Skip to main content

Role of Molecular Biology in Risk Assessment

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 387))

Abstract

Exposure to an ever-increasing number of man-made and natural environmental substances poses a health risk for the exposed individuals. To formulate public policy in order to protect the human population from the adverse effects of these agents, society needs first to gain an understanding of the mechanisms by which toxic agents compromise human health. In environmental health studies, the evaluation of risk results from a complex interplay of factors, including not only scientific components, but also socio-economic, ethical, legal, and geographical. As one of these scientific aspects, molecular biology has become an essential tool for the environmental toxicologist, because the rapidly-expanding advances in our understanding of biological processes at the molecular level have made it possible today to analyze problems that twenty years ago we could not even imagine existed. For example, the technology is now available to answer one of the most challenging questions that toxicologists face, namely: Are there genes that contribute to increased resistance (or sensitivity) to toxic environmental agents? Of course, the ultimate goal in this area of risk evaluation is not only to identify these genes, but to develop an understanding of how they function and how they affect human health; this is an eminently feasible goal with our current level of knowledge, given time and adequate resources. As more molecular biologists become attracted to the present challenges of toxicological research, we cannot but expect that many novel advances in molecular biology will be the result of our specific experimental demands, with the consequent opening of unpredictable new frontiers in environmental health research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy, G. N., Martell, K. J., DeLeon, J. H., and Weber, W. W., 1992, Metabolic, molecular genetic and toxicological aspects of the acetylation polymorphism in inbred mice. Pharmacogenetics 2: 197–206.

    Article  PubMed  CAS  Google Scholar 

  2. Juberg, D. R., Bond, J.T., and Weber, W. W, 1991, N-acetylation of aromatic amines: Genetic polymorphism in inbred rat strains. Pharmacogenetics 1: 50–57.

    Article  PubMed  CAS  Google Scholar 

  3. Nebert, D. W., 1991, Polymorphism of human CYP2D genes involved in drug metabolism: possible relationship to individual cancer risk. Cancer Cells 3: 93–96.

    PubMed  CAS  Google Scholar 

  4. Nebert, D. W., 1991, Role of genetics and drug metabolism in human cancer risk. Mut. Res. 247: 267–281.

    Article  CAS  Google Scholar 

  5. Meyer, U. A., 1994, The molecular basis of genetic polymorphisms of drug metabolism. J Pharm. Pharmacol. 46: 409–415.

    PubMed  CAS  Google Scholar 

  6. Coutts, R. T., 1994, Polymorphism in the metabolism of drugs, including antidepressant drugs: Comments on phenotyping. J. Psych. Neuros. 19: 30–44.

    CAS  Google Scholar 

  7. Winchester, R., 1994, The molecular basis of susceptibility to rheumatoid arthritis. Adv. Immunol. 56: 389–466.

    Article  PubMed  CAS  Google Scholar 

  8. Furlong, C. E., Costa, L. G., Hassett, C, Richter, R. J., Sundstrom, J. A., Adler, D. A., Disteche, C. M., Omiecinski, C. J., Chapline, C., and Crabb, J. W., 1993, Human and rabbit paraoxonases: purification, cloning, sequencing, mapping and role of polymorphism in organophosphate detoxification. Chem. Biol. Interact. 87: 35–48.

    Article  CAS  Google Scholar 

  9. Daly, A. K., Cholerton, S., Gregory, W., and Idle, J. R., 1993, Metabolic polymorphisms. Pharmacol. Then 57: 129–160.

    Article  CAS  Google Scholar 

  10. Idle, J. R., 1991, Is environmental carcinogenesis modulated by host polymorphism?. Mut. Res. 247: 259–266.

    Article  CAS  Google Scholar 

  11. Pizzuti, A., Friedman, D. L., and Caskey, C. T., 1993, The myotonic dystrophy gene. Arch. Neurol. 50: 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  12. Tuck-Muller, C. M., Martinez, J. E., Batista, D. A., Kearns, W. G., and Wertelecki, W., 1993, Duplication of the short arm of the X chromosome in mother and daughter. Hum. Genet. 91: 395–400.

    Article  PubMed  CAS  Google Scholar 

  13. Ross, C. A., Mclnnis, M. G., Margolis, R. L., and Li, S. H., 1993, Genes with triplet repeats: Candidate mediators of neuropsychiatric disorders. Trends Neurose. 16: 254–260.

    Article  CAS  Google Scholar 

  14. Curtis, D., 1994 Another procedure for the preliminary ordering of loci based on two point lod scores. Ann. Hum. Genetics 58: 65–75.

    Article  CAS  Google Scholar 

  15. Hildebrandt, F., Pohlmann, A., and Omran, H., 1993, LODVIEW: a computer program for the graphical evaluation of lod score results in exclusion mapping of human disease genes. Comp. Biomed. Res. 26: 592–599.

    Article  CAS  Google Scholar 

  16. Lewis, C. M., and Cannings, C., 1992, The number of loci needed for ELOD calculations. Ann. Hum. Genetics 56: 59–69.

    Article  CAS  Google Scholar 

  17. Collins, A. and Morton, N. E., 1991, Significance of maximal lods. Ann. Hum. Genetics 55: 39–41.

    Article  CAS  Google Scholar 

  18. Risch, N., 1992, Genetic linkage: interpreting lod scores. Science 255: 803–804.

    Article  PubMed  CAS  Google Scholar 

  19. Schork, N. J., Boehnke, M., Terwilliger, J. D., and Ott, J. 1993, Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits. Am. J. Hum. Genet. 53: 1127–1136.

    PubMed  CAS  Google Scholar 

  20. Terwilliger, J. D., Speer, M., and Ott, J., 1993, Chromosome-based method for rapid computer simulation in human genetic linkage analysis. Genet. Epidemiol. 10: 217–224.

    Article  PubMed  CAS  Google Scholar 

  21. Terwilliger, J. D., and Ott, J. 1993, A novel polylocus method for linkage analysis using the lod-score or affected sib-pair method. Genet. Epidemiol. 10: 477–482.

    Article  PubMed  CAS  Google Scholar 

  22. Ott, J., 1992, The future of multilocus linkage analysis. Ann. Medicine 24: 401–403.

    Article  CAS  Google Scholar 

  23. Keats, B. J., Sherman, S. L., Morton, N. E., Robson, E. B., Buetow, K. H., Cartwright, P. E., Chakravarti, A., Francke, U., Green, P. P., and Ott, J., 1991, Guidelines for human linkage maps. An International System for Human Linkage Maps (ISLM, 1990). Ann. Hum. Genetics 55: 1–6.

    Article  CAS  Google Scholar 

  24. Rodrigues, N. R., Cornall, R. J., Chandler, P., Simpson, E., Wicker, L. S., Peterson, L. B., and Todd, J. A., 1994, Mapping of an insulin-dependent diabetes locus, Idd9, in NOD mice to chromosome 4. Mammalian Genome 5: 167–170.

    Article  PubMed  CAS  Google Scholar 

  25. Landers, J. P., and Bunce, N. J., 1991, The Ah receptor and the mechanism of dioxin toxicity. Biochem. J. 276: 273–287.

    PubMed  CAS  Google Scholar 

  26. Nebert, D. W., Benedict, W. F., and Kouri, R. E., 1974, Aromatic hydrocarbon-produced tumorigenesis and the genetic differences in aryl hydrocarbon hydroxylase induction. In: Chemical Carcinogenesis (Ts’o, P. O. P., and DiPaolo, J. A., Eds.), pp.271–289. Marcel Dekker, New Yo

    Google Scholar 

  27. Nebert, D. W., Petersen, D. D., and Puga, A., 1991, Human AH locus polymorphism and cancer: inducibility of CYP1AI and other genes by combustion products and dioxin. Pharmacogenetics 1: 68–78.

    Article  PubMed  CAS  Google Scholar 

  28. Swanson, H. I., and Bradfield, C. A., 1993, The AH-receptor: genetics, structure and function. Pharmacogenetics 3: 213–230.

    CAS  Google Scholar 

  29. Dolwick, K. M., Schmidt, J. V., Carver, L. A., Swanson, H. I., and Bradfield, C. A., 1993, Cloning and expression of a human Ah receptor cDNA. Mol. Pharmacol. 44: 911–917.

    PubMed  CAS  Google Scholar 

  30. Le Beau, M. M., Carver, L. A., Espinosa, R., 3rd, Schmidt, J. V., and Bradfield, C. A., 1994, Chromosomal localization of the human AHR locus encoding the structural gene for the Ah receptor to 7p21-p15. Cytogenet. Cell. Genetics 66: 172–176.

    Article  Google Scholar 

  31. Nebert, D. W., 1989, The Ah locus: Genetic differences in toxicity, cancer, mutation, and birth defects. Crit. Rev. Toxicol. 20: 153–174.

    Article  PubMed  CAS  Google Scholar 

  32. Greenlee, W. F., and Neal, R. A., 1985, The Ah receptor: a biochemical and biological perspective. In: The Receptors. (Conn, P. M., Ed.), pp.89–129. Academic Press, Inc. New York.

    Google Scholar 

  33. Whitlock. J. P., Jr., 1991, Genetic and molecular aspects of 2,3,7,8-tetrachlorodibenzo-p-dioxin action. Ann Rev. Pharmacol. Toxicol. 30: 251–277.

    Google Scholar 

  34. Bauer, D., Muller, H., Reich, J., Riedel, H., Ahrenkiel, V., Warthoe, P., and Strauss, M., 1993, Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nue. Acids Res. 21: 4272–4280.

    Article  CAS  Google Scholar 

  35. Liang, P., Averboukh. L., and Pardee, A. B., 1993, Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nuc. Acids Res. 21: 3269–3275.

    Article  CAS  Google Scholar 

  36. Liang, P., Averboukh, L., Keyomarsi, K., Sager, R., and Pardee, A. B., 1992, Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res. 52: 6966–6968.

    PubMed  CAS  Google Scholar 

  37. Liang, P., and Pardee, A. B., 1992, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.

    Article  PubMed  CAS  Google Scholar 

  38. Askew, G. R., Doetschman, T., and Lingrel, J. B., 1993, Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol. Cell. Biol. 13: 4115–4124.

    PubMed  CAS  Google Scholar 

  39. Doetschman, T. C., 1991, Gene targeting in embryonic stem cells. Biotechnology 16: 89–101.

    PubMed  CAS  Google Scholar 

  40. Adams, D.E., Bliska, J.B., and Cozzarelli, N.R., 1992, Cre-lox recombination in Escherichia coli cells. Mechanistic differences from the in vitro reaction. J. Mol. Biol. 226: 661–673.

    Article  PubMed  CAS  Google Scholar 

  41. Sternberg, N., 1990, Bacteriophage PI cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87: 103–107.

    Article  PubMed  CAS  Google Scholar 

  42. Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E. J., Manning, R. W., Yu, S. H., Mulder, K. L., and Westphal, H., 1992, Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6232–6236.

    Article  PubMed  CAS  Google Scholar 

  43. Baubonis, W., and Sauer, B., 1993, Genomic targeting with purified Cre recombinase. Nucl. Acids Res. 21: 2025–2029.

    Article  PubMed  CAS  Google Scholar 

  44. Sauer, B., 1993, Manipulation of transgenes by site-specific recombination: Use of Cre recombinase. Methods Enzymol. 225: 890–900.

    Article  PubMed  CAS  Google Scholar 

  45. Orban, P. C., Chui, D., and Marth, J. D., 1992, Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6861–6865.

    Article  PubMed  CAS  Google Scholar 

  46. Sauer, B., and Henderson, N., 1990, Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biologist 2: 441–449.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Puga, A., Micka, J., Chang, Cy., Liang, Hc., Nebert, D.W. (1996). Role of Molecular Biology in Risk Assessment. In: Snyder, R., et al. Biological Reactive Intermediates V. Advances in Experimental Medicine and Biology, vol 387. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9480-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9480-9_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9482-3

  • Online ISBN: 978-1-4757-9480-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics