Respiratory Mechanics and New Concepts in Mechanical Ventilation

  • Daniel Isabey
  • Laurent Brochard
  • Alain Harf


By definition, Mechanical Ventilation is an attempt to maintain or restore a normal rate of gas exchange in patients undergoing short or long term respiratory deficiency. This deficiency may be caused either by a chronic or an acute pulmonary disease, or be a consequence of anesthesia. Since its early age, let us say the beginning of this century, mechanical ventilation has been assigned to reproduce the modalities of normal spontaneous breathing, i. e., a tidal volume in the range VT: 400–800 cm3 (10–12 ml/kg) at an imposed frequency in the range f: 12–24 cpm (0.2–0.4Hz) (72, 73, 84). Delivering a controlled volume at a predetermined frequency is most often achieved by generating a constant flow during a fixed inspiratory time followed by a time limited passive exhalation (42, 98). This mode is called Controlled Mechanical Ventilation (CMV) which implicitly means that flow is controlled.


Chronic Obstructive Pulmonary Disease Mechanical Ventilation Airway Pressure Respiratory System Endotracheal Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azarian, R., Lofaso, F., Zerah, F., Lorino, H., Atlan, A., Isabey, D., and Harf, A., 1993, Assessment of the respiratory compliance in awake subjects using pressure support, Eur. Respir. J., 6: 552–558.PubMedGoogle Scholar
  2. 2.
    Bachofen, H., and Hildebrandt, J., 1971, Area analysis of pressure-volume hysteresis in mammalian lungs, J. Appl. Physiol., 30: 493–497.PubMedGoogle Scholar
  3. 3.
    Barchilon, M., and Curtet, R., 1965, Some details of the structure of an axisymmetrical confined jet with backflow, Fluids Eng. Conf., A.S.M.E. Pap., 64-FE-23: 1–17.Google Scholar
  4. 4.
    Bates, J.H.T., Baconnier, P., and Milic-Emili, J., 1988, A theoretical analysis of interrupter technique for measuring respiratory mechanics, J. Appl. Physiol., 64: 2204–2214.PubMedGoogle Scholar
  5. 5.
    Bates, J.H.T., Rossi, A., and Milic-Emili, J., 1985, Analysis of the behavior of the respiratory system with constant inspiratory flow, J. Appl. Physiol., 58: 1840–1848.PubMedGoogle Scholar
  6. 6.
    Bayliss, L.E., and Robertson, G.W. 1939, The visco-elastic properties of the lungs, Q. J. Exp. Physiol., 29: 27–47.Google Scholar
  7. 7.
    Behrakis, P.K., Higgs, B.D., Baydur, A., Zin, W.A., and Milic Emili, J., 1983, Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans, J. Appl. Physiol. 55: 1085–1092.PubMedGoogle Scholar
  8. 8.
    Ben Fabry, Guttman J., Eberhard, L., and Wolff, G., 1994, Automatic compensation of endotracheal tube resistance in spontaneously breathing patients, Technology and Health Care, 1: 281–291.Google Scholar
  9. 9.
    Beydon, L., Isabey, D., Boussignac, G., Bonnet, F., Duvaldestin, P., and Harf, A., 1991, Pressure support ventilation using a new tracheal gas injection tube, Br. J. Anaesth., 67: 795–800.PubMedGoogle Scholar
  10. 10.
    Binder, G., and Kian, K., 1983, Confined jets in a diverging duct, Proceed. 4th Symp. on Turbulent Shear Flows, Kalrsruhe, p. 7.18-7.23.Google Scholar
  11. 11.
    Brochard, L., Harf, A., Lorino, H., Lemaire, F., 1989, Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation, Am. Rev. Respir. Dis., 139: 513–521.PubMedGoogle Scholar
  12. 12.
    Brochard, L., Isabey, D., Piquet, J., Amaro, P., Mancebo, J., Messadi, A., Brun-Buisson, C. Rauss, A., Lemaire, F., Harf, A., 1990, Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. New Eng. J. Med., 323: 1523–1530.PubMedGoogle Scholar
  13. 13.
    Brochard, L., and Mancebo, J., 1994, Réanimation-Ventilation artificielle-Principes et applications, Arnette, Paris, 405 p.Google Scholar
  14. 14.
    Brochard, L., Mancebo, J., Wyzocki, M., Lofaso, F. Conti, G., Rauss, A., Simmoneau, G., Benito, S., Gasparetto, A., Lemaire, F., Isabey, D., and Harf, A., 1995, Efficacy of non-invasive ventilation for treatment of acute exacerbation of chronic obstructive lung disease. Results of a multicenter randomized trial. Submitted to New Eng. J. Med. Google Scholar
  15. 15.
    Brochard, L., Mion, G., Isabey, D., Bertrand, C., Messadi, A.A., Mancebo, J., Boussignac, G., Vasile, N., Lemaire, F., and Harf, A., 1991, Constant-flow insufflation prevents arterial desaturation during endotracheal suctioning, Am. Rev. Respir. Dis., 144: 395–400.PubMedGoogle Scholar
  16. 16.
    Brochard, L., Pluskwa, F., and Lemaire, F., 1987, Improved efficacy of spontaneous breathing with inspiratory pressure support, Am. Rev. Respir. Dis., 136: 411–415.PubMedGoogle Scholar
  17. 17.
    Brusasco, V., Beck, K.C., Crawford, M., and Rehder, K., 1986, Resonant amplification of delivered volume during high-frequency ventilation, J. Appl. Physiol., 60: 885–892.PubMedGoogle Scholar
  18. 18.
    Chang, H.K., and Harf, A., 1984, High-frequency ventilation: A review, Respir Physiol., 57: 135–152.PubMedGoogle Scholar
  19. 19.
    Chaofan, S., Pigeot, J., and Isabey, D., 1995, Generation de pression par jet turbulent confiné: application en assistance respiratoire. Arch. Int. Physiol. Biochim. Biophys., in press.Google Scholar
  20. 20.
    Cohen, J.L., Demers, R.R., and Saklad, M., 1977, Air-entrainment oxygen masks: a performance evaluation. Respir. Care, 22: 277–282.PubMedGoogle Scholar
  21. 21.
    Corieri, P., Benocci, C., Paiva, M., and Riethmuller, M., 1991, Numerical and experimental investigation of lung bifurcation flows, in: NATO ASI Series, Plenum Press, New York.Google Scholar
  22. 22.
    Cox, D., Tinloi, S.F., and Farrimond, J.G., 1988, Investigation of the spontaneous modes of breathing of different ventilators. Intensive Care Med., 14: 532–537.PubMedGoogle Scholar
  23. 23.
    Curtet, R., and Ricou, F.P., 1964, On the tendency of self-preservation in axisymmetric ducted jets. J. Basic Eng., 777-787.Google Scholar
  24. 24.
    D’Angelo, E., Prandi, E., Tavola, M., Calderini, E., and Milic Emili, J., 1994, Chest wall interrupter resistance in anesthetized paralyzed human. J. Appl. Physiol., 77: 883–887.PubMedGoogle Scholar
  25. 25.
    Dojat, M., Brochard, L., Lemaire, F., and Harf, A., 1992, A knowledge-based for assisted ventilation of patients in intensive care, Int. J. Clin. Monit. Comp., 9: 239–250.Google Scholar
  26. 26.
    Downs, J., Klein, E., Desautels, D., Modell, J., Kirby, R., 1973, Intermittent mandatory ventilation: a new approach to weaning patients from mechanical ventilators, Chest, 64: 331–335.PubMedGoogle Scholar
  27. 27.
    Drazen, J.M., Loring, S.H., and Ingram, R.H., Jr, 1976, Localisation of airway constriction using gases of varying density and viscosity, J. Appl. Physiol., 41: 396–399.PubMedGoogle Scholar
  28. 28.
    Fiastro, J.F., Habib, M.P., and Quan, S.F., 1988, Pressure support compensation for inspiratory work due to endotracheal tubes and demand continuous positive airway pressure, Chest, 93: 499–505.PubMedGoogle Scholar
  29. 29.
    Foglio, C. Vittaca, M., Quadri, A., Scalvini, S., Marangoni, S., and Ambrosino, N., 1992, Acute exacerbations in severe COLD patients. Treatment using positive pressure ventilation by nasal mask, Chest, 101: 533–538.Google Scholar
  30. 30.
    Frank, N.R., Mead, J., and Whittenberger, J.L., 1971, Comparative sensitivity of four methods for measuring changes in respiratory flow resistance in man, J. Appl. Physiol., 31: 934–938.PubMedGoogle Scholar
  31. 31.
    Fredberg, J.J., Glass, G.M., Boyton, B.R., and Frantz I.D. III, 1987, Factors influencing mechanical performance of neonatal high-frequency ventilators, J. Appl. Physiol., 62: 2485–2490.PubMedGoogle Scholar
  32. 32.
    Fredberg, J.J., Keefe, D.H., Glass, G.M., Castile, R.G., and Frantz III, I.D., 1984, Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation, J. Appl. Physiol., 57: 788–800.PubMedGoogle Scholar
  33. 33.
    Fredberg, J.J., and Stamenovic, D., 1989, On the imperfect elacticity of lung tissue, J. Appl. Physiol., 67: 2408–2419.PubMedGoogle Scholar
  34. 34.
    Froese, A.B., and Bryan, A.C., 1974, Effects of anesthesia and paralysis on diaphragmatic mechanics in man, Anesthesiology, 41: 242–255.PubMedGoogle Scholar
  35. 35.
    Gavriely, N., Solway, J., Loring, S.H., Butler, J.P., Slustky, A.S., and Drazen, J.M., 1985, Pressure-flow relationships of endotracheal tubes during high-frequency ventilation, J. Appl. Physiol. 59: 3–11.PubMedGoogle Scholar
  36. 36.
    Gottfried, S.B., Rossi, A., Higgs, B.D., Calverley, P.M.A., Zocchi, L., Bozic, C., and Milic Emili, J., 1985, Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am. Rev. Respir. Dis., 131: 414–420.PubMedGoogle Scholar
  37. 37.
    Hildebrandt, J., 1970, Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model, J. Appl. Physiol., 27: 365–372.Google Scholar
  38. 38.
    Hoppin, F.G., Stothert, J.C., Greaves, I.A., Lai, Y.L., Hildebrandt, J., 1986, Lung recoil: elastic and rheological properties, In: Handbook of Physiology. The Respiratory System (Section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Soc. iety, Bethesda, p. 195–215.Google Scholar
  39. 39.
    Hill, P.G., 1967, Incompressible jet mixing in convergent-divergent axisymmetric ducts, J. Basic Eng., 89: 210–220.Google Scholar
  40. 40.
    Hill, B.J., 1973, Two-dimensional analysis of flow in jet pumps, J. Hydraul. Division,: 1009-1026.Google Scholar
  41. 41.
    Ingram, I., Jr., and Pedley, T.J., 1986, Pressure-flow relationships in the lungs, In: Handbook of Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Soc. iety, Bethesda, p. 277-293.Google Scholar
  42. 42.
    Iotti, G., Brochard, L., and Lemaire, F., 1992, Mechanical ventilation and weaning. In: Care of the critically ill patient (2nd ed.), Tinker, J. and Zapol, W.M., Springer-Verlag, London, chapt. 29, p. 457-477.Google Scholar
  43. 43.
    Isabey, D., 1982, Steady and pulsatile flow distribution in a multiple branching network with physiological applications, J. Biomech. 15: 395–404.PubMedGoogle Scholar
  44. 44.
    Isabey, D., Boussignac, G., and Harf, A., 1989, Effect of air entrainment on airway pressure during endotracheal gas injection, J. Appl. Physiol., 67: 771–779.PubMedGoogle Scholar
  45. 45.
    Isabey, D., and Chang, H.K., 1981, Steady and unsteady pressure-flow relationships in central airways, J. Appl. Physiol., 51: 1348–1388.Google Scholar
  46. 46.
    Isabey, D., and Harf, A., 1995, Basic physical principles for ventilators and ventilatory modes. In: Acute Respiratory Failure in Chronic Obstructive Pulmonary Disease, Derenne, J.P., Marcel Dekker Inc., New York.Google Scholar
  47. 47.
    Isabey, D., Chang, H.K., Delpuech, C., Harf, A., and Hatzfeld, C., 1993, Dependence of central airway resistance on frequency and tidal volume: a model study, J. Appl. Physiol., 61: 113–126.Google Scholar
  48. 48.
    Isabey, D., Harf, A., Chang, H.K., 1985, Pressure change and gas mixing induced by oscillations in a closed system, J. Biomech. Eng., 107: 68–76.PubMedGoogle Scholar
  49. 49.
    Isabey, D., and Piquet, J., 1989, The ventilatory effect of external oscillation, Acta Anaesthesiol. Scand., 90: 87–92.Google Scholar
  50. 50.
    Jaffrin, M.Y., and Kesic, P., 1974, Airway resistance: a fluid mechanical approach, J. Appl. Physiol., 36: 354–361.PubMedGoogle Scholar
  51. 51.
    Jan, D.L., Shapiro, A.H., and Kamm, R.D., 1989, Some feature of oscillatory flow in a model bifurcation, J. Appl. Physiol., 67: 147–159.PubMedGoogle Scholar
  52. 52.
    Jonson, B., Beydon, L., Brauer, K., Mansson, C., Valind, S., and Grytzell, H., 1993, Mechanics of respiratory system in healthy anesthetized humans with emphasis on viscoelastic properties, J. Appl. Physiol., 75: 132–140.PubMedGoogle Scholar
  53. 53.
    Kacmarek, R., 1988, The role of pressure support ventilation in reducing work of breathing, Respir Care, 33: 99–120.Google Scholar
  54. 54.
    Kacmarek, R., and Hickling, K.G., 1993, Permissive Hypercapnia, Respir. Care, 38: 373–387.Google Scholar
  55. 55.
    Kamm, R.D., Slutsky, A.S., Drazen, J.M., 1984, High-frequency ventilation. C.R.C. Crit. Rev. Biomed. Eng, 9: 347–379.Google Scholar
  56. 56.
    Khoo, M.C.K., Slutsky, A.S., Drazen, J.M., Solway, J., Gavriely, N., and Kamm, R.D., 1984, Gas mixing during high-frequency ventilation: an improved model, J. Appl. Physiol., 57: 493–506.PubMedGoogle Scholar
  57. 57.
    Lemaire, F., 1986, La ventilation artificielle, Masson, Paris.Google Scholar
  58. 58.
    Ligas, J.R., 1990, Lung tissue mechanics: historical overview, in: Respiratory Biomechanics, Eipstein, M.A.F., and Ligas, J.R., Springer-Verlag, New-York, p. 3–18.Google Scholar
  59. 59.
    Lofaso, F., Isabey, D., Lorino, H., Harf, A., and Scheid, P., 1992, Respiratory response to positive and negative inspiratory pressure in humans, Respir. Physiol., 89: 75–88.PubMedGoogle Scholar
  60. 60.
    Lofaso, F., Louis, B., Brochard, L., Harf, A., and Isabey, D., 1992, Use of Blasius resistance formula to estimate the effective diameter of endotracheal tubes, Am. Rev. Respir. Dis. 146: 974–979.PubMedGoogle Scholar
  61. 61.
    Lorino, A.M., and Harf, A., 1991, Measurement of respiratory elastance and resistance in mechanically ventilated patients. In: Adult respiratory distress syndrome, Zapol, W.M. and Lemaire, F., Marcel Dekker Inc., New York.Google Scholar
  62. 62.
    Lorino, A.M., and Harf, A., 1993, Techniques for measuring respiratory mechanics: an analytic approach with a viscoelastic model, J. Appl. Physiol., 74: 2373–2379.PubMedGoogle Scholar
  63. 63.
    Louis, B., Glass, G., and Fredberg, J.J., 1994. Pulmonary airway area by the two-microphone acoustic reflection method, J. Appl. Physiol., 76: 2234–2240.PubMedGoogle Scholar
  64. 64.
    Louis, B. and Isabey, D., 1993, Interaction of oscillatory and steady turbulent flows in airway tubes during impedance measurement, J. Appl. Physiol., 74: 116–125.PubMedGoogle Scholar
  65. 65.
    Ludwig, M.S., Dreshaj, I., Solway, A. Munoz, A., and Ingram, R.H. Jr, 1987, Partitioning of pulmonary resistance during constriction in the dog: effects of volume history, J. Appl. Physiol., 62: 807–815.PubMedGoogle Scholar
  66. 66.
    Macklem, P., and Mead, J., 1967, Resistance of central and peripheral airways measured by a retrogade catheter, J. Appl. Physiol., 22: 395–401.PubMedGoogle Scholar
  67. 67.
    McIntyre, N.R., 1986, Respiratory function during pressure support ventilation. Chest, 89: 677–683.Google Scholar
  68. 68.
    Marini, J.J., 1990, Strategies to minimize breathing effort during mechanical ventilation. In: Mechanical ventilation — Critical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p. 635–661.Google Scholar
  69. 69.
    Marini, J.J., Capps J.S., Culver, B.H., 1985, The inspiratory work of breathing during assisted mechanical ventilation, Chest, 87: 612–618.PubMedGoogle Scholar
  70. 70.
    Mead, J., 1961, Mechanical properties of the lungs, Physiol. Rev., 41: 281–330.PubMedGoogle Scholar
  71. 71.
    Meduri, G.U., Conoscenti, C.C., Menashe, P., and, Nair, S., 1989, Non invasive face mask ventilation in patients with acute respiratory failure, Chest, 95: 865–870.PubMedGoogle Scholar
  72. 72.
    Mörch, E.T., 1985, History of mechanical ventilation. In: Clinical Applications of Ventilatory Support, Kirby, R.B., Churchill Livingstone, New York, chapt. 1, p. 1–61.Google Scholar
  73. 73.
    Mushin, W.W., Rendell-Baker, L., Thompson P.W., Mapleson, W.W., and Hillard, E.K., 1980, Automatic ventilation of the lungs (3rd ed.), Blackwell Scientific Publications, Oxford, p. 62–131.Google Scholar
  74. 74.
    Nahum, A., Sznajder, J.I., Solway, J., Wood, L.D.H., and Schumater, P.T., 1988, Pressure, flow, and density relationships in airway models during constant-flow ventilation, J. Appl. Physiol., 64: 2066–2073.PubMedGoogle Scholar
  75. 75.
    Navajas, D., Färre, R., Rotger, M., and Canet, J., 1989, Recording pressure at the distal end of the endotracheal tube to measure respiratory impedance, Eur. Respir J., 2: 178–184.PubMedGoogle Scholar
  76. 76.
    Ninane, V., Rypens, F., Yernault, J.C., and De Troyer, A., 1992, Abdominal muscle use during breathing in patients with chronic airflow obstruction, Am. Rev. Respir. Dis., 146: 16–21.PubMedGoogle Scholar
  77. 77.
    Otis, A.B., 1964, Quantitative relationships in steady-state gas exchange, In: Handbook of Physiology. Respiration (section 3, vol. I), Fenn, W.O., and Rahn. H., American Physiological Society, Washington, p. 681–698.Google Scholar
  78. 78.
    Otis, A.B., McKerrow, C.B., Bartlett, R.A., Mead, J., Mcllroy, M.B., Selverstone, N.J., and Radford, E.P., Jr., 1956, Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol., 8: 427–443.PubMedGoogle Scholar
  79. 79.
    Pedley, T.J., Drazen, J.M., 1986, Aerodynamic theory. In: Handbook oj Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society Bethesda, p. 41–54.Google Scholar
  80. 80.
    Pedley, T.J., Schröter, R.C., and Sudlow, M.F., 1971. Flow and pressure drop in systems of repeatedly branching tubes, J. Fluid Mech., 46: 365–383.Google Scholar
  81. 81.
    Permuti, S., Mitzner, W., and Weinmann, G., 1985, Model of gas transport during high-frequency ventilation, J. Appl. Physiol., 58: 1956–1970.Google Scholar
  82. 82.
    Peslin, R.L., 1969, The physical properties of ventilators in the inspiratory phase. Anesthesiology, 30: 315–324.PubMedGoogle Scholar
  83. 83.
    Peslin, R., and Fredberg, J.J., 1986, Oscillation mechanics, In: Handbook of Physiology. The Respiratory System (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society, Bethesda, p. 277–293.Google Scholar
  84. 84.
    Petty, T.L., 1990, A historical perspective of mechanical ventilation. In: Mechanical ventilation — Critical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p.489–504.Google Scholar
  85. 85.
    Pimmel, R.L., Tsai, M.J., Winter, D.C., and Bromberg, P.A., 1978, Estimating central and peripheral respiratory resistance, J. Appl. Physiol., 45: 375–380.PubMedGoogle Scholar
  86. 86.
    Piquet, J., Brochard, L., Isabey, D., De Cremoux, H., Chang, H.K., Bignon, J., and Harf, A., 1987, High frequency chest wall oscillation in patients with chronic air-flow obstruction. Am. Rev. Respir. Dis., 136: 1355–1359.PubMedGoogle Scholar
  87. 87.
    Piquet, J., Isabey, D., Chang, H.K., and Harf, A., 1985, Stable normocapnia during High frequency body surface oscillation in rabbits, Am. Rev. Respir. Dis., 132: 104–108.PubMedGoogle Scholar
  88. 88.
    Rajaratnam, N., 1976, Developments in water science. Turbulent jets. Amsterdam: elsevier scientific publishing company.Google Scholar
  89. 89.
    Rehder, K. and Marsh, M.H., 1986, Respiratory mechanics during anesthesia and mechanical ventilation. In: Handbook of Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society, Bethesda, p. 737–752.Google Scholar
  90. 90.
    Rodarte, J.R., Rehder, K., 1986, Dynamics of respiration. In: Handbook of Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society, Bethesda, p. 131–144.Google Scholar
  91. 91.
    Rohrer, F., 1915, Der Strömungswiderstand in den menschlichen atemwegen und der einfluss der unregelmässigen Verzweigung des bronchialsystems auf den atmungsverlauf verschiedenen lungenbezirken, Pfluegers Arch. Gesamte Physiol. Menschen Tiere, 162: 225–229.Google Scholar
  92. 92.
    Rossi, A., Gottfried, Higgs, B.D., B., Zocchi, L., Grassino, A., and Milic-Emili, J.,1985, Respiratory mechanics in mechanically ventilated patients with respiratory failure, J. Appl. Physiol., 58:1849–1858.PubMedGoogle Scholar
  93. 93.
    Rossi, A., Gottfried, B., Zocchi, L., Higgs, B.D., Lennox, S., Calverley, P.M.A., Begin, P., Grassino, A., and Milic-Emili, J., 1985, Measurement of static compliance of the respiratory system in patients with acute respiratory failure during mechanical ventilation, Am. Rev. Respir. Dis., 131:672–677.PubMedGoogle Scholar
  94. 94.
    Rossing, T., Slutsky, A.S., Lehr, J., Drinker, P.A., Kamm, R.G., and Drazen, J.M., 1981, Tidal volume and frequency dependence of carbon dioxyde elimination by high-frequency ventilation, N. Engl. J. Med., 305: 1375–1379.PubMedGoogle Scholar
  95. 95.
    Rossing, T.H., Solway, J., Saari, A.F., Gavriely, N., Slutsky, A.S., Lehr, J.L., and Drazen, J.M., 1984, Influence of the endotracheal tube on CO2 transport during high-frequency ventilation, Am. Rev. Respir. Dis., 129: 54–57.PubMedGoogle Scholar
  96. 96.
    Rouby, J.J., Simmoneau, G., and Benhamou, D., Sartene, R., Sardnal, F., Deriaz, H., Duroux, P., and Viars, P., 1985, Factors influencing pulmonary volumes and CO2 elimination by high-frequency jet ventilation, Anesthesiology, 63: 473–482.PubMedGoogle Scholar
  97. 97.
    Sassoon, C.S.H., Giron, A.E., Ely, E.A., and Light, R.W., 1989, Inspiratory work of breathing on flow-by and demand-flow continous positive airway pressure, Crit. Care Med., 17:1108–1114.PubMedGoogle Scholar
  98. 98.
    Sassoon, C.S.H., Kees Mahutte, C., and Light, R.W., 1990, Ventilator Modes: old and new. In: Mechanical ventilation — Critical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p. 605–634.Google Scholar
  99. 99.
    Scacci, R.P., 1979, Air entrainment masks: Jet mixing is how they work; the Bernoulli and Venturi principles are how they don’t, Respir. Care, 24: 928–931.Google Scholar
  100. 100.
    Scherer, P.W., Haselton, F.R., Seybert, J.R., 1984, Gas transport in branched airways during high-frequency ventilation, Ann. Biomed. Eng. 12: 385–405.PubMedGoogle Scholar
  101. 101.
    Scheid, P., Lofaso, F., Isabey, D., and Harf, A., 1994, Respiratory response to inhaled CO2 during positive inspiratory pressure in humans, J. Appl. Physiol., 77: 876–882.PubMedGoogle Scholar
  102. 102.
    Schroter, R.C., and Sudlow, M.F., 1969, Flow patterns in models of the human bronchial airways, Respir. Physiol., 7: 341–355.PubMedGoogle Scholar
  103. 103.
    Shabtai, Y., and Gavriely, N., 1989, Frequency and amplitude effects during high-frequency vibration ventilation in dogs, J. Appl. Physiol., 66: 1127–1135.PubMedGoogle Scholar
  104. 104.
    Slutsky, A.S., Berdine, G.B., and Drazen, J.M., 1980, Steady flow in a model of human central airways, J. Appl. Physiol., 49: 417–423.PubMedGoogle Scholar
  105. 105.
    Snyder, B., Dantzker, D.R., and Jaeger, M., 1981, Flow partitioning in symmetric cascades of branches, J. Appl. Physiol., 51: 598–606.PubMedGoogle Scholar
  106. 106.
    Solway, J., Rossing, T.H., Saari, A.F., and Drazen, J.M., 1986, Expiratory flow limitation and dynamic pulmonary hyperinflation during high-frequency ventilation, J. Appl. Physiol., 60: 2071–2078.PubMedGoogle Scholar
  107. 107.
    Spearman, C.B., and Sanders, H.G., Jr., 1985, Physical principles and functional designs of ventilators. In: Clinical Applications of Ventilatory Support, Kirby, R.B., Churchill Livingstone, New York, chapt. 2, p.63–104.Google Scholar
  108. 108.
    Suter, P.M., 1992, Complications of mechanical ventilation. In: Care of the critically ill patient (2nd ed.), Tinker, J. and Zapol, W.M., Springer-Verlag, London, chapt. 30, p. 478–489.Google Scholar
  109. 109.
    The HIFI Study Group, 1989, High-Frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants, New Engl. J. Med., 320: 88–93.Google Scholar
  110. 110.
    Thiriet, M., Graham, J.M.R., and Issa, R.I., 1992, A pulsatile developing flow in a bend, J. Phys. III, 2: 995–1013.Google Scholar
  111. 111.
    Van Surell, C., Louis, B., Lofaso, F., Beydon, L., Brochard, L., Harf, A., Fredberg, J.J., and Isabey, D., 1994, Acoustic method to estimate the longitudinal area profile of endotracheal tubes, Am. J. Respir. Crit. Care Med., 149:28–33.PubMedGoogle Scholar
  112. 112.
    Venegas, J.G., Hales, C.A., and Strieder, D.J., 1986, A general dimensionless equation of gas transport by high-frequency ventilation, J. Appl. Physiol., 60: 1025–1030.PubMedGoogle Scholar
  113. 113.
    Villar, J., Winston, B., and Slutsky, A.S., 1990, Non-conventional techniques of ventilatory support. In: Mechanical ventilationCritical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p. 579–603.Google Scholar
  114. 114.
    Weinmann, G.G., Mitzner, W., and Permuti, S., 1984, Physiological dead space during high-frequency ventilation in dogs, J. Appl. Physiol., 57: 881–887.PubMedGoogle Scholar
  115. 115.
    West, J.B., 1979, Respiratory Physiology, The essentials (2nd ed.). The Williams and Wilkins company, Baltimore.Google Scholar
  116. 116.
    Wright, P.E., Marini, J.J., and Bernard, G.G., 1989, In vitro versus in vivo comparison of endotracheal tube airflow resistance, Am. Rev. Respir. Dis., 140: 10–16.PubMedGoogle Scholar
  117. 117.
    Yamada, Y., Venegas, J.G., Strieder, D.J., and Hales, C.A., 1986, Effects of mean airway pressure on gas transport during high-frequency ventilation in dogs, J. Appl. Physiol., 61:1896–1902.PubMedGoogle Scholar
  118. 118.
    Younes, M., 1992, Proportional assist ventilation, a new approach to ventilatory support. Am. Rev. Respir. Dis., 145:114–120.PubMedGoogle Scholar
  119. 119.
    Zin, W.A., Rossi, A., and Milic Emili, J., 1983, Model analysis of respiratory responses to inspiratory resistive loads, 55: 1565–1573.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Daniel Isabey
    • 1
  • Laurent Brochard
    • 1
  • Alain Harf
    • 1
  1. 1.Institut National de la Santé et de la Recherche Médicale Inserm U296 — Physiologie Respiratoire Services de Réanimation Médicale et d’Exploration Fonctionnelle Respiratoire Département de PhysiologieHôpital Henri MondorCreteil CédexFrance

Personalised recommendations