Role of Molecular Biology in Risk Assessment

  • Alvaro Puga
  • Jana Micka
  • Ching-yi Chang
  • Hung-chi Liang
  • Daniel W. Nebert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 387)


Exposure to an ever-increasing number of man-made and natural environmental substances poses a health risk for the exposed individuals. To formulate public policy in order to protect the human population from the adverse effects of these agents, society needs first to gain an understanding of the mechanisms by which toxic agents compromise human health. In environmental health studies, the evaluation of risk results from a complex interplay of factors, including not only scientific components, but also socio-economic, ethical, legal, and geographical. As one of these scientific aspects, molecular biology has become an essential tool for the environmental toxicologist, because the rapidly-expanding advances in our understanding of biological processes at the molecular level have made it possible today to analyze problems that twenty years ago we could not even imagine existed. For example, the technology is now available to answer one of the most challenging questions that toxicologists face, namely: Are there genes that contribute to increased resistance (or sensitivity) to toxic environmental agents? Of course, the ultimate goal in this area of risk evaluation is not only to identify these genes, but to develop an understanding of how they function and how they affect human health; this is an eminently feasible goal with our current level of knowledge, given time and adequate resources. As more molecular biologists become attracted to the present challenges of toxicological research, we cannot but expect that many novel advances in molecular biology will be the result of our specific experimental demands, with the consequent opening of unpredictable new frontiers in environmental health research.


Differential Display Myotonic Dystrophy Toxicological Research Environmental Health Research Environmental Health Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levy, G. N., Martell, K. J., DeLeon, J. H., and Weber, W. W., 1992, Metabolic, molecular genetic and toxicological aspects of the acetylation polymorphism in inbred mice. Pharmacogenetics 2: 197–206.PubMedCrossRefGoogle Scholar
  2. 2.
    Juberg, D. R., Bond, J.T., and Weber, W. W, 1991, N-acetylation of aromatic amines: Genetic polymorphism in inbred rat strains. Pharmacogenetics 1: 50–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Nebert, D. W., 1991, Polymorphism of human CYP2D genes involved in drug metabolism: possible relationship to individual cancer risk. Cancer Cells 3: 93–96.PubMedGoogle Scholar
  4. 4.
    Nebert, D. W., 1991, Role of genetics and drug metabolism in human cancer risk. Mut. Res. 247: 267–281.CrossRefGoogle Scholar
  5. 5.
    Meyer, U. A., 1994, The molecular basis of genetic polymorphisms of drug metabolism. J Pharm. Pharmacol. 46: 409–415.PubMedGoogle Scholar
  6. 6.
    Coutts, R. T., 1994, Polymorphism in the metabolism of drugs, including antidepressant drugs: Comments on phenotyping. J. Psych. Neuros. 19: 30–44.Google Scholar
  7. 7.
    Winchester, R., 1994, The molecular basis of susceptibility to rheumatoid arthritis. Adv. Immunol. 56: 389–466.PubMedCrossRefGoogle Scholar
  8. 8.
    Furlong, C. E., Costa, L. G., Hassett, C, Richter, R. J., Sundstrom, J. A., Adler, D. A., Disteche, C. M., Omiecinski, C. J., Chapline, C., and Crabb, J. W., 1993, Human and rabbit paraoxonases: purification, cloning, sequencing, mapping and role of polymorphism in organophosphate detoxification. Chem. Biol. Interact. 87: 35–48.CrossRefGoogle Scholar
  9. 9.
    Daly, A. K., Cholerton, S., Gregory, W., and Idle, J. R., 1993, Metabolic polymorphisms. Pharmacol. Then 57: 129–160.CrossRefGoogle Scholar
  10. 10.
    Idle, J. R., 1991, Is environmental carcinogenesis modulated by host polymorphism?. Mut. Res. 247: 259–266.CrossRefGoogle Scholar
  11. 11.
    Pizzuti, A., Friedman, D. L., and Caskey, C. T., 1993, The myotonic dystrophy gene. Arch. Neurol. 50: 1173–1179.PubMedCrossRefGoogle Scholar
  12. 12.
    Tuck-Muller, C. M., Martinez, J. E., Batista, D. A., Kearns, W. G., and Wertelecki, W., 1993, Duplication of the short arm of the X chromosome in mother and daughter. Hum. Genet. 91: 395–400.PubMedCrossRefGoogle Scholar
  13. 13.
    Ross, C. A., Mclnnis, M. G., Margolis, R. L., and Li, S. H., 1993, Genes with triplet repeats: Candidate mediators of neuropsychiatric disorders. Trends Neurose. 16: 254–260.CrossRefGoogle Scholar
  14. 14.
    Curtis, D., 1994 Another procedure for the preliminary ordering of loci based on two point lod scores. Ann. Hum. Genetics 58: 65–75.CrossRefGoogle Scholar
  15. 15.
    Hildebrandt, F., Pohlmann, A., and Omran, H., 1993, LODVIEW: a computer program for the graphical evaluation of lod score results in exclusion mapping of human disease genes. Comp. Biomed. Res. 26: 592–599.CrossRefGoogle Scholar
  16. 16.
    Lewis, C. M., and Cannings, C., 1992, The number of loci needed for ELOD calculations. Ann. Hum. Genetics 56: 59–69.CrossRefGoogle Scholar
  17. 17.
    Collins, A. and Morton, N. E., 1991, Significance of maximal lods. Ann. Hum. Genetics 55: 39–41.CrossRefGoogle Scholar
  18. 18.
    Risch, N., 1992, Genetic linkage: interpreting lod scores. Science 255: 803–804.PubMedCrossRefGoogle Scholar
  19. 19.
    Schork, N. J., Boehnke, M., Terwilliger, J. D., and Ott, J. 1993, Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits. Am. J. Hum. Genet. 53: 1127–1136.PubMedGoogle Scholar
  20. 20.
    Terwilliger, J. D., Speer, M., and Ott, J., 1993, Chromosome-based method for rapid computer simulation in human genetic linkage analysis. Genet. Epidemiol. 10: 217–224.PubMedCrossRefGoogle Scholar
  21. 21.
    Terwilliger, J. D., and Ott, J. 1993, A novel polylocus method for linkage analysis using the lod-score or affected sib-pair method. Genet. Epidemiol. 10: 477–482.PubMedCrossRefGoogle Scholar
  22. 22.
    Ott, J., 1992, The future of multilocus linkage analysis. Ann. Medicine 24: 401–403.CrossRefGoogle Scholar
  23. 23.
    Keats, B. J., Sherman, S. L., Morton, N. E., Robson, E. B., Buetow, K. H., Cartwright, P. E., Chakravarti, A., Francke, U., Green, P. P., and Ott, J., 1991, Guidelines for human linkage maps. An International System for Human Linkage Maps (ISLM, 1990). Ann. Hum. Genetics 55: 1–6.CrossRefGoogle Scholar
  24. 24.
    Rodrigues, N. R., Cornall, R. J., Chandler, P., Simpson, E., Wicker, L. S., Peterson, L. B., and Todd, J. A., 1994, Mapping of an insulin-dependent diabetes locus, Idd9, in NOD mice to chromosome 4. Mammalian Genome 5: 167–170.PubMedCrossRefGoogle Scholar
  25. 25.
    Landers, J. P., and Bunce, N. J., 1991, The Ah receptor and the mechanism of dioxin toxicity. Biochem. J. 276: 273–287.PubMedGoogle Scholar
  26. 26.
    Nebert, D. W., Benedict, W. F., and Kouri, R. E., 1974, Aromatic hydrocarbon-produced tumorigenesis and the genetic differences in aryl hydrocarbon hydroxylase induction. In: Chemical Carcinogenesis (Ts’o, P. O. P., and DiPaolo, J. A., Eds.), pp.271–289. Marcel Dekker, New YoGoogle Scholar
  27. 27.
    Nebert, D. W., Petersen, D. D., and Puga, A., 1991, Human AH locus polymorphism and cancer: inducibility of CYP1AI and other genes by combustion products and dioxin. Pharmacogenetics 1: 68–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Swanson, H. I., and Bradfield, C. A., 1993, The AH-receptor: genetics, structure and function. Pharmacogenetics 3: 213–230.Google Scholar
  29. 29.
    Dolwick, K. M., Schmidt, J. V., Carver, L. A., Swanson, H. I., and Bradfield, C. A., 1993, Cloning and expression of a human Ah receptor cDNA. Mol. Pharmacol. 44: 911–917.PubMedGoogle Scholar
  30. 30.
    Le Beau, M. M., Carver, L. A., Espinosa, R., 3rd, Schmidt, J. V., and Bradfield, C. A., 1994, Chromosomal localization of the human AHR locus encoding the structural gene for the Ah receptor to 7p21-p15. Cytogenet. Cell. Genetics 66: 172–176.CrossRefGoogle Scholar
  31. 31.
    Nebert, D. W., 1989, The Ah locus: Genetic differences in toxicity, cancer, mutation, and birth defects. Crit. Rev. Toxicol. 20: 153–174.PubMedCrossRefGoogle Scholar
  32. 32.
    Greenlee, W. F., and Neal, R. A., 1985, The Ah receptor: a biochemical and biological perspective. In: The Receptors. (Conn, P. M., Ed.), pp.89–129. Academic Press, Inc. New York.Google Scholar
  33. 33.
    Whitlock. J. P., Jr., 1991, Genetic and molecular aspects of 2,3,7,8-tetrachlorodibenzo-p-dioxin action. Ann Rev. Pharmacol. Toxicol. 30: 251–277.Google Scholar
  34. 34.
    Bauer, D., Muller, H., Reich, J., Riedel, H., Ahrenkiel, V., Warthoe, P., and Strauss, M., 1993, Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nue. Acids Res. 21: 4272–4280.CrossRefGoogle Scholar
  35. 35.
    Liang, P., Averboukh. L., and Pardee, A. B., 1993, Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nuc. Acids Res. 21: 3269–3275.CrossRefGoogle Scholar
  36. 36.
    Liang, P., Averboukh, L., Keyomarsi, K., Sager, R., and Pardee, A. B., 1992, Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res. 52: 6966–6968.PubMedGoogle Scholar
  37. 37.
    Liang, P., and Pardee, A. B., 1992, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.PubMedCrossRefGoogle Scholar
  38. 38.
    Askew, G. R., Doetschman, T., and Lingrel, J. B., 1993, Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol. Cell. Biol. 13: 4115–4124.PubMedGoogle Scholar
  39. 39.
    Doetschman, T. C., 1991, Gene targeting in embryonic stem cells. Biotechnology 16: 89–101.PubMedGoogle Scholar
  40. 40.
    Adams, D.E., Bliska, J.B., and Cozzarelli, N.R., 1992, Cre-lox recombination in Escherichia coli cells. Mechanistic differences from the in vitro reaction. J. Mol. Biol. 226: 661–673.PubMedCrossRefGoogle Scholar
  41. 41.
    Sternberg, N., 1990, Bacteriophage PI cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87: 103–107.PubMedCrossRefGoogle Scholar
  42. 42.
    Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E. J., Manning, R. W., Yu, S. H., Mulder, K. L., and Westphal, H., 1992, Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6232–6236.PubMedCrossRefGoogle Scholar
  43. 43.
    Baubonis, W., and Sauer, B., 1993, Genomic targeting with purified Cre recombinase. Nucl. Acids Res. 21: 2025–2029.PubMedCrossRefGoogle Scholar
  44. 44.
    Sauer, B., 1993, Manipulation of transgenes by site-specific recombination: Use of Cre recombinase. Methods Enzymol. 225: 890–900.PubMedCrossRefGoogle Scholar
  45. 45.
    Orban, P. C., Chui, D., and Marth, J. D., 1992, Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6861–6865.PubMedCrossRefGoogle Scholar
  46. 46.
    Sauer, B., and Henderson, N., 1990, Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biologist 2: 441–449.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Alvaro Puga
    • 1
  • Jana Micka
    • 1
  • Ching-yi Chang
    • 1
  • Hung-chi Liang
    • 1
  • Daniel W. Nebert
    • 1
  1. 1.Center for Environmental Genetics and Department of Environmental HealthUniversity of Cincinnati Medical CenterCincinnatiUSA

Personalised recommendations