Biomechanics of Blood Cells: A Historical Perspective

  • Richard Skalak


The notion that all animals and plants are made up of individual living cells and their products is a relatively new concept, dating back to approximately 150 years ago. The application of continuum mechanics to the passive and active behaviors of cells is even much more recent. Detailed analytical and computational solutions describing the deformation of cells and their components has only been carried through extensively in the last two or three decades. In the present paper, the historical development of ideas concerning the cellular nature of all living matter will be outlined first. Secondly, the development of analyses of blood flow will be sketched and thirdly, the application of continuum mechanics to individual blood cells and their component parts will be outlined.


Capillary Flow Capillary Blood Flow Cell Theory Serous Layer Germinal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagge, U., Skalak, R. and Attefors, R., 1977. Granulocyte Rheology. Advances in Microcirculation. 7: 29–48.Google Scholar
  2. Borelli, G. A., 1680. On the Movement of Animals. Translated by P. Maquet, 1989. Springer-Verlag, New York.Google Scholar
  3. Brayden, B.C. and Poljak, R.J., 1995. Structural features of the reactions between antibodies and protein antigens. FASEB J. 9: 9–16.Google Scholar
  4. Discher, D.E., Mohandas, N., Evans, E.A., 1994. Molecular maps of red cell deformation: Hidden elasticity and in situ connectivity. Science 266: 1032–1035.PubMedCrossRefGoogle Scholar
  5. Euler, L., 1775. Principia pro moto sanquins per arterias determinado. Published post-humously, edited by P.H. Fuss and N. Fuss. Apud Eggers et socios, Petropoli. 2: 814–823, 1862.Google Scholar
  6. Fahraeus, R. and Lindquist, T., 1931. The viscosity of the blood in narrow capillary tubes. Amer. J. Physiol. 96: 562–568.Google Scholar
  7. Fishman, A.P. and Richards, D.W., 1964. Circulation of Blood: Men and Ideas. Oxford Univ. Press.Google Scholar
  8. Fung, Y.C. and Tong, P., 1968. Theory of sphering of red blood cells. Biophys. J. 8: 175–198.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fung, Y.C., 1984. Biodynamics: Circulation. Springer-Verlag, New York.Google Scholar
  10. Hales, S., 1733. Statical Essays, Vol. 11, Haemastatiks, Reprinted by Hafner Publishing Co., New York, 1964.Google Scholar
  11. Hamberger, W.W., 1939. The earliest known reference to the heart and circulation. The Edwin Smith Surgical Papyrus, circa. 3000 B.C. Amer. Heart J. 17: 259–274.Google Scholar
  12. Harvey, W., 1628. Exercitatio anatomica de moto cordis et sanquinis in animalilus. Translated by C.D. Leake, Thomas Pub., Springfield, Ill., 1958.Google Scholar
  13. Hochmuth, R.M., 1987. Properties of red blood cells. Chap. 12 in: Handbook of Bioengineering, R. Skalak and S. Chien, Eds. McGraw-Hill, New York.Google Scholar
  14. Hochmuth, R.M., 1993. Measuring the mechanical properties of individual human blood cells. J. Biomechanical Engineering. 115: 515–519.CrossRefGoogle Scholar
  15. Hooke, T., 1665. Micrographia: Some Physiological Descriptions of Minute Bodies. Martyn and Appleby, London.Google Scholar
  16. Krough, A., 1922. The Anatomy and Physiology of Capillaries. Yale Univ. Press, New Haven, CN.Google Scholar
  17. Lambert, J.W., 1956. Fluid Flow in a Nonrigid Tube. Doctoral Dissertation Series No. 19, 418. University Microfilms. Ann Arbor, Mich.Google Scholar
  18. Leake, C.D., 1962. The historical development of cardiovascular physiology. Handbook of Physiology, Sec. 2. 1: 11–22.Google Scholar
  19. Leeuwenhoek, A.V., 1688. On the circulation of blood. Letter to the Royal Society. Facsimile with introduction by A. Schierbeek. Published by N.B. de Graaf, 1962.Google Scholar
  20. Lucretius, 1921. Translation: Of the Nature of Things. Translated by W.E. Leonard. E.P. Dutton & Co., New York.Google Scholar
  21. Malpighi, M., 1661. De pulmonibus. Observationes Anatomicae. Bologna.Google Scholar
  22. McDonald, D.A., 1974. Blood Flow in Arteries, 2nd Ed. Williams & Wilkins, Baltimore, MD.Google Scholar
  23. Pedley, T.J., 1980. The Fluid Mechanics of the Large Blood Vessels. Cambridge Univ. Press.Google Scholar
  24. Poiseuille, J.L.M., 1846. Recherches experimentales sur le movement des liquides dans les tubes de très-petits diamètres. Mémoires l’ Académie Royale des Sciences de l’ Institute de France, IX: 433–544.Google Scholar
  25. Ponder, E., 1948. Hemolysis and Related Phenomena. Grune and Stratton, New York.Google Scholar
  26. Pries, A.R., Secomb, T.W., Gessner, T., Sperando, M.B., Gross, J.F. and Gaehtgens, P., 1994. Resistance to blood flow in microvessels in vivo. Circulation Research 75: 904–915.PubMedCrossRefGoogle Scholar
  27. Prothero, J. and Burton, A.C., 1961. The physics of blood flow in capillaries. Biophys. J. 1: 565–579, 2: 199-212,2:213-222.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Schiller, L., 1933. Drei Klassiker der Strömungslehre: Hagen, Poiseuille, Hagenbach. Akad. Verlagsgesellschaft, Leipzig.Google Scholar
  29. Schmid-Schoenbein, G.W., Sung, K.L.P., Tozeren, H., Skalak, R. and Chien, S., 1981. Passive mechanical properties of human leukocytes. Biophys. J. 36: 243–246.CrossRefGoogle Scholar
  30. Schwann, T. and Schieiden, M.J., 1847. Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants. Translated by H. Smith. C. and J. Printers, London.Google Scholar
  31. Secomb, T.W., 1991. Red blood cell mechanics and capillary blood rheology. Cell Biophysics. 18: 231–251.PubMedGoogle Scholar
  32. Secomb, T.W., 1995. Mechanics of blood flow in the microcirculation. To appear in: Biological Fluid Dynamics. C.P. Ellington and T.J. Pedley, Eds., Published by Company of Biologist, Cambridge, UK.Google Scholar
  33. Singer, C. and Underwood, E.A., 1962. A Short History of Medicine. Oxford Univ. Press.Google Scholar
  34. Skalak, R. and Chien, S., 1981. Capillary flow: History, experiments and theory. Biorheology. 18: 307–330.PubMedGoogle Scholar
  35. Stettler, J.C., Niederer, P., Anliker, M., 1987. Nonlinear mathematical models of the arterial system. Chap. 17 in: Handbook of Bioengineering, R. Skalak and S. Chien, Eds. McGraw-Hill, New York.Google Scholar
  36. Stossel, T., 1993. On the crawling of animal cells. Science. 260: 1086–1094.PubMedCrossRefGoogle Scholar
  37. Sutera, S.P. and Skalak, R., 1993. The history of Poiseuille’s Law. Ann. Rev. of Fluid Mech. 25: 1–19.CrossRefGoogle Scholar
  38. Usami, S., Wung, S.L., Skierczynski, B.A., Skalak, R. and Chien, S., 1992. Locomotion forces generated by a polymorphonuclear leukocyte. Biophys. J. 63: 1663–1666.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Vesalius, A., 1543. De Humani Corpus Fabrica. Basle, 1543.Google Scholar
  40. Young, T., 1809. On the functions of the heart and arteries. Phil. Trans. Royal Soc. of London. 99: 1–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Richard Skalak
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations