Simulation of Forced Breathing Maneuvers

  • James J. Shin
  • David Elad
  • Roger D. Kamm

Abstract

Numerous theoretical and computational models have been developed over the years for the purpose of simulating pulmonary air flow in circumstances ranging from normal breathing [21, 29, 49, 50, 51] to forced expiration [8, 10, 11, 12, 14, 36, 40, 59] to high frequency oscillation [15, 27] (see 20, 52, 53, and 65 for recent reviews). These models were typically based on airway geometry as determined by one of several available morphometric descriptions [23, 24, 62], and model the problem of a complex, three-dimensional flow through a compliant network using various simplifications. As the years have progressed, the models have become less restrictive, but still rely upon considerable idealizations.

Keywords

Chronic Obstructive Pulmonary Disease Lung Volume Small Airway Transmural Pressure Airway Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agostoni, E., and Hyatt, R. E., 1986, Static behavior of the respiratory system. In: Handbook of Physiology. The respiratory system. Mechanics of Breathing. Bethesda, MD: Am. Physiol. Soc., sect. 3, vol. III, pt. 1, chapt. 7, p. 113-130.Google Scholar
  2. 2.
    Aljuri, N., Freitag, L., and Venegas, J., 1994, Non-linear dynamic properties of excised human tracheas, Am. J. Respirat. Crit. Care Med. 149:A74.Google Scholar
  3. 3.
    Bertram, C. D., Raymond, C. J., and Pedley, T. J., 1991, Application of nonlinear dynamics concepts to the analysis of self-excited oscillations of a collapsible tube conveying a fluid, J. Fluids and Structures 5:391–426.CrossRefGoogle Scholar
  4. 4.
    Bonis, M., and Ribreau, C., 1977, Pressure-flow relationships in collapsible tubes, Cardiovas. Pulmon. Dyn. 92:459–466.Google Scholar
  5. 5.
    Castile, R. G., Hyatt, R. E., and Rodarte, J. R., 1980, Determinants of maximal expiratory flow and density dependence in normal humans, J. Appl. Physiol. 49:897–904.PubMedGoogle Scholar
  6. 6.
    Collins, J. M., Shapiro, A. H., Kimmel, E., and Kamm, R. D., 1993, The steady expiratory pressure-flow relation in a model pulmonary bifurcation, J. Biomech. Eng. 115:299–305.PubMedCrossRefGoogle Scholar
  7. 7.
    Dawson, S. V., and Elliott, E. A., 1977, Wave-speed limitation on expiratory flow—a unifying concept, J. Appl. Physiol. 43:498–515.PubMedGoogle Scholar
  8. 8.
    Elad, D., Kamm, R. D., and Shapiro, A. H., 1987, Choking phenomena in a lung-like model, Trans. ASME J. Biomed. Eng. 109:1–9.CrossRefGoogle Scholar
  9. 9.
    Elad, D., Kamm, R. D., and Shapiro, A. H., 1988, Tube law for the intrapulmonary airway, J. Appl. Physiol. 65:7–13.PubMedGoogle Scholar
  10. 10.
    Elad, D., Kamm, R. D., and Shapiro, A. H., 1988, Mathematical simulation of forced expiration, J. Appl. Physiol. 65:14–25.PubMedGoogle Scholar
  11. 11.
    Elad, D., Kamm, R. D., and Shapiro, A. H., 1989, Steady compressible flow in collapsible tubes: application to forced expiration, J. Fluid Mech. 203:401–418.CrossRefGoogle Scholar
  12. 12.
    Elad, D., and Kamm, R. D., 1989, Parametric evaluation of forced expiration using a numerical model, J. Appl. Physiol. 11:192–199.Google Scholar
  13. 13.
    Elad, D., and Einav, S., 1989, Simulation of airway closure during forced vital capacity, Annals of Biomed. Eng. 17:617–631.CrossRefGoogle Scholar
  14. 14.
    Elad, D., and Kamm, R. D., 1991, Modeling a forced expiration. Comments Theor. Biol. 2: 239–260.Google Scholar
  15. 15.
    Fredberg, J. J., and Hoenig, A., 1978, Mechanical response of the lungs at high frequencies, Trans. ASME J. Biomech. Eng. 100:57–66.CrossRefGoogle Scholar
  16. 16.
    Fredberg, J. J., Ingram, R. H., Castile, R. G., Glass, G. M., and Drazen, J. M., 1985, Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules, J. Appl. Physiol. 58:1914–1922.PubMedGoogle Scholar
  17. 17.
    Fredberg, J. J., Topulos, G. R, Nielan, G. J., and Glass, G. M., 1988, Inter-regional alveolar pressure differences are limited during forced deflation. FASEB Journal, 2:A1699.Google Scholar
  18. 18.
    Gavriely, N., Kelly, K. B., Grotberg, J. B., and Loring, S. H., 1987, Forced expiratory wheezes are a manifestation of airway flow limitation, J. Appl. Physiol. 62(6):2398–2403.PubMedGoogle Scholar
  19. 19.
    Gavriely, N., Shee, T. R., Cugell, D. W., and Grotberg, J. B., 1989, Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes, J. Appl. Physiol. 66(5):2251–2261.PubMedGoogle Scholar
  20. 20.
    Grotberg, J. B., 1994, Pulmonary flow and transport phenomena, Ann. Rev. Fluid Mech. 26:529–571.CrossRefGoogle Scholar
  21. 21.
    Hardin, J. C., Yu, J. C., Patterson, J. L., and Trible, W., Jr., 1980, The pressure/flow relation in bronchial airways on expiration, In Biofluid Mechanics, edited by Schneck, D. J., Plenum Press, New York.Google Scholar
  22. 22.
    Halpern, D., and Grotberg, J. B., 1992, Fluid-elastic instabilities of liquid-lined flexible tubes, J. Fluid Mech. 244:615–632.CrossRefGoogle Scholar
  23. 23.
    Horsfield, K., and Cumming, G., 1976, Morphology of the bronchial tree in the dog, Respir. Physiol. 26:173–182.PubMedCrossRefGoogle Scholar
  24. 24.
    Horsfield, K., 1986, Morphometry of Airways. In: Handbook of Physiology. The respiratory system. Mechanics of Breathing. Bethesda, MD: Am. Physiol. Soc., sect. 3, vol. III, pt. 1, chapt. 7, p. 75-88.Google Scholar
  25. 25.
    Hyatt, R. E., and Flath, R. E., 1966, Relationship of air flow to pressure during maximal respiratory effort in man, J. Appl. Physiol. 21:477–482.PubMedGoogle Scholar
  26. 26.
    Hyatt, R. E., Wilson, T. A., and Bar-Yishay, E., 1980, Prediction of maximal expiratory flow in excised human lungs, J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48:991–998.Google Scholar
  27. 27.
    Jackson, A. C., Butler, J. P., Millet, E. J., Hoppin, F. G., Jr., and Dawson, S. V., 1977, Airway geometry by analysis of acoustic pulse response measurements, J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43:523–536.Google Scholar
  28. 28.
    Jaeger, M. J., and Matthys, H., 1989, The pattern of flow in the upper human airways, Respir. Physiol. 67:147–159.Google Scholar
  29. 29.
    Jaffrin, M. Y, and Kesic, P., 1974, Airway resistance: a fluid mechanical approach, J. Appl. Physiol. 36(3):354–361.PubMedGoogle Scholar
  30. 30.
    James, A. L., Pare, P. D., and Hogg, J. C, 1988, Effects of lung volume, bronchoconstriction, and cigarette smoke on morphometric airway dimensions. J. Appl Physiol. 64(3):913–919.PubMedGoogle Scholar
  31. 31.
    Jan, D. L., Shapiro, A. H., and Kamm, R. D., 1989, Some features of oscillatory flow in a model bifurcation, J. Appl. Physiol. 67:147–159.PubMedGoogle Scholar
  32. 32.
    Johnson, M., Kamm, R. D., Ho, L. W., Shapiro, A. H., and Pedley, T. J., 1991, The nonlinear growth of surface-tension-driven instabilities of a thin annular film, J. Fluid Mech. 233:141–156.CrossRefGoogle Scholar
  33. 33.
    Kamm, R. D., Patel, N., and Elad, D., 1993, On the effect of flow-induced flutter on flow rate during a forced vital capacity maneuver, FASEB Journal 7 3:53.Google Scholar
  34. 34.
    Kececioglu, I., McClurken, M. D., Kamm, R. D., and Shapiro, A. H., 1981, Steady, supercritical flow in collapsible tubes. Part 1. Experimental observations, J. Fluid Mech. 109:367–389.CrossRefGoogle Scholar
  35. 35.
    Kimmel, E., Kamm, R. D., and Shapiro, A. H., 1988, Numerical solutions for steady and unsteady flow in a model of the pulmonary airways, Trans ASME J. Biomech. Eng. 110:292–299.CrossRefGoogle Scholar
  36. 36.
    Lambert, R. K., Wilson, T. A., Hyatt, R. E., and Rodarte, J. R., 1982, A computational model for expiratory flow, J. Appl. Physiol. 52:44–56.PubMedGoogle Scholar
  37. 37.
    Lambert, R. K., 1984, Sensitivity and specificity of the computational model for maximal expiratory flow, J. Appl. Physiol. 57:958–970.PubMedGoogle Scholar
  38. 38.
    Lambert, R. K., 1986, Analysis of bronchial mechanics and density dependence of maximal expiratory flow, J. Appl. Physiol. 61(1):38–49.Google Scholar
  39. 39.
    Lambert, R. K., 1987, Bronchial mechanical properties and maximal expiratory flows, J. Appl. Physiol. 62(6):2426–2435.PubMedGoogle Scholar
  40. 40.
    Lambert, R. K., 1989, A new computational model for expiratory flow from nonhomogeneous human lungs, Trans ASME J. Biomech. Eng. 111:200–211.CrossRefGoogle Scholar
  41. 41.
    Leith, D.E., Butler, J. P., Sneddon, S. L., and Brian, J. D., 1986, Cough. In: Handbook of Physiology. The respiratory system. Mechanics of Breathing. Bethesda, MD: Am. Physiol. Soc., sect. 3, vol. III, pt. 1, chapt. 7, p. 315-336.Google Scholar
  42. 42.
    Leith, D. E., and Mead, J., 1967, Mechanism determining residual volume of the lungs in normal subjects, J. Appl. Physiol. 23:221–226.PubMedGoogle Scholar
  43. 43.
    Martin, M. B., and Proctor, D. F., 1958, Pressure-volume measurements on dog bronchi, J. Appl Physiol. 13:337–343.PubMedGoogle Scholar
  44. 44.
    Mead, J., 1978, Analysis of the configuration of maximum expiratory flow-volume curves, J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44(2): 156–165.Google Scholar
  45. 45.
    Mead, J., 1980, Expiratory flow limitation: a physiologist’s point of view. Federation Proc. 39:2771–2775.Google Scholar
  46. 46.
    Oates, G. C., 1975, Fluid flow in soft walled tubes. Part 1. Steady flow, Med. Biol. Eng. Comp. 13:773–778.CrossRefGoogle Scholar
  47. 47.
    Pederson, O. F., Lyager, S., and Ingram, R. H., Jr., 1985, Airway dynamics in transition between peak and maximal expiratory flow, J. Appl. Physiol. 59(6): 1733–1746.Google Scholar
  48. 48.
    Pedersen, O. F., and Nielsen, T. M., 1977, The compliance curve for the flow limiting segments of the airway, Acta Physiol. Scand. 100:139–153.PubMedCrossRefGoogle Scholar
  49. 49.
    Pedley, T. J., Schroter, R. C., and Sudlow, M. F., 1970a, Energy losses and pressure drop in models of human airways, Respir. Physiol. 9:371–386.PubMedCrossRefGoogle Scholar
  50. 50.
    Pedley, T. J., Schroter, R. C., and Sudlow, M. F., 1970b, The prediction of pressure drop and variation of resistance within the human bronchial airways, Respir. Physiol. 9:387–405.PubMedCrossRefGoogle Scholar
  51. 51.
    Pedley, T. J., Schroter, R. C., and Sudlow, M. F., 1977, Gas flow and mixing in the airways. In: Bioengineering Aspects of the Lung. J. B. West, ed. Marcel Dekker: New York, p. 163–265.Google Scholar
  52. 52.
    Pedley, T. J., and Kamm, R. D., 1991, Dynamics of gas flow and pressure-flow relationships. In: The Lung: Scientific Foundations. R. G. Crystal and J. B. West, eds. Raven: New York, p. 995–1010.Google Scholar
  53. 53.
    Peslin, R., and Fredberg, J. J., 1986, Oscillation mechanics of the respiratory system. In: Handbook of Physiology. The respiratory system. Mechanics of Breathing. Bethesda, MD: Am. Physiol. Soc., sect. 3, vol. III, pt. 1, chapt. 11, p. 145-177.Google Scholar
  54. 54.
    Rodarte, J. R., and Rehder, K., 1986, Dynamics of respiration. In: Handbook of Physiology. The respiratory system. Mechanics of Breathing. Bethesda, MD: Am. Physiol. Soc., sect. 3, vol. III, pt. 1, chapt. 10, p. 131-144.Google Scholar
  55. 55.
    Shapiro, A. H., 1977, Steady flow in collapsible tubes, J. Biomech. Eng. 99:126–147.CrossRefGoogle Scholar
  56. 56.
    Staats, B. A., Wilson, T. A., Lai-Fook, S. J., Rodarte, J. R., and Hyatt, R. E., 1980, Viscosity and density dependence during maximal flow in man, J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48(2): 313–319.Google Scholar
  57. 57.
    Stänescu, D. C., Pattijn, J., Clément, J., and Van De Woestijne, K. P., 1972, Glottis opening and airway resistance, J. Appl. Physiol. 32:460–466.PubMedGoogle Scholar
  58. 58.
    Takishima, T., Sasaki, H., and Sasaki, T., 1975, Influence of lung parenchymaai on collapsibility of dog bronchi, J. Appl. Physiol. 38:875–881.PubMedGoogle Scholar
  59. 59.
    Thiriet, M., Bonis, M., Adedjouma, A. S., and Yvon, J. P., 1989, A numerical model of expired flow in a monoalveolar lung model subjected to pressure ramps, Trans ASME J. Biomech. Eng. 111:9–16.CrossRefGoogle Scholar
  60. 60.
    Vincent, N. J., Knudson, R., Leith, D. E., Macklem, P. T., and Mead, J., 1970, Factors influencing pulmonary resistance, J. Appl. Physiol. 29:236–243.PubMedGoogle Scholar
  61. 61.
    Vincken, W. G., and Cosio, M. G., 1989, Flow oscillations on the flow-volume loop: clinical and physiological implications, Eur. Respir. J. 2:543–549.PubMedGoogle Scholar
  62. 62.
    Weibel, J. B., 1963, Morphology of the Lung, Academic Press, New York.Google Scholar
  63. 63.
    Wiggs, B. R., Moreno, R., Hogg, J. C., William, C, and Pare, P. D., 1990, A model of the mechanics of airway narrowing, J. Appl. Physiol. 69:849–860.PubMedGoogle Scholar
  64. 64.
    Wiggs, B. R., Bosken, C., Pare, P. D., James, A., and Hogg, J. C, 1992, A model of airway narrowing in asthma and in chronic obstructive pulmonary disease, Am. Rev. Respir. Dis. 145:1251–1258.PubMedCrossRefGoogle Scholar
  65. 65.
    Wilson, T. A., and Hyatt R. E., 1991, Forced expiration. In: The Lung: Scientific Foundations. R. G. Crystal and J. B. West, eds. Raven: New York, p. 1021–1030.Google Scholar
  66. 66.
    Womersley, J. R., 1955, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol. Lond. 127: 553–563.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Wood, L. D. H., Engel, L. A., Griffin, P., Despas, P., and Macklem, P. T., 1976, Effect of gas physical properties and flow on lower pulmonary resistance, J. Appl. Physiol. 41:234–244.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • James J. Shin
    • 1
  • David Elad
    • 2
  • Roger D. Kamm
    • 1
  1. 1.Fluid Mechanics Laboratory Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Biomedical Engineering Faculty of EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations