Reactive Dopamine Metabolites and Neurotoxicity

Implications for Parkinson’s Disease
  • Teresa G. Hastings
  • David A. Lewis
  • Michael J. Zigmond
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 387)


Parkinson’s disease occurs in approximately one percent of individuals over the age of 55. It is characterized by the presence of tremor, rigidity, and bradykinesia. Pathologically, the hallmark of Parkinson’s disease is the progressive degeneration of the dopamine (DA)-containing neurons of the nigrostriatal projection. Neurological deficits associated with the loss of DA neurons do not appear until the degeneration is extensive, presumably due to compensatory properties of the remaining DA neurons and their targets (Bernheimer et al., 1973; Zigmond et al., 1984). The mechanism responsible for the degenerative process is not known, although factors such as genetic predisposition and environmental toxins have been proposed to play a role (Agid et al., 1993). There is also growing evidence that endogenous factors such as oxidative stress and DA itself may contribute to the neurodegenerative process (Cohen, 1983; Agid et al., 1993; Zigmond et al., 1992).


Tyrosine Hydroxylase Tritium Content Striatal Slice Striatal Tissue Intrastriatal Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid Y., Ruberg M., Javoy-Agid R., Hirsch E., Raisman-Vozari R., Vyas S., Baucheux B., Michel P., Kastner A., Blanchard B., Damier P., Villares J. and Zhang, P. (1993) Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? In: Narabayashi H., Ngatsu T., Yanagisawa N. and Mizuno, Y. (eds.), Advances in Neurology, Vol. 60, pp 148-164.Google Scholar
  2. Barr G. A., Eckenrode T.C. and Murray M. (1987) Normal development and effects of early deafferentation on choline acetyltransferase, substance P and serotonin-like immunoreactivity in the interpeduncular nucleus. Brain Res. 418, 301–313.PubMedCrossRefGoogle Scholar
  3. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K. and Seitelberger, F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations. J. Neural. Sci. 20, 415–455.CrossRefGoogle Scholar
  4. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  5. Carstam R., Brinck C, Fornstedt B., Rorsman H. and Rosengren E. (1990) 5-S-Cysteinyldopac in human urine. Acta Derm. Venereol. (Stockh). 70, 373–377.Google Scholar
  6. Cohen G. (1983) The pathobiology of Parkinson’s disease: Biochemical aspects of dopamine neuron senescence. J. Neural Transm. 19 (Suppl), 89–103.Google Scholar
  7. Dexter D.T., Carter C.J., Wells F.R., Javoy-Agid F., Lees A., Jenner P. and Marsden C.D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389.PubMedCrossRefGoogle Scholar
  8. Dexter D.T., Holley A.E., Flitter W.D., Slater T.F., Wells F.R., Daniel S.E., Lees A.J., Jenner P. and Marsden C.D. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Movement Disorders 9, 92–97.PubMedCrossRefGoogle Scholar
  9. Filloux F. and Townsend J.J. (1993) Pre-and post-synaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp. Neurol. 119, 79–88.PubMedCrossRefGoogle Scholar
  10. Fornstedt B., Bergh I., Rosengren E. and Carlsson, A. (1990a) An improved HPLC-electrochemical detection method for measuring brain levels of 5-S-cysteinyldopamine, 5-S-cysteinyl-3,4-dihydroxypheny-lalanine, and 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid. J. Neurochem. 54, 578–586.PubMedCrossRefGoogle Scholar
  11. Fornstedt B., Brum A., Rosengren E. and Carlsson A. (1989) The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J. Neural Transm. 1, 279–295.CrossRefGoogle Scholar
  12. Fornstedt B., Pileblad E. and Carlsson A. (1990b) In vivo autoxidation of dopamine in guinea pig striatum increases with age. J. Neurochem. 55, 655–659.PubMedCrossRefGoogle Scholar
  13. Fornstedt B. and Carlsson A. (1991) Vitamin C deficiency facilitates 5-S-cysteinyldopamine formation in guinea pig striatum. J. Neurochem. 56, 407–414.PubMedCrossRefGoogle Scholar
  14. Glantz L.A. and Lewis D.A. (1994) Synaptophysin and not Rab3A immunoreactivity is specifically reduced in the prefrontal cortex of schizophrenic subjects. Soc. Neurosci. Abstr. 20, 622.Google Scholar
  15. Graham D.G., Tiffany S.M., Bell W.R. Jr. and Gutknecht W.F. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.PubMedGoogle Scholar
  16. Graham D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643.PubMedGoogle Scholar
  17. Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.PubMedCrossRefGoogle Scholar
  18. Hastings T.G., Lewis D.A. and Zigmond M.J. (1994) Intrastriatally administered dopamine: Evidence of selective neurotoxicity associated with dopamine oxidation. Soc. Neurosci. Abstr. 20, 413.Google Scholar
  19. Hastings T.G. and Zigmond M.J. (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with 3H-dopamine: Impact of ascorbic acid and glutathione. J. Neurochem. 63, 1126–1132.PubMedCrossRefGoogle Scholar
  20. Hastings T.G. (1995) Enzymatic oxidation of dopamine: The role of prostaglandin H synthase. J. Neurochem. 64, 919–924.PubMedCrossRefGoogle Scholar
  21. Hirsch E., Graybiel A.M. and Agid Y.A. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348.PubMedCrossRefGoogle Scholar
  22. Ito S., Kato T. and Fujita K. (1988) Covalent binding of catechols to proteins through the sulphydryl group. Biochem. Pharmacol. 37, 1707–1710.PubMedCrossRefGoogle Scholar
  23. Kastner A., Hirsch E.C, Lejeune O., Javoy-Agid F., Rascol O. and Agid Y. (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J. Neurochem. 59, 1080–1089.PubMedCrossRefGoogle Scholar
  24. Kato T., Ito S. and Fujita K. (1986) Tyrosinase-catalyzed binding of 3,4-dihydroxyphenylalanine with proteins through the sulfhydryl group. Biochim. Biophys. Asta 881, 415–421.CrossRefGoogle Scholar
  25. Kish S.J., Morito C and Hornykiewicz O. (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci. Lett. 58, 343–346.PubMedCrossRefGoogle Scholar
  26. Lewis D.A., Melchitzky D.S., Haycock J.W. (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res. 656, 1–13.PubMedCrossRefGoogle Scholar
  27. Maguire M.E., Goldmann P.H. and Gilman A.G. (1974) The reaction of [3H]norepinephrine with particulate fractions of cells responsive to catecholamines. Mol. Pharmacol. 10, 563–581.Google Scholar
  28. Mann V.M., Cooper J.M., Daniel S.E., Srai K., Jenner P., Marsden C.D. and Schapira A.H.V. (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann. Neurol. 36, 876–881.PubMedCrossRefGoogle Scholar
  29. Martilla R.J., Lorentz H., Rinne U.K. (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease. J. Neurol. Sci. 86, 321–31.CrossRefGoogle Scholar
  30. McLean J.H. and M.T. Shipley (1987) Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. J. Neurosci. 7, 3016–3028.PubMedGoogle Scholar
  31. Michel P.P. and Hefti F. (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J. Neurosci. Res. 26, 428–435.PubMedCrossRefGoogle Scholar
  32. Perry T.L., Godin D.V. and Hansen S. (1982) Parkinson’s disease: A disorder due to nigral glutathione deficiency? Neurosci. Lett. 33, 305–310.PubMedCrossRefGoogle Scholar
  33. Rosengren E., Linder-Eliasson E. and Carlsson A. (1985) Detection of 5-S-cysteinyldopamine in human brain. J. Neural Transm. 63, 247–253.PubMedCrossRefGoogle Scholar
  34. Rotman A., Daly J.W. and Creveling C.R. (1976) Oxygen-dependent reaction of 6-hydroxydopamine, 5,6-dihydroxytryptamine, and related compounds with proteins in vitro: A model for cytotoxicity. Mol Pharmacol. 12, 887–899.PubMedGoogle Scholar
  35. Saggu H., Cooksey J., Dexter D., Wells F.R., Lees A., Penner P. and Marsden C.D. (1989) A selective increase in particulate Superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem. 53, 692–697.PubMedCrossRefGoogle Scholar
  36. Saner A. and Thoenen H. (1971) Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol. Pharmacol. 7, 147–154.PubMedGoogle Scholar
  37. Scheulen M., Wollenberg P., Bolt H.M., Kappus H. and Remmer H. (1975) Irreversible binding of dopa and dopamine metabolites to protein by rat liver microsomes. Biochem. Biophys. Res. Commun. 66, 1396–1400.PubMedCrossRefGoogle Scholar
  38. Schmidt D.J., Ritter J.K., Sonsalla P.K., Hanson R. and Gibb J.W. (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J. Pharmacol. Exp. Ther. 233, 539–544.PubMedGoogle Scholar
  39. Sofic E., Paulus W., Jellinger K., Reiderer P. and Youdim M.B.H. (1991) Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. J. Neurochem. 56, 978–982.PubMedCrossRefGoogle Scholar
  40. Tse D.C.S., McCreery R.L. and Adams R.N (1976) Potential oxidative pathways of brain catecholamines. J. Med. Chem, 19, 37–40.PubMedCrossRefGoogle Scholar
  41. Weinberger J., Nieves-Rosa J. and Cohen G. (1985) Nerve terminal damage in cerebral ischemia: Protective effect of alpha-methyl-para-tyrosine. Stroke 16, 864–870.PubMedCrossRefGoogle Scholar
  42. Zigmond M.J., Acheson A.L., Stachowiak M.K. and Stricker E.M. (1984) Neurochemical compensation after nigrostriatal injury in an animal model of preclinical Parkinsonism. Arch. Neurol. 41, 856–890.PubMedCrossRefGoogle Scholar
  43. Zigmond M.J., Hastings T.G. and Abercrombie, E.D. (1992) Neurochemical responses to 6-hydroxydopamine and L-DOPA therapy: Implications for Parkinson’s disease. Ann. NY Acad. Sci. 648, 71–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Teresa G. Hastings
    • 1
  • David A. Lewis
    • 1
  • Michael J. Zigmond
    • 1
  1. 1.Departments of Neurology, Psychiatry, and NeuroscienceUniversity of PittsburghPittsburghUSA

Personalised recommendations