Skip to main content

Respiratory Mechanics and New Concepts in Mechanical Ventilation

  • Chapter
Biological Flows

Abstract

By definition, Mechanical Ventilation is an attempt to maintain or restore a normal rate of gas exchange in patients undergoing short or long term respiratory deficiency. This deficiency may be caused either by a chronic or an acute pulmonary disease, or be a consequence of anesthesia. Since its early age, let us say the beginning of this century, mechanical ventilation has been assigned to reproduce the modalities of normal spontaneous breathing, i. e., a tidal volume in the range VT: 400–800 cm3 (10–12 ml/kg) at an imposed frequency in the range f: 12–24 cpm (0.2–0.4Hz) (72, 73, 84). Delivering a controlled volume at a predetermined frequency is most often achieved by generating a constant flow during a fixed inspiratory time followed by a time limited passive exhalation (42, 98). This mode is called Controlled Mechanical Ventilation (CMV) which implicitly means that flow is controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azarian, R., Lofaso, F., Zerah, F., Lorino, H., Atlan, A., Isabey, D., and Harf, A., 1993, Assessment of the respiratory compliance in awake subjects using pressure support, Eur. Respir. J., 6: 552–558.

    CAS  PubMed  Google Scholar 

  2. Bachofen, H., and Hildebrandt, J., 1971, Area analysis of pressure-volume hysteresis in mammalian lungs, J. Appl. Physiol., 30: 493–497.

    CAS  PubMed  Google Scholar 

  3. Barchilon, M., and Curtet, R., 1965, Some details of the structure of an axisymmetrical confined jet with backflow, Fluids Eng. Conf., A.S.M.E. Pap., 64-FE-23: 1–17.

    Google Scholar 

  4. Bates, J.H.T., Baconnier, P., and Milic-Emili, J., 1988, A theoretical analysis of interrupter technique for measuring respiratory mechanics, J. Appl. Physiol., 64: 2204–2214.

    CAS  PubMed  Google Scholar 

  5. Bates, J.H.T., Rossi, A., and Milic-Emili, J., 1985, Analysis of the behavior of the respiratory system with constant inspiratory flow, J. Appl. Physiol., 58: 1840–1848.

    CAS  PubMed  Google Scholar 

  6. Bayliss, L.E., and Robertson, G.W. 1939, The visco-elastic properties of the lungs, Q. J. Exp. Physiol., 29: 27–47.

    Google Scholar 

  7. Behrakis, P.K., Higgs, B.D., Baydur, A., Zin, W.A., and Milic Emili, J., 1983, Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans, J. Appl. Physiol. 55: 1085–1092.

    CAS  PubMed  Google Scholar 

  8. Ben Fabry, Guttman J., Eberhard, L., and Wolff, G., 1994, Automatic compensation of endotracheal tube resistance in spontaneously breathing patients, Technology and Health Care, 1: 281–291.

    Google Scholar 

  9. Beydon, L., Isabey, D., Boussignac, G., Bonnet, F., Duvaldestin, P., and Harf, A., 1991, Pressure support ventilation using a new tracheal gas injection tube, Br. J. Anaesth., 67: 795–800.

    CAS  PubMed  Google Scholar 

  10. Binder, G., and Kian, K., 1983, Confined jets in a diverging duct, Proceed. 4th Symp. on Turbulent Shear Flows, Kalrsruhe, p. 7.18-7.23.

    Google Scholar 

  11. Brochard, L., Harf, A., Lorino, H., Lemaire, F., 1989, Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation, Am. Rev. Respir. Dis., 139: 513–521.

    CAS  PubMed  Google Scholar 

  12. Brochard, L., Isabey, D., Piquet, J., Amaro, P., Mancebo, J., Messadi, A., Brun-Buisson, C. Rauss, A., Lemaire, F., Harf, A., 1990, Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. New Eng. J. Med., 323: 1523–1530.

    CAS  PubMed  Google Scholar 

  13. Brochard, L., and Mancebo, J., 1994, Réanimation-Ventilation artificielle-Principes et applications, Arnette, Paris, 405 p.

    Google Scholar 

  14. Brochard, L., Mancebo, J., Wyzocki, M., Lofaso, F. Conti, G., Rauss, A., Simmoneau, G., Benito, S., Gasparetto, A., Lemaire, F., Isabey, D., and Harf, A., 1995, Efficacy of non-invasive ventilation for treatment of acute exacerbation of chronic obstructive lung disease. Results of a multicenter randomized trial. Submitted to New Eng. J. Med.

    Google Scholar 

  15. Brochard, L., Mion, G., Isabey, D., Bertrand, C., Messadi, A.A., Mancebo, J., Boussignac, G., Vasile, N., Lemaire, F., and Harf, A., 1991, Constant-flow insufflation prevents arterial desaturation during endotracheal suctioning, Am. Rev. Respir. Dis., 144: 395–400.

    CAS  PubMed  Google Scholar 

  16. Brochard, L., Pluskwa, F., and Lemaire, F., 1987, Improved efficacy of spontaneous breathing with inspiratory pressure support, Am. Rev. Respir. Dis., 136: 411–415.

    CAS  PubMed  Google Scholar 

  17. Brusasco, V., Beck, K.C., Crawford, M., and Rehder, K., 1986, Resonant amplification of delivered volume during high-frequency ventilation, J. Appl. Physiol., 60: 885–892.

    CAS  PubMed  Google Scholar 

  18. Chang, H.K., and Harf, A., 1984, High-frequency ventilation: A review, Respir Physiol., 57: 135–152.

    CAS  PubMed  Google Scholar 

  19. Chaofan, S., Pigeot, J., and Isabey, D., 1995, Generation de pression par jet turbulent confiné: application en assistance respiratoire. Arch. Int. Physiol. Biochim. Biophys., in press.

    Google Scholar 

  20. Cohen, J.L., Demers, R.R., and Saklad, M., 1977, Air-entrainment oxygen masks: a performance evaluation. Respir. Care, 22: 277–282.

    CAS  PubMed  Google Scholar 

  21. Corieri, P., Benocci, C., Paiva, M., and Riethmuller, M., 1991, Numerical and experimental investigation of lung bifurcation flows, in: NATO ASI Series, Plenum Press, New York.

    Google Scholar 

  22. Cox, D., Tinloi, S.F., and Farrimond, J.G., 1988, Investigation of the spontaneous modes of breathing of different ventilators. Intensive Care Med., 14: 532–537.

    CAS  PubMed  Google Scholar 

  23. Curtet, R., and Ricou, F.P., 1964, On the tendency of self-preservation in axisymmetric ducted jets. J. Basic Eng., 777-787.

    Google Scholar 

  24. D’Angelo, E., Prandi, E., Tavola, M., Calderini, E., and Milic Emili, J., 1994, Chest wall interrupter resistance in anesthetized paralyzed human. J. Appl. Physiol., 77: 883–887.

    PubMed  Google Scholar 

  25. Dojat, M., Brochard, L., Lemaire, F., and Harf, A., 1992, A knowledge-based for assisted ventilation of patients in intensive care, Int. J. Clin. Monit. Comp., 9: 239–250.

    CAS  Google Scholar 

  26. Downs, J., Klein, E., Desautels, D., Modell, J., Kirby, R., 1973, Intermittent mandatory ventilation: a new approach to weaning patients from mechanical ventilators, Chest, 64: 331–335.

    CAS  PubMed  Google Scholar 

  27. Drazen, J.M., Loring, S.H., and Ingram, R.H., Jr, 1976, Localisation of airway constriction using gases of varying density and viscosity, J. Appl. Physiol., 41: 396–399.

    CAS  PubMed  Google Scholar 

  28. Fiastro, J.F., Habib, M.P., and Quan, S.F., 1988, Pressure support compensation for inspiratory work due to endotracheal tubes and demand continuous positive airway pressure, Chest, 93: 499–505.

    CAS  PubMed  Google Scholar 

  29. Foglio, C. Vittaca, M., Quadri, A., Scalvini, S., Marangoni, S., and Ambrosino, N., 1992, Acute exacerbations in severe COLD patients. Treatment using positive pressure ventilation by nasal mask, Chest, 101: 533–538.

    Google Scholar 

  30. Frank, N.R., Mead, J., and Whittenberger, J.L., 1971, Comparative sensitivity of four methods for measuring changes in respiratory flow resistance in man, J. Appl. Physiol., 31: 934–938.

    CAS  PubMed  Google Scholar 

  31. Fredberg, J.J., Glass, G.M., Boyton, B.R., and Frantz I.D. III, 1987, Factors influencing mechanical performance of neonatal high-frequency ventilators, J. Appl. Physiol., 62: 2485–2490.

    CAS  PubMed  Google Scholar 

  32. Fredberg, J.J., Keefe, D.H., Glass, G.M., Castile, R.G., and Frantz III, I.D., 1984, Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation, J. Appl. Physiol., 57: 788–800.

    CAS  PubMed  Google Scholar 

  33. Fredberg, J.J., and Stamenovic, D., 1989, On the imperfect elacticity of lung tissue, J. Appl. Physiol., 67: 2408–2419.

    CAS  PubMed  Google Scholar 

  34. Froese, A.B., and Bryan, A.C., 1974, Effects of anesthesia and paralysis on diaphragmatic mechanics in man, Anesthesiology, 41: 242–255.

    CAS  PubMed  Google Scholar 

  35. Gavriely, N., Solway, J., Loring, S.H., Butler, J.P., Slustky, A.S., and Drazen, J.M., 1985, Pressure-flow relationships of endotracheal tubes during high-frequency ventilation, J. Appl. Physiol. 59: 3–11.

    CAS  PubMed  Google Scholar 

  36. Gottfried, S.B., Rossi, A., Higgs, B.D., Calverley, P.M.A., Zocchi, L., Bozic, C., and Milic Emili, J., 1985, Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am. Rev. Respir. Dis., 131: 414–420.

    CAS  PubMed  Google Scholar 

  37. Hildebrandt, J., 1970, Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model, J. Appl. Physiol., 27: 365–372.

    Google Scholar 

  38. Hoppin, F.G., Stothert, J.C., Greaves, I.A., Lai, Y.L., Hildebrandt, J., 1986, Lung recoil: elastic and rheological properties, In: Handbook of Physiology. The Respiratory System (Section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Soc. iety, Bethesda, p. 195–215.

    Google Scholar 

  39. Hill, P.G., 1967, Incompressible jet mixing in convergent-divergent axisymmetric ducts, J. Basic Eng., 89: 210–220.

    CAS  Google Scholar 

  40. Hill, B.J., 1973, Two-dimensional analysis of flow in jet pumps, J. Hydraul. Division,: 1009-1026.

    Google Scholar 

  41. Ingram, I., Jr., and Pedley, T.J., 1986, Pressure-flow relationships in the lungs, In: Handbook of Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Soc. iety, Bethesda, p. 277-293.

    Google Scholar 

  42. Iotti, G., Brochard, L., and Lemaire, F., 1992, Mechanical ventilation and weaning. In: Care of the critically ill patient (2nd ed.), Tinker, J. and Zapol, W.M., Springer-Verlag, London, chapt. 29, p. 457-477.

    Google Scholar 

  43. Isabey, D., 1982, Steady and pulsatile flow distribution in a multiple branching network with physiological applications, J. Biomech. 15: 395–404.

    CAS  PubMed  Google Scholar 

  44. Isabey, D., Boussignac, G., and Harf, A., 1989, Effect of air entrainment on airway pressure during endotracheal gas injection, J. Appl. Physiol., 67: 771–779.

    CAS  PubMed  Google Scholar 

  45. Isabey, D., and Chang, H.K., 1981, Steady and unsteady pressure-flow relationships in central airways, J. Appl. Physiol., 51: 1348–1388.

    Google Scholar 

  46. Isabey, D., and Harf, A., 1995, Basic physical principles for ventilators and ventilatory modes. In: Acute Respiratory Failure in Chronic Obstructive Pulmonary Disease, Derenne, J.P., Marcel Dekker Inc., New York.

    Google Scholar 

  47. Isabey, D., Chang, H.K., Delpuech, C., Harf, A., and Hatzfeld, C., 1993, Dependence of central airway resistance on frequency and tidal volume: a model study, J. Appl. Physiol., 61: 113–126.

    Google Scholar 

  48. Isabey, D., Harf, A., Chang, H.K., 1985, Pressure change and gas mixing induced by oscillations in a closed system, J. Biomech. Eng., 107: 68–76.

    CAS  PubMed  Google Scholar 

  49. Isabey, D., and Piquet, J., 1989, The ventilatory effect of external oscillation, Acta Anaesthesiol. Scand., 90: 87–92.

    CAS  Google Scholar 

  50. Jaffrin, M.Y., and Kesic, P., 1974, Airway resistance: a fluid mechanical approach, J. Appl. Physiol., 36: 354–361.

    CAS  PubMed  Google Scholar 

  51. Jan, D.L., Shapiro, A.H., and Kamm, R.D., 1989, Some feature of oscillatory flow in a model bifurcation, J. Appl. Physiol., 67: 147–159.

    CAS  PubMed  Google Scholar 

  52. Jonson, B., Beydon, L., Brauer, K., Mansson, C., Valind, S., and Grytzell, H., 1993, Mechanics of respiratory system in healthy anesthetized humans with emphasis on viscoelastic properties, J. Appl. Physiol., 75: 132–140.

    CAS  PubMed  Google Scholar 

  53. Kacmarek, R., 1988, The role of pressure support ventilation in reducing work of breathing, Respir Care, 33: 99–120.

    Google Scholar 

  54. Kacmarek, R., and Hickling, K.G., 1993, Permissive Hypercapnia, Respir. Care, 38: 373–387.

    Google Scholar 

  55. Kamm, R.D., Slutsky, A.S., Drazen, J.M., 1984, High-frequency ventilation. C.R.C. Crit. Rev. Biomed. Eng, 9: 347–379.

    CAS  Google Scholar 

  56. Khoo, M.C.K., Slutsky, A.S., Drazen, J.M., Solway, J., Gavriely, N., and Kamm, R.D., 1984, Gas mixing during high-frequency ventilation: an improved model, J. Appl. Physiol., 57: 493–506.

    CAS  PubMed  Google Scholar 

  57. Lemaire, F., 1986, La ventilation artificielle, Masson, Paris.

    Google Scholar 

  58. Ligas, J.R., 1990, Lung tissue mechanics: historical overview, in: Respiratory Biomechanics, Eipstein, M.A.F., and Ligas, J.R., Springer-Verlag, New-York, p. 3–18.

    Google Scholar 

  59. Lofaso, F., Isabey, D., Lorino, H., Harf, A., and Scheid, P., 1992, Respiratory response to positive and negative inspiratory pressure in humans, Respir. Physiol., 89: 75–88.

    CAS  PubMed  Google Scholar 

  60. Lofaso, F., Louis, B., Brochard, L., Harf, A., and Isabey, D., 1992, Use of Blasius resistance formula to estimate the effective diameter of endotracheal tubes, Am. Rev. Respir. Dis. 146: 974–979.

    CAS  PubMed  Google Scholar 

  61. Lorino, A.M., and Harf, A., 1991, Measurement of respiratory elastance and resistance in mechanically ventilated patients. In: Adult respiratory distress syndrome, Zapol, W.M. and Lemaire, F., Marcel Dekker Inc., New York.

    Google Scholar 

  62. Lorino, A.M., and Harf, A., 1993, Techniques for measuring respiratory mechanics: an analytic approach with a viscoelastic model, J. Appl. Physiol., 74: 2373–2379.

    CAS  PubMed  Google Scholar 

  63. Louis, B., Glass, G., and Fredberg, J.J., 1994. Pulmonary airway area by the two-microphone acoustic reflection method, J. Appl. Physiol., 76: 2234–2240.

    CAS  PubMed  Google Scholar 

  64. Louis, B. and Isabey, D., 1993, Interaction of oscillatory and steady turbulent flows in airway tubes during impedance measurement, J. Appl. Physiol., 74: 116–125.

    CAS  PubMed  Google Scholar 

  65. Ludwig, M.S., Dreshaj, I., Solway, A. Munoz, A., and Ingram, R.H. Jr, 1987, Partitioning of pulmonary resistance during constriction in the dog: effects of volume history, J. Appl. Physiol., 62: 807–815.

    CAS  PubMed  Google Scholar 

  66. Macklem, P., and Mead, J., 1967, Resistance of central and peripheral airways measured by a retrogade catheter, J. Appl. Physiol., 22: 395–401.

    CAS  PubMed  Google Scholar 

  67. McIntyre, N.R., 1986, Respiratory function during pressure support ventilation. Chest, 89: 677–683.

    Google Scholar 

  68. Marini, J.J., 1990, Strategies to minimize breathing effort during mechanical ventilation. In: Mechanical ventilation — Critical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p. 635–661.

    Google Scholar 

  69. Marini, J.J., Capps J.S., Culver, B.H., 1985, The inspiratory work of breathing during assisted mechanical ventilation, Chest, 87: 612–618.

    CAS  PubMed  Google Scholar 

  70. Mead, J., 1961, Mechanical properties of the lungs, Physiol. Rev., 41: 281–330.

    CAS  PubMed  Google Scholar 

  71. Meduri, G.U., Conoscenti, C.C., Menashe, P., and, Nair, S., 1989, Non invasive face mask ventilation in patients with acute respiratory failure, Chest, 95: 865–870.

    CAS  PubMed  Google Scholar 

  72. Mörch, E.T., 1985, History of mechanical ventilation. In: Clinical Applications of Ventilatory Support, Kirby, R.B., Churchill Livingstone, New York, chapt. 1, p. 1–61.

    Google Scholar 

  73. Mushin, W.W., Rendell-Baker, L., Thompson P.W., Mapleson, W.W., and Hillard, E.K., 1980, Automatic ventilation of the lungs (3rd ed.), Blackwell Scientific Publications, Oxford, p. 62–131.

    Google Scholar 

  74. Nahum, A., Sznajder, J.I., Solway, J., Wood, L.D.H., and Schumater, P.T., 1988, Pressure, flow, and density relationships in airway models during constant-flow ventilation, J. Appl. Physiol., 64: 2066–2073.

    CAS  PubMed  Google Scholar 

  75. Navajas, D., Färre, R., Rotger, M., and Canet, J., 1989, Recording pressure at the distal end of the endotracheal tube to measure respiratory impedance, Eur. Respir J., 2: 178–184.

    CAS  PubMed  Google Scholar 

  76. Ninane, V., Rypens, F., Yernault, J.C., and De Troyer, A., 1992, Abdominal muscle use during breathing in patients with chronic airflow obstruction, Am. Rev. Respir. Dis., 146: 16–21.

    CAS  PubMed  Google Scholar 

  77. Otis, A.B., 1964, Quantitative relationships in steady-state gas exchange, In: Handbook of Physiology. Respiration (section 3, vol. I), Fenn, W.O., and Rahn. H., American Physiological Society, Washington, p. 681–698.

    Google Scholar 

  78. Otis, A.B., McKerrow, C.B., Bartlett, R.A., Mead, J., Mcllroy, M.B., Selverstone, N.J., and Radford, E.P., Jr., 1956, Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol., 8: 427–443.

    CAS  PubMed  Google Scholar 

  79. Pedley, T.J., Drazen, J.M., 1986, Aerodynamic theory. In: Handbook oj Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society Bethesda, p. 41–54.

    Google Scholar 

  80. Pedley, T.J., Schröter, R.C., and Sudlow, M.F., 1971. Flow and pressure drop in systems of repeatedly branching tubes, J. Fluid Mech., 46: 365–383.

    Google Scholar 

  81. Permuti, S., Mitzner, W., and Weinmann, G., 1985, Model of gas transport during high-frequency ventilation, J. Appl. Physiol., 58: 1956–1970.

    Google Scholar 

  82. Peslin, R.L., 1969, The physical properties of ventilators in the inspiratory phase. Anesthesiology, 30: 315–324.

    CAS  PubMed  Google Scholar 

  83. Peslin, R., and Fredberg, J.J., 1986, Oscillation mechanics, In: Handbook of Physiology. The Respiratory System (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society, Bethesda, p. 277–293.

    Google Scholar 

  84. Petty, T.L., 1990, A historical perspective of mechanical ventilation. In: Mechanical ventilation — Critical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p.489–504.

    Google Scholar 

  85. Pimmel, R.L., Tsai, M.J., Winter, D.C., and Bromberg, P.A., 1978, Estimating central and peripheral respiratory resistance, J. Appl. Physiol., 45: 375–380.

    CAS  PubMed  Google Scholar 

  86. Piquet, J., Brochard, L., Isabey, D., De Cremoux, H., Chang, H.K., Bignon, J., and Harf, A., 1987, High frequency chest wall oscillation in patients with chronic air-flow obstruction. Am. Rev. Respir. Dis., 136: 1355–1359.

    CAS  PubMed  Google Scholar 

  87. Piquet, J., Isabey, D., Chang, H.K., and Harf, A., 1985, Stable normocapnia during High frequency body surface oscillation in rabbits, Am. Rev. Respir. Dis., 132: 104–108.

    CAS  PubMed  Google Scholar 

  88. Rajaratnam, N., 1976, Developments in water science. Turbulent jets. Amsterdam: elsevier scientific publishing company.

    Google Scholar 

  89. Rehder, K. and Marsh, M.H., 1986, Respiratory mechanics during anesthesia and mechanical ventilation. In: Handbook of Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society, Bethesda, p. 737–752.

    Google Scholar 

  90. Rodarte, J.R., Rehder, K., 1986, Dynamics of respiration. In: Handbook of Physiology. Respiration (section 3, vol. III), Macklem, P.T., and Mead, J., American Physiological Society, Bethesda, p. 131–144.

    Google Scholar 

  91. Rohrer, F., 1915, Der Strömungswiderstand in den menschlichen atemwegen und der einfluss der unregelmässigen Verzweigung des bronchialsystems auf den atmungsverlauf verschiedenen lungenbezirken, Pfluegers Arch. Gesamte Physiol. Menschen Tiere, 162: 225–229.

    Google Scholar 

  92. Rossi, A., Gottfried, Higgs, B.D., B., Zocchi, L., Grassino, A., and Milic-Emili, J.,1985, Respiratory mechanics in mechanically ventilated patients with respiratory failure, J. Appl. Physiol., 58:1849–1858.

    CAS  PubMed  Google Scholar 

  93. Rossi, A., Gottfried, B., Zocchi, L., Higgs, B.D., Lennox, S., Calverley, P.M.A., Begin, P., Grassino, A., and Milic-Emili, J., 1985, Measurement of static compliance of the respiratory system in patients with acute respiratory failure during mechanical ventilation, Am. Rev. Respir. Dis., 131:672–677.

    CAS  PubMed  Google Scholar 

  94. Rossing, T., Slutsky, A.S., Lehr, J., Drinker, P.A., Kamm, R.G., and Drazen, J.M., 1981, Tidal volume and frequency dependence of carbon dioxyde elimination by high-frequency ventilation, N. Engl. J. Med., 305: 1375–1379.

    CAS  PubMed  Google Scholar 

  95. Rossing, T.H., Solway, J., Saari, A.F., Gavriely, N., Slutsky, A.S., Lehr, J.L., and Drazen, J.M., 1984, Influence of the endotracheal tube on CO2 transport during high-frequency ventilation, Am. Rev. Respir. Dis., 129: 54–57.

    CAS  PubMed  Google Scholar 

  96. Rouby, J.J., Simmoneau, G., and Benhamou, D., Sartene, R., Sardnal, F., Deriaz, H., Duroux, P., and Viars, P., 1985, Factors influencing pulmonary volumes and CO2 elimination by high-frequency jet ventilation, Anesthesiology, 63: 473–482.

    CAS  PubMed  Google Scholar 

  97. Sassoon, C.S.H., Giron, A.E., Ely, E.A., and Light, R.W., 1989, Inspiratory work of breathing on flow-by and demand-flow continous positive airway pressure, Crit. Care Med., 17:1108–1114.

    CAS  PubMed  Google Scholar 

  98. Sassoon, C.S.H., Kees Mahutte, C., and Light, R.W., 1990, Ventilator Modes: old and new. In: Mechanical ventilation — Critical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p. 605–634.

    Google Scholar 

  99. Scacci, R.P., 1979, Air entrainment masks: Jet mixing is how they work; the Bernoulli and Venturi principles are how they don’t, Respir. Care, 24: 928–931.

    Google Scholar 

  100. Scherer, P.W., Haselton, F.R., Seybert, J.R., 1984, Gas transport in branched airways during high-frequency ventilation, Ann. Biomed. Eng. 12: 385–405.

    CAS  PubMed  Google Scholar 

  101. Scheid, P., Lofaso, F., Isabey, D., and Harf, A., 1994, Respiratory response to inhaled CO2 during positive inspiratory pressure in humans, J. Appl. Physiol., 77: 876–882.

    CAS  PubMed  Google Scholar 

  102. Schroter, R.C., and Sudlow, M.F., 1969, Flow patterns in models of the human bronchial airways, Respir. Physiol., 7: 341–355.

    CAS  PubMed  Google Scholar 

  103. Shabtai, Y., and Gavriely, N., 1989, Frequency and amplitude effects during high-frequency vibration ventilation in dogs, J. Appl. Physiol., 66: 1127–1135.

    CAS  PubMed  Google Scholar 

  104. Slutsky, A.S., Berdine, G.B., and Drazen, J.M., 1980, Steady flow in a model of human central airways, J. Appl. Physiol., 49: 417–423.

    CAS  PubMed  Google Scholar 

  105. Snyder, B., Dantzker, D.R., and Jaeger, M., 1981, Flow partitioning in symmetric cascades of branches, J. Appl. Physiol., 51: 598–606.

    CAS  PubMed  Google Scholar 

  106. Solway, J., Rossing, T.H., Saari, A.F., and Drazen, J.M., 1986, Expiratory flow limitation and dynamic pulmonary hyperinflation during high-frequency ventilation, J. Appl. Physiol., 60: 2071–2078.

    CAS  PubMed  Google Scholar 

  107. Spearman, C.B., and Sanders, H.G., Jr., 1985, Physical principles and functional designs of ventilators. In: Clinical Applications of Ventilatory Support, Kirby, R.B., Churchill Livingstone, New York, chapt. 2, p.63–104.

    Google Scholar 

  108. Suter, P.M., 1992, Complications of mechanical ventilation. In: Care of the critically ill patient (2nd ed.), Tinker, J. and Zapol, W.M., Springer-Verlag, London, chapt. 30, p. 478–489.

    Google Scholar 

  109. The HIFI Study Group, 1989, High-Frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants, New Engl. J. Med., 320: 88–93.

    Google Scholar 

  110. Thiriet, M., Graham, J.M.R., and Issa, R.I., 1992, A pulsatile developing flow in a bend, J. Phys. III, 2: 995–1013.

    CAS  Google Scholar 

  111. Van Surell, C., Louis, B., Lofaso, F., Beydon, L., Brochard, L., Harf, A., Fredberg, J.J., and Isabey, D., 1994, Acoustic method to estimate the longitudinal area profile of endotracheal tubes, Am. J. Respir. Crit. Care Med., 149:28–33.

    PubMed  Google Scholar 

  112. Venegas, J.G., Hales, C.A., and Strieder, D.J., 1986, A general dimensionless equation of gas transport by high-frequency ventilation, J. Appl. Physiol., 60: 1025–1030.

    CAS  PubMed  Google Scholar 

  113. Villar, J., Winston, B., and Slutsky, A.S., 1990, Non-conventional techniques of ventilatory support. In: Mechanical ventilationCritical care clinics, Tobin, M.J., W.B. Saunders Company, Philadelphia, vol.6, n°3, p. 579–603.

    Google Scholar 

  114. Weinmann, G.G., Mitzner, W., and Permuti, S., 1984, Physiological dead space during high-frequency ventilation in dogs, J. Appl. Physiol., 57: 881–887.

    CAS  PubMed  Google Scholar 

  115. West, J.B., 1979, Respiratory Physiology, The essentials (2nd ed.). The Williams and Wilkins company, Baltimore.

    Google Scholar 

  116. Wright, P.E., Marini, J.J., and Bernard, G.G., 1989, In vitro versus in vivo comparison of endotracheal tube airflow resistance, Am. Rev. Respir. Dis., 140: 10–16.

    CAS  PubMed  Google Scholar 

  117. Yamada, Y., Venegas, J.G., Strieder, D.J., and Hales, C.A., 1986, Effects of mean airway pressure on gas transport during high-frequency ventilation in dogs, J. Appl. Physiol., 61:1896–1902.

    CAS  PubMed  Google Scholar 

  118. Younes, M., 1992, Proportional assist ventilation, a new approach to ventilatory support. Am. Rev. Respir. Dis., 145:114–120.

    CAS  PubMed  Google Scholar 

  119. Zin, W.A., Rossi, A., and Milic Emili, J., 1983, Model analysis of respiratory responses to inspiratory resistive loads, 55: 1565–1573.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Isabey, D., Brochard, L., Harf, A. (1995). Respiratory Mechanics and New Concepts in Mechanical Ventilation. In: Jaffrin, M.Y., Caro, C.G. (eds) Biological Flows. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9471-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9471-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9473-1

  • Online ISBN: 978-1-4757-9471-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics