Advertisement

In Vivo2H NMR Studies of Cellular Metabolism

  • Robert E. London
Part of the Biological Magnetic Resonance book series (BIMR, volume 11)

Abstract

The development of in vivo spectroscopic methods for the study of cell suspensions, perfused organs, intact animals and humans over the past two decades has relied primarily on the observation of nuclei other than protons. In particular, 31P and 13C NMR studies of intact systems have provided information about the energetics and biochemistry of intact cells, and applications involving these nuclei have been reviewed extensively (Hollis, 1980; Iles et al.,1982; Baxter et al.,1983; London, 1988). A number of other nuclei have also proven useful, including sodium and fluorine; in vivo applications utilizing both are reviewed in this volume (Miller and Elgavish, this volume; Selinsky and Burt, this volume). Although deuterium tracers have proven useful for mapping out the biosynthetic pathways of secondary metabolites using in vitro NMR methods (Abell, 1986, and references therein), initial consideration of some of the limitations of this isotopequadrupolar broadening, significant kinetic isotope effects, and small chemical shift dispersion—suggests that it will have limited use as an in vivo tracer. Despite these limitations, several factors make deuterium a favorable isotope for in vivo metabolic NMR studies in some cases. The low natural abundance (1.56 × 10−2%) minimizes interference from resonances of endogenous compounds. The relatively short spin-lattice relaxation times due to the quadrupolar relaxation mechanism, lead to important real-time sensitivity gains and minimize the intensity distortions which can arise from overpulsing. In contrast to 13C studies, it is generally not necessary to use decoupling methods which are difficult to implement in vivo. The relative ease of synthesis of many deuterated compounds and related low cost of commercially available deuterated materials, particularly in comparison with 13C-labeled compounds, is also an attractive advantage for metabolic studies. In general, in vivo studies with 2H may be useful for situations in which a relatively limited number of spectral lines are present, and in which the molecular size and/or rotational correlation time of labeled metabolites are sufficiently small so that quadrupolar broadening is not excessive. In the experience of this reviewer, the major advantage of using deuterium as an in vivo tracer is the extreme technical ease with which studies can be carried out. This factor has led to the suggested use of deuterated metabolites in pilot or feasibility studies even in situations in which it may ultimately prove necessary to use a different labeling strategy (Eng et al., 1990). Deuterium labels provide information about the chemistry of the labeled “proton” which in some cases cannot be obtained using 13C labels, as illustrated in the studies of formaldehyde metabolism (e.g., Mason and Sanders, 1989). Additionally, the presence of deuterium labels in metabolites of interest has been detected based on the perturbations of proton or carbon resonances of the molecule. Recent 2H NMR studies have utilized D2O as a freely diffusible tracer to measure blood flow and tissue perfusion (Ackerman et al., 1987a, b), and the potential of deuterium imaging has also been explored (Ewy et al., 1986, 1988; Muller and Seelig, 1987; Link and Seelig, 1990). The present review provides a general consideration of the use of 2H labels in metabolic studies (Section 2) as well as summarizing some recent metabolic (Section 3) and imaging and perfusion studies (Section 4). The general area of 2H NMR studies of lipids, which includes some in vivo NMR work, has been reviewed elsewhere (Jacobs and Oldfield, 1980; Seelig and Macdonald, 1987) and is not covered here. Finally, we note that for this review we have adopted the following nomenclature: the symbol “D” is used in chemical formulas, e.g., HDO, and “2H” is used to denote labeling when the common name is used, e.g., [methyl-2H3]lactate.

Keywords

Isotope Effect Sodium Benzoate Kinetic Isotope Effect Deuterium Label Methionine Adenosyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell, C., 1986, Modern Methods Plant Anal. 2: 60.CrossRefGoogle Scholar
  2. Ackerman, J. J. H., Ewy, C. S., Becker, N. N., and Shalwitz, R. A., 1987a, Proc. Natl. Acad. Sci. USA 84: 4099.PubMedCrossRefGoogle Scholar
  3. Ackerman, J. J. H., Ewy, C. S., Kim, S.-G., and Shalwitz, R. A., 1987b, Ann. N.Y. Acad. Sci. 508: 89.PubMedCrossRefGoogle Scholar
  4. Aguayo, J. B., McLennan, I. J., Aguiar, E., and Cheng, H.-M., 1987, Biochem. Biophys. Res. Commun. 142: 359.PubMedCrossRefGoogle Scholar
  5. Aguayo, J. B., Gamcsik, M. P., and Dick, J. D., 1988a, J. BioL Chem. 263: 19552.PubMedGoogle Scholar
  6. Aguayo, J. B., McLennan, I. J., Graham, C., Jr., and Cheng, H.-M., 19886, Exp. Eye Res. 47: 337.Google Scholar
  7. Bailey, J. M., Fishman, P. H., and Pentchev, P. G., 1968, J. Biol. Chem. 243: 4827.PubMedGoogle Scholar
  8. Barrow, K. D., Rogers, P. L., and Smith, G. M., 1986, Eur. J. Biochem. 157: 195.PubMedCrossRefGoogle Scholar
  9. Baxter, R. L., Mackenzie, N. E., and Scott, A. I., 1983, BioL Magn. Reson. 5: 1.CrossRefGoogle Scholar
  10. Block, R. E., and Parekh, B. C., 1987, Magn. Reson. Med. 5: 286.PubMedCrossRefGoogle Scholar
  11. Borie, F., and Seelig, J., 1983, Biochim. Biophys. Acta 735: 131.CrossRefGoogle Scholar
  12. Brereton, I. M., Irving, M. G., Field, J., and Doddrell, D. M., 1986, Biochem. Biophys. Res. Commun. 137: 579.PubMedCrossRefGoogle Scholar
  13. Brereton, I. M., Doddrell, D. M., Oakenfull, S. M., Moss, D., and Irving, M. G., 1989, NMR Biomed. 2: 55.PubMedCrossRefGoogle Scholar
  14. Brindle, K. M., Campbell, I. D., and Simpson, R. J., 1986, Eur. J. Biochem. 158: 299.PubMedCrossRefGoogle Scholar
  15. Brindle, K. M., Campbell, I. D., and Simpson, R. J., 1987, Biol. Magn. Reson. 7: 81CrossRefGoogle Scholar
  16. Cooper, A. J. L., and Meister, A., 1972, Biochemistry 11: 661.PubMedCrossRefGoogle Scholar
  17. de los Santos, C., Buldain, G., Frydman, B., Cannata, J. J. B., and Cazzulo, J. J., 1985, Eur. J. Biochem. 149: 421.PubMedCrossRefGoogle Scholar
  18. Eng, J., Berkowitz, B. A., and Balaban, R. S., 1990, NMR Biomed. 3: 173.PubMedCrossRefGoogle Scholar
  19. Evelhoch, J. L., McCoy, C. L., and Girj, B. P., 1989, Magn. Reson. Med. 9: 402.PubMedCrossRefGoogle Scholar
  20. Ewy, C. S., Babcock, E. E., and Ackerman, J. J. H., 1986, Magn. Reson. Imag. 4: 407.CrossRefGoogle Scholar
  21. Ewy, C. S., Ackerman, J. J. H., and Balaban, R. S., 1988, Magn. Reson. Med. 8: 35.PubMedCrossRefGoogle Scholar
  22. Foster, A. B., 1984, Trends PharmacoL Sci. 5: 524.CrossRefGoogle Scholar
  23. Frahm, J., Haase, A., and Matthaei, D., 1986, Magn. Reson. Med. 3: 321.PubMedCrossRefGoogle Scholar
  24. Frydman, B., de los Santos, C., Cannata, J. J. B., and Cazzulo, J. J., 1990, Eur. J. Biochem. 192: 363.PubMedCrossRefGoogle Scholar
  25. Fung, B. M., Durham, D. L., and Wassil, D. A., 1975, Biochim. Biophys. Acta 399: 191PubMedCrossRefGoogle Scholar
  26. Gatley, S. J., Wess, M. M., Govoni, P. L., Wagner, A., Katz, J. J., and Friedman, A. M., 1986, J. Nuclear Med. 27: 388.Google Scholar
  27. Goodman, M. N., Masuoka, L. K., deRopp, J. S., and Jones, A. D., 1989, Biochem. Biophys. Res. Commun. 159: 522.PubMedCrossRefGoogle Scholar
  28. Grant, D. M., Curtis, J., Croasmun, W. R., Dalling, D. K., Wehrli, F., and Wehrli, S., 1982, J. Am. Chem. Soc. 104: 4492.CrossRefGoogle Scholar
  29. Hanin, I., and Schuberth, J., 1974, J. Neurochem. 23: 819.PubMedCrossRefGoogle Scholar
  30. Hollis, D. P., 1980, Biot Magn. Reson. 2: 1.CrossRefGoogle Scholar
  31. Hotchkiss, R. S., Song, S.-K., Ling, C. S., Ackerman, J. J. H., and Karl, I. E., 1990, Am. J. Physiol. 258: R21.Google Scholar
  32. Hunter, B. K., Nicholls, K. M., and Sanders, J. K. M., 1984, Biochemistry 23: 508.PubMedCrossRefGoogle Scholar
  33. Hunter, B. K., Nicholls, K. M., and Sanders, J. K. M., 1985, Biochemistry 24: 4148PubMedCrossRefGoogle Scholar
  34. Iles, R. A., Stevens, A. N., and Griffiths, J. R., 1982, Prog. NMR Spectrosc. 15: 49–200.CrossRefGoogle Scholar
  35. Irving, M. G., Brereton, I. M., Field, J., and Doddrell, D. M., 1987, Magn. Reson. Med. 8: 88.CrossRefGoogle Scholar
  36. Isab, A. A., and Rabenstein, D. L., 1979, FEBS Lett. 106: 325.PubMedCrossRefGoogle Scholar
  37. Jacobs, R. E., and Oldfield, E., 1980, Prog. NMR Spectrosc. 14: 113.CrossRefGoogle Scholar
  38. Katz, J. J., and McGarry, J. D., 1984, J. Clin. Invest. 74: 1901.PubMedCrossRefGoogle Scholar
  39. Katz, J., Golden, S., and Wals, P. A., 1979, Biochem. J. 180: 389.PubMedGoogle Scholar
  40. Kim, S.-G., and Ackerman, J. J. H., 1988, Magn. Reson. Med. 8: 410.PubMedCrossRefGoogle Scholar
  41. Kimmich, R., Gneiting, T., Kotitschke, K., and Schnur, G., 1990, Biophys. J. 58: 1183.PubMedCrossRefGoogle Scholar
  42. Kosicki, G. W., 1968, Biochemistry 7: 4310.PubMedCrossRefGoogle Scholar
  43. Lentner, C., 1981, Geigy Scientific Tables, Vol. 1, Ciba-Geigy Corp., West Caldwell, N.J., p. 217.Google Scholar
  44. Leopold, M. F., Epstein, W. W., and Grant, D. M., 1988, J. Am. Chem. Soc. 110: 616.CrossRefGoogle Scholar
  45. Link, J., and Seelig, J., 1990, J. Magn. Reson. 89: 310.Google Scholar
  46. Lombardini, J. B., and Talalay, P., 1970, Adv. Enzyme Regul. 9: 349.PubMedCrossRefGoogle Scholar
  47. London, R. E., 1988, Prog. NMR Spectrosc. 20: 337.CrossRefGoogle Scholar
  48. London, R. E., and Gabel, S. A., 1988, Biochemistry 27: 7864.PubMedCrossRefGoogle Scholar
  49. London, R. E., Hildebrand, C. E., Olson, E. S., and Matwiyoff, N. A., 1976, Biochemistry 15: 5480.PubMedCrossRefGoogle Scholar
  50. London, R. E., Galvin, M. J., Thompson, M., Jeffreys, L., and Mester, T., 1985, J. Biochem. Biophys. Methods 11: 21.PubMedCrossRefGoogle Scholar
  51. London, R. E., Gabel, S. A., and Funk, A., 1987, Biochemistry 26: 7166.PubMedCrossRefGoogle Scholar
  52. Malloy, C. R., Sherry, A. D., and Jeffrey, F. M., 1988, J. Biol. Chem. 263: 6964PubMedGoogle Scholar
  53. Mantsch, H. H., Saito, H., and Smith, I. C. P., 1977, Prog. NMR Spectrosc. 11: 211.CrossRefGoogle Scholar
  54. Martin, G. J., Zhang, B. L., Martin, M. L., and Dupuy, P., 1983, Biochem. Biophys. Res. Commun. 111: 890.PubMedCrossRefGoogle Scholar
  55. Martin, G. J., Zhang, B. L., Naulet, N., and Martin, M. L., 1986, J. Am. Chem. Soc. 108: 5116.CrossRefGoogle Scholar
  56. Martineau, A., Lecavalier, L., Falardeau, P., and Chiasson, J. L., 1985, Anal. Biochem. 151: 495.PubMedCrossRefGoogle Scholar
  57. Mason, R. P., and Sanders, J. K. M., 1989, Biochemistry 28: 2160.PubMedCrossRefGoogle Scholar
  58. Mason, R. P., Sanders, J. K. M., and Gidley, M. J., 1986, Phytochemistry 25: 1567CrossRefGoogle Scholar
  59. Mason, R. P., Sanders, J. K. M., and Cornish, A., 1987a, Biochem. Soc. Trans. 15: 148.Google Scholar
  60. Mason, R. P., Sanders, J. K. M., and Cornish, A., 1987b, FEBS Lett. 216: 4.CrossRefGoogle Scholar
  61. Melander, L., and Saunders, W. H., 1980, Reaction Rates of Isotopic Molecules, Wiley, New York.Google Scholar
  62. Muller, S., and Seelig, J., 1987, J. Magn. Reson. 72: 456.Google Scholar
  63. Newmark, R. D., Un, S., Williams, P. G., Carson, P. J., Morimoto, H., and Klein, M. P., 1990, Proc. Natl. Acad. Sci. USA 87: 583.PubMedCrossRefGoogle Scholar
  64. Oldfield, E., Meadows, M., and Glaser, M., 1976, J. Biot Chem. 251: 6147.Google Scholar
  65. Oxley, S. T., Porteous, R., Brindle, K. M., Boyd, J., and Campbell, I. D., 1984, Biochim. Biophys. Acta 805: 19.PubMedCrossRefGoogle Scholar
  66. Pascal, R. A., Jr., Baum, M. W., Wagner, C. K., Rodgers, L. R., and Huang, D.-S., 1986, J. Am. Chem. Soc. 108: 6477.CrossRefGoogle Scholar
  67. Peng, S.-K., Ho, K.-J., and Taylor, C. B., 1972, Arch. Pathol. 94: 81.PubMedGoogle Scholar
  68. Pohl, L. R., and Gillette, J. R., 1985, Drug. Metal). Rev. 15: 1335.CrossRefGoogle Scholar
  69. Rinaldi, P. L., and Baldwin, N. J., 1982, 1 Am. Chem. Soc. 104:5791.Google Scholar
  70. Rognstad, R., and Wals, P., 1976, Biochim. Biophys. Acta 437: 16.PubMedCrossRefGoogle Scholar
  71. Rose, I. A., 1960, J. Biol. Chem. 235: 1170.Google Scholar
  72. Rose, I. A., 1970, in The Enzymes, 3rd ed. (Boyer, P. D., ed.), Vol. II, Academic Press, New York, p. 281.Google Scholar
  73. Schmitt, P., Wesener, J. R., and Gunther, H., 1983, 1 Magn. Reson. 52:511.Google Scholar
  74. Seelig, J., and Macdonald, P. M., 1987, Acc. Chem. Res. 20: 221.CrossRefGoogle Scholar
  75. Simpson, R. J., Brindle, K. M., Brown, F. F., Campbell, I. D., and Foxall, D. L., 1981, Biochem. J. 193: 401.PubMedGoogle Scholar
  76. Simpson, R. J., Brindle, K. M., Brown, F. F., Campbell, I. D., and Foxall, D. L., 1982, Biochem. J. 202: 581.Google Scholar
  77. Stepuro, I. I., Moroz, A. R., and Piletskaya, T. P., 1986, Biokhimiya 51: 729.Google Scholar
  78. Walker, T. E., and Wageman, W. W., 1986, Magn. Reson. Chem. 24: 157.CrossRefGoogle Scholar
  79. Wesener, J. R., and Gunther, H., 1983, Org. Magn. Reson. 21: 433.CrossRefGoogle Scholar
  80. Wesener, J. R., Schmitt, P., and Gunther, H., 1984, J. Am. Chem. Soc. 106:10.Google Scholar
  81. Wheeler, W. D., Kaizaki, S., and Legg, J. I., 1982, Inorg. Chem. 21: 3250.CrossRefGoogle Scholar
  82. York, M. J., Kuchel, P. W., Chapman, B. E., and Jones, A. J., 1982, Biochem. J. 207: 65.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Robert E. London
    • 1
  1. 1.Laboratory of Molecular BiophysicsNational Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations