Mechanics of Intramural Blood Vessels of the Beating Heart

  • F. Kajiya
  • M. Goto
  • T. Yada
  • Y. Ogasawara
  • K. Tsujioka


The blood flow of the coronary circulation is unique in that it supplies blood to the myocardium which pumps blood into the systemic and pulmonary circulations. In 1628, Harvey (1) found that the heart is a pump which expels blood through two circulations in series and also that channels exist in the walls of the heart for its own nourishment (2). In 1695, Scaramucci (3), who is frequently called the father of coronary circulation, postulated that the deeper coronary vessels are squeezed empty by cardiac contraction and they are refilled from the aorta during diastole.


Blood Flow Velocity Coronary Blood Flow Coronary Artery Stenosis Blood Velocity Coronary Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harvey, W., 1628, Exercitatio Anatomica De Motu Cordis et Sanguinis in Animalibus, Fitzer, Frankfurt.Google Scholar
  2. 2.
    Butterfield, H., 1957, The origins of modern science 1300–1800, G. Bell and Sons Ltd, London.Google Scholar
  3. 3.
    Scaramucci, J., 1695, Theoremata familiaria viros eruditos consulentia de varris physico-medicis lucubrationibus juxta leges mecanicas. Apud Joannem Baptistam Bustum, pp 70-81.Google Scholar
  4. 4.
    Hoffman, J. I. E., 1987, A critical view of coronary reserve, Circulation 75(suppl I):I6–I11.PubMedGoogle Scholar
  5. 5.
    Marcus, M. L., 1983, Methods of measuring coronary blood flow, In: The coronary circulation in health and disease. New York, McGraw-Hill, Inc., p 25–61.Google Scholar
  6. 6.
    Marston, E. L, Barefoot, C. A, and Spencer, M. P., 1959, Non-cannulating measurements of coronary blood flow, Surg. Forum 10:636.Google Scholar
  7. 7.
    Kolin, A., Ross, G., Gaal, P., and Austin, S., 1964, Simultaneous electromagnetic measurement of blood flow in the major coronary arteries, Nature 203:148–150.PubMedCrossRefGoogle Scholar
  8. 8.
    Hartley, C. J, and Cole, J. S., 1974, An ultrasonic pulsed Doppler system for measuring blood flow in small vessels, J. Appl. Physiol. 37:626–629.PubMedGoogle Scholar
  9. 9.
    Chilian, W. M, and Marcus, M. L., 1982, Phasic coronary flow velocity in intramural and epicardial coronary arteries, Circ. Res. 50:775–781.PubMedCrossRefGoogle Scholar
  10. 10.
    Kajiya, F., Hoki N., Tomonaga, G., and Nishihara, H., 1981, A laser-Doppler-velocimeter using an optical fiber and its application to local velocity measurement in the coronary artery, Experientia 37:1171–1173.PubMedCrossRefGoogle Scholar
  11. 11.
    Kajiya, F., Ogasawara, Y., Tsujioka, K., Nakai, M., Goto, M., Wada, Y., Tadaoka, S., Matsuoka, S., Mito, K., and Fujiwara, T., 1986, Evaluation of human coronary blood flow with an 80 channel 20 MHz pulsed Doppler velocimeter and zero-cross and Fourier transform methods during cardiac surgery, Circulation 74(suppl III):III53–III60.PubMedGoogle Scholar
  12. 12.
    Wilson, R. F., Laughlin, D. E., Ackell, P. H., Chilian, W. M., Holida, M. D., Hartley, C. J., Armstrong, M. L., Marcus, M. L., and White, C. W., 1985, Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man, Circulation 72:82–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Canty, J. M. Jr., and Brooks, A., 1990, Phasic volumetric coronary venous outflow patterns in conscious dogs, Am. J. Physiol. 258:H1457–H1463.PubMedGoogle Scholar
  14. 14.
    Kajiya, F., Tsujioka, K., Goto, M., Wada, Y, Tadaoka, S., Nakai, M., Hiramatsu, O., Ogasawara, Y., Mito, K., Hoki, N., and Tomonaga, G., 1985, Evaluation of phasic blood flow velocity in the great cardiac vein by a laser Doppler method. Heart Vessels 1:16–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Kajiya, F., Tomonaga, G., Tsujioka, K., Ogasawara, Y., and Nishihara, H., 1985, Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method, J. Biomech. Eng. 107:10–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Kajiya, F., Tsujioka, K., Ogasawara, Y, Hiramatsu, O., Wada, Y., Goto, M., and Yanaka, M., 1989, Analysis of the characteristics of the flow velocity waveforms in left atrial small arteries and veins in the dog, Circ. Res. 65:1172–1181.PubMedCrossRefGoogle Scholar
  17. 17.
    Kajiya, F., Tsujioka, K., Ogasawara, Y., Wada, Y., Matsuoka, S., Kanazawa, S., Hiramatsu, O., Tadaoka, M., Goto, M., and Fujiwara, T., 1987, Analysis of flow characteristics in poststenotic regions of the human coronary artery during bypass graft surgery, Circulation 76:1092–1100.PubMedCrossRefGoogle Scholar
  18. 18.
    Fujiwara, T., Kajiya, F., Kanazawa, S., Matsuoka, S., Wada, Y, Hiramatsu, O., Kagiyama, M., Ogasawara, Y., Tsujioka, K., and Katsumura, T., 1989, Comparison of blood-flow-velocity waveforms in different coronary artery bypass grafts, Circulation 78:1210–1217.CrossRefGoogle Scholar
  19. 19.
    Hoffman, J. I. E., and Spaan, J. A. E., 1990, Pressure-flow relations in coronary circulation, Physiol. Rev. 70:331–390.PubMedGoogle Scholar
  20. 20.
    Kimura, A., Hiramatsu, O., Yamamoto, T., Ogasawara, Y., Yada, T., Goto, M., Tsujioka, K., and Kajiya, F., 1992, Effect of coronary stenosis on phasic pattern of septal artery in dogs, Am. J. Physiol. 262:H1690–H1698.PubMedGoogle Scholar
  21. 21.
    Goto, M., Flynn, A. E., Doucette, J. W., Kimura, A., Hiramatsu, O., Yamamoto, T., Ogasawara, Y., Tsujioka, K., Hoffman, J. I. E., and Kajiya, F., 1992, Effect of intracoronary nitroglycerin administration on phasic pattern and transmural distribution of flow during coronary artery stenosis, Circulation 85:2296–2304.PubMedCrossRefGoogle Scholar
  22. 22.
    Ashikawa, K., Kanatsuka, H., Suzuki, T., and Takishima, T., 1986, Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle, Circ. Res. 59:704–711.PubMedCrossRefGoogle Scholar
  23. 23.
    Kanatsuka, H., Lamping, K. G., Eastham, C. L., Dellsperger, K. C., and Marcus, M. L., 1989, Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance, Circ. Res. 65:1296–1305.PubMedCrossRefGoogle Scholar
  24. 24.
    Nellis, S. H., and Whitesell, L., 1989, Phasic pressures and diameters in small epicardial veins of the unrestrained heart, Am. J. Physiol. 257:H1056–H1061.PubMedGoogle Scholar
  25. 25.
    Yada, T., Hiramatsu, O., Kimura, A., Goto, M., Ogasawara, Y., Tsujioka, K., Yamamori, S., Ohno, K., Hosaka, H., and Kajiya, F., 1993, In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera, Circ. Res. 72:939–946.PubMedCrossRefGoogle Scholar
  26. 26.
    Griffith, T. M., and Edwards, D. H., 1990, Myogenic autoregulation of flow may be inversely related to endothelium-derived relaxing factor activity, Am. J. Physiol. 258:H1171–H1180.PubMedGoogle Scholar
  27. 27.
    Kuo, L., Chilian, W. M., and Davis, M. J., 1990, Coronary arteriolar myogenic response is independent of endothelium, Circ. Res. 66:860–866.PubMedCrossRefGoogle Scholar
  28. 28.
    Koller, A., and Kaley, G., 1991, Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation, Am. J. Physiol. 260:H862–H868.PubMedGoogle Scholar
  29. 29.
    Moncada, S., Palmer, R. M. J., and Higgs, E. A., 1991, Nitric oxide: physiology, pathophysiology and pharmacology, Pharmacol. Rev. 43:109–142.PubMedGoogle Scholar
  30. 30.
    Pohl, U., Busse, R., Kuon, E., and Bassenge, E., 1986, Pulsatile perfusion stimulates the release of endothelial autacoids, J. Appl. Cardiol. 1:215–235.Google Scholar
  31. 31.
    Rubanyi, G. M., Romero, J. C., and Vanhoutte, P. M., 1986, Flow-induced release of endothelium-derived relaxing factor, Am. J. Physiol. 250:H1145–H1149.PubMedGoogle Scholar
  32. 32.
    Hutcheson, I. R., and Griffith, T. M., 1991, Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow, Am. J. Physiol. 261:H257–H262.PubMedGoogle Scholar
  33. 33.
    Yada, T., Hiramatsu, O., Tachibana, H., Matsumoto, T., Toyota, E., Goto, M., Ogasawara, Y., Tsujioka, K., and Kajiya, F., 1994, Subendocardial arteriole has larger vasodilatory capacity and systolic-to-diastolic pulsation amplitude than subepicardial arteriole, Circulation (abstract), 90:1–266.CrossRefGoogle Scholar
  34. 34.
    Kuo, L., Chilian, W. M., and Davis, M. J., 1988, Myogenic activity in isolated subepicardial and subendocardial coronary arterioles, Am. J. Physiol. 255:H1558–H1562.PubMedGoogle Scholar
  35. 35.
    Goto, M., VanBavel, E., Giezeman, M. J. M. M., and Spaan, J. A. E., 1993, Mechanical properties of coronary arterioles under pulsation, in Maruyama Y. et al (eds): Recent advances in coronary circulation, Tokyo, Springer-Verlag, 182–188.CrossRefGoogle Scholar
  36. 36.
    Goto, M., Giezeman, M. J. M. M., VanBavel, E., and Spaan, J. A. E., 1992, Increase in amplitude of pulsatile transmural pressure dilates coronary arterioles, Circulation (abstract) 86:1–508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • F. Kajiya
    • 1
  • M. Goto
    • 1
  • T. Yada
    • 1
  • Y. Ogasawara
    • 1
  • K. Tsujioka
    • 1
  1. 1.Kawasaki Medical SchoolKurashikiJapan

Personalised recommendations