carbon disulfide neurotoxicity, Crit. Rev. Toxicol. 25: 91–112.PubMedCrossRefGoogle Scholar
  36. Hallier E., Filser J. G., and Bolt H. M. 1981, Inhalation pharmacokinetics based on gas uptake studies. II. Pharmacokinetics of acetone in rats, Arch. Toxicol. 47: 293–304.PubMedCrossRefGoogle Scholar
  37. International Commission on Radiological Protection, 1974, Report of the task group on reference man, Pergamon Press, Oxford.Google Scholar
  38. Kessler W., Denk B., and Filser J. G., 1989, Species-specific inhalation pharmacokinetics of 2-nitropropane, methyl ethyl ketone, and n-hexane, In: Biologically based methods for cancer risk assesment (ed. C. C. Travis), NATO ASI Series, Plenum Press, New York, London, 123–139.CrossRefGoogle Scholar
  39. Kessler W., Heilmaier H., Kreuzer P., Shen J. H., Filser M., and Filser J. G. 1990, Spectrophotometric determination of pyrrole-like substances in urine of rat and man: An assay for the evaluation of 2,5-hexanedione formed from n-hexane, Arch. Toxicol. 64: 242–246.PubMedCrossRefGoogle Scholar
  40. Kezic S., and Monster A. C 1991, Determination of 2,5-hexanedione in urine and serum by gas chromatography after derivatization with O-(pentafluorobenzyl)-hydroxylamine and solid-phase extraction, J. Chromatogr. 563: 199–204.PubMedGoogle Scholar
  41. Krasavage W. J., O’Donoghue J. L., DiVincenzo G. D., and Terhaar C. J. 1980, The relative neurotoxicity of methyl n-butyl ketone, n-hexane and their metabolites, Toxicol. Appl. Pharmacol. 52: 433–441.PubMedCrossRefGoogle Scholar
  42. Kreuzer P. E., Kessler W., Welter H. F., Baur C, and Filser J. G. 1991, Enzyme specific kinetics of 1,2-epoxybutene-3 in microsomes and cytosol from livers of mouse, rat, and man, Arch. Toxicol 65: 59–67.PubMedCrossRefGoogle Scholar
  43. Laib R. J., Tucholski M., Filser J. G., and Csanády G. A. 1992, Pharmacokinetic interaction between 1,3-butadiene and styrene in Sprague-Dawley rats, Arch. Toxicol. 66: 310–314.PubMedCrossRefGoogle Scholar
  44. Lazarew N. W. 1929, Über die Giftigkeit verschiedener Kohlenwasserstoffdämpfe, Arch. Exp. Pathol. Pharmacol. 143: 223–233.CrossRefGoogle Scholar
  45. Mattocks A. R., and White I. N. H. 1970, Estimation of metabolites of pyrrolizidine alkaloids in animal tissues, Anal. Biochem. 38: 529–535.PubMedCrossRefGoogle Scholar
  46. O’Donoghue J. L., and Krasavage W. J., 1979, The structure-activity relationship of aliphatic diketones and their potential neurotoxicity, Toxicol. Appl. Pharmacol. 48: A55.Google Scholar
  47. Ono Y, Takeuchi Y., Hisanaga N., Iwata M, Kitoh J., and Sugiura Y 1982, Neurotoxicity of petroleum benzine compared with n-hexane, Int. Arch. Occup. Environ. Health 50: 219–229.PubMedCrossRefGoogle Scholar
  48. Perbellini L., Brugnone F., Caretta D., and Maranelli G. 1985, Partition coefficients of some industrial aliphatic hydrocarbons (C5–C7) in blood and human tissues, Br. J. Ind. Med. 42: 162–167.PubMedGoogle Scholar
  49. Perbellini L., Brugnone F., Cocheo V, De Rosa E., and Bartolucci G. B. 1986, Identification of the n-heptane metabolites in rat and human urine, Arch. Toxicol. 58: 229–234.PubMedCrossRefGoogle Scholar
  50. Perbellini L., Pezzoli G., Brugnone F., and Canesi M., 1993, Biochemical and physiological aspects of 2,5-hexanedione: endogenous or exogenous product? Int. Arch. Occup. Environ. Health 65: 49–52.PubMedCrossRefGoogle Scholar
  51. Richter M., 1995, In-vitro-Untersuchungen zur Pyrrolbildungsgeschwindigkeit von 2,5-Hexandion und 2,5-Heptandion mit Na-Acetyl-L-lysin als Voraussetzung für eine vergleichende Abschätzung der neurotoxischen Potentiale beider γ-Diketone, Dissertation an der Fakultät für Medizin der Technischen Universität München.Google Scholar
  52. Sachs L., 1974, Angewandte Statistik. 4th ed., Springer Verlag, Berlin.CrossRefGoogle Scholar
  53. Sanagi S., Seki Y, Sugimoto K., and Hirata M. 1980, Peripheral nervous system functions of workers exposed to n-hexane at a low level, Int. Arch. Occup. Environ. Health 47: 69–79.PubMedCrossRefGoogle Scholar
  54. Sayre L. M., Shearson C. M., Wongmongkolrit T., Medori R., and Gambetti P. 1986, Structural basis of γ-diketone neurotoxicity: Non-neurotoxicity of 3,3-dimethyl-2,5-hexanedione, ay-diketone incapable of pyrrole formation, Toxicol. Appl. Pharmacol. 84: 36–44.PubMedCrossRefGoogle Scholar
  55. Schmidt R. F., and Thews G., 1977, Physiologie des Menschen. 19th ed., Springer Verlag, Berlin.CrossRefGoogle Scholar
  56. Spencer P. S., Schaumburg H. H., Sabri M. I., and Veronesi B. V 1980, The enlarging view of hexacarbon neurotoxicity, Crit. Rev. Toxicol. 7: 279–356.PubMedCrossRefGoogle Scholar
  57. Stetter H., and Kuhlmann H., 1975, Addition von Aldehyden an aktivierte Doppelbindungen: VII; Eine neue einfache Synthese von cis-Jasmon und Dihydrojasmon, Synthesis 379-380.Google Scholar
  58. Stetter H., and Kuhlmann H. 1976, Addition von Aldehyden an aktivierte Doppelbindungen, XI; Addition aliphatischer. heterocyclischer und aromatischer Aldehyde an Butenon, Chem. Ber. 109: 3426–3431.CrossRefGoogle Scholar
  59. Stömer A., Kreuzer P. E., Kessler W., Csanády Gy. A., and Filser J. G., 1993, Bestimmung von Pyrrolen im Urin von Ratten nach Exposition gegen n-Heptan und n-Hexan — ein Mittel zum Vergleich des neurotoxischen Potentials beider Kohlenwasserstoffe, Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e. V, 33. Jahrestagung, Genter Verlag, Stuttgart, 481–486.Google Scholar
  60. Stömer A., Kessler W., and Filser J. G., 1994, 2,5-Heptandion im Urin des Menschen nach Exposition gegen n-Heptan — Vergleich der neurotoxischen Potentiale von n-Heptan und n-Hexan, Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e. V, 34. Jahrestagung, Genter Verlag, Stuttgart, 363–36Google Scholar
  61. Stömer A. 1995, Pyrrole und 2,5-Heptandion im Urin der Ratte und 2,5-Heptandion im Urin des Menschen: Analytische Bestimmung der Ausscheidung nach Exposition gegen n-Heptan, Dissertation an der Fakultät für Chemie, Biologie und Geowissenschaften der Technischen Universität München.Google Scholar
  62. Takeuchi Y, Ono Y, Hisanga N., Kitoh J., and Sugiura Y, 1980, A comparative study on the neurotoxicity of n-pentane, n-hexane, and n-heptane in the rat, Br. J. Ind. Med. 37: 241–247.PubMedGoogle Scholar
  63. Takeuchi Y, Ono Y, Hisanga N., Kitoh J., and Sugiura Y 1981, A comparative study on the toxicity of n-pentane, n-hexane, and n-heptane to the peripheral nerve of the rat, Clin. Toxicol. 18: 1395–1402.PubMedCrossRefGoogle Scholar
  64. Takeuchi Y, Ono Y, Hisanga N., Iwata M., Aoyama M., Kitoh J., and Sugiura Y. 1983, An experimental study of the combined effects of n-hexane and methyl ethyl ketone, Br. J. Ind. Med. 40: 199–203.PubMedGoogle Scholar
  65. Toftgård R., Haaparanta T., Eng L., and Halpert J. 1986, Rat lung and liver microsomal cytochrome P-450 isozymes involved in the hydroxylation of n-hexane, Biochem. Pharmacol. 35: 3733–3738.PubMedCrossRefGoogle Scholar
  66. Veulemans H., Van Vlem E., Janssens H., Masschelein R., and Leplat A. 1982, Experimental human exposure to n-hexane, Int. Arch. Occup. Environ. Health 49: 251–263.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. G. Filser
    • 1
  • Gy. A. Csanády
    • 1
  • W. Dietz
    • 1
  • W. Kessler
    • 1
  • P. E. Kreuzer
    • 1
  • M. Richter
    • 1
  • A. Stömer
    • 1
  1. 1.GSF-Institute of Toxicology NeuherbergOberschleissheimGermany

Personalised recommendations